blob: 99d9985c5b371aeba859e4d8bc270eec6719dc96 [file] [log] [blame]
/*
comedi/drivers/mite.c
Hardware driver for NI Mite PCI interface chip
COMEDI - Linux Control and Measurement Device Interface
Copyright (C) 1997-2002 David A. Schleef <ds@schleef.org>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
The PCI-MIO E series driver was originally written by
Tomasz Motylewski <...>, and ported to comedi by ds.
References for specifications:
321747b.pdf Register Level Programmer Manual (obsolete)
321747c.pdf Register Level Programmer Manual (new)
DAQ-STC reference manual
Other possibly relevant info:
320517c.pdf User manual (obsolete)
320517f.pdf User manual (new)
320889a.pdf delete
320906c.pdf maximum signal ratings
321066a.pdf about 16x
321791a.pdf discontinuation of at-mio-16e-10 rev. c
321808a.pdf about at-mio-16e-10 rev P
321837a.pdf discontinuation of at-mio-16de-10 rev d
321838a.pdf about at-mio-16de-10 rev N
ISSUES:
*/
/* #define USE_KMALLOC */
#include "mite.h"
#include "comedi_fc.h"
#include "comedi_pci.h"
#include "../comedidev.h"
#include <asm/system.h>
#define PCI_MITE_SIZE 4096
#define PCI_DAQ_SIZE 4096
#define PCI_DAQ_SIZE_660X 8192
MODULE_LICENSE("GPL");
struct mite_struct *mite_devices;
EXPORT_SYMBOL(mite_devices);
#define TOP_OF_PAGE(x) ((x)|(~(PAGE_MASK)))
void mite_init(void)
{
struct pci_dev *pcidev;
struct mite_struct *mite;
for (pcidev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, NULL);
pcidev != NULL;
pcidev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, pcidev)) {
if (pcidev->vendor == PCI_VENDOR_ID_NI) {
unsigned i;
mite = kzalloc(sizeof(*mite), GFP_KERNEL);
if (!mite) {
printk(KERN_ERR "mite: allocation failed\n");
pci_dev_put(pcidev);
return;
}
spin_lock_init(&mite->lock);
mite->pcidev = pci_dev_get(pcidev);
for (i = 0; i < MAX_MITE_DMA_CHANNELS; ++i) {
mite->channels[i].mite = mite;
mite->channels[i].channel = i;
mite->channels[i].done = 1;
}
mite->next = mite_devices;
mite_devices = mite;
}
}
}
static void dump_chip_signature(u32 csigr_bits)
{
printk(KERN_INFO "mite: version = %i, type = %i, mite mode = %i,"
"interface mode = %i\n",
mite_csigr_version(csigr_bits), mite_csigr_type(csigr_bits),
mite_csigr_mmode(csigr_bits), mite_csigr_imode(csigr_bits));
printk(KERN_INFO "mite: num channels = %i, write post fifo depth = %i,"
"wins = %i, iowins = %i\n",
mite_csigr_dmac(csigr_bits), mite_csigr_wpdep(csigr_bits),
mite_csigr_wins(csigr_bits), mite_csigr_iowins(csigr_bits));
}
unsigned mite_fifo_size(struct mite_struct *mite, unsigned channel)
{
unsigned fcr_bits = readl(mite->mite_io_addr + MITE_FCR(channel));
unsigned empty_count = (fcr_bits >> 16) & 0xff;
unsigned full_count = fcr_bits & 0xff;
return empty_count + full_count;
}
int mite_setup2(struct mite_struct *mite, unsigned use_iodwbsr_1)
{
unsigned long length;
resource_size_t addr;
int i;
u32 csigr_bits;
unsigned unknown_dma_burst_bits;
if (comedi_pci_enable(mite->pcidev, "mite")) {
printk(KERN_ERR "error enabling mite and requesting io regions\n");
return -EIO;
}
pci_set_master(mite->pcidev);
addr = pci_resource_start(mite->pcidev, 0);
mite->mite_phys_addr = addr;
mite->mite_io_addr = ioremap(addr, PCI_MITE_SIZE);
if (!mite->mite_io_addr) {
printk(KERN_ERR "Failed to remap mite io memory address\n");
return -ENOMEM;
}
printk(KERN_INFO "MITE:0x%08llx mapped to %p ",
(unsigned long long)mite->mite_phys_addr, mite->mite_io_addr);
addr = pci_resource_start(mite->pcidev, 1);
mite->daq_phys_addr = addr;
length = pci_resource_len(mite->pcidev, 1);
/*
* In case of a 660x board, DAQ size is 8k instead of 4k
* (see as shown by lspci output)
*/
mite->daq_io_addr = ioremap(mite->daq_phys_addr, length);
if (!mite->daq_io_addr) {
printk(KERN_ERR "Failed to remap daq io memory address\n");
return -ENOMEM;
}
printk(KERN_INFO "DAQ:0x%08llx mapped to %p\n",
(unsigned long long)mite->daq_phys_addr, mite->daq_io_addr);
if (use_iodwbsr_1) {
writel(0, mite->mite_io_addr + MITE_IODWBSR);
printk(KERN_INFO "mite: using I/O Window Base Size register 1\n");
writel(mite->daq_phys_addr | WENAB |
MITE_IODWBSR_1_WSIZE_bits(length),
mite->mite_io_addr + MITE_IODWBSR_1);
writel(0, mite->mite_io_addr + MITE_IODWCR_1);
} else {
writel(mite->daq_phys_addr | WENAB,
mite->mite_io_addr + MITE_IODWBSR);
}
/*
* make sure dma bursts work. I got this from running a bus analyzer
* on a pxi-6281 and a pxi-6713. 6713 powered up with register value
* of 0x61f and bursts worked. 6281 powered up with register value of
* 0x1f and bursts didn't work. The NI windows driver reads the
* register, then does a bitwise-or of 0x600 with it and writes it back.
*/
unknown_dma_burst_bits =
readl(mite->mite_io_addr + MITE_UNKNOWN_DMA_BURST_REG);
unknown_dma_burst_bits |= UNKNOWN_DMA_BURST_ENABLE_BITS;
writel(unknown_dma_burst_bits,
mite->mite_io_addr + MITE_UNKNOWN_DMA_BURST_REG);
csigr_bits = readl(mite->mite_io_addr + MITE_CSIGR);
mite->num_channels = mite_csigr_dmac(csigr_bits);
if (mite->num_channels > MAX_MITE_DMA_CHANNELS) {
printk(KERN_WARNING "mite: bug? chip claims to have %i dma "
"channels. Setting to %i.\n",
mite->num_channels, MAX_MITE_DMA_CHANNELS);
mite->num_channels = MAX_MITE_DMA_CHANNELS;
}
dump_chip_signature(csigr_bits);
for (i = 0; i < mite->num_channels; i++) {
writel(CHOR_DMARESET, mite->mite_io_addr + MITE_CHOR(i));
/* disable interrupts */
writel(CHCR_CLR_DMA_IE | CHCR_CLR_LINKP_IE | CHCR_CLR_SAR_IE |
CHCR_CLR_DONE_IE | CHCR_CLR_MRDY_IE | CHCR_CLR_DRDY_IE |
CHCR_CLR_LC_IE | CHCR_CLR_CONT_RB_IE,
mite->mite_io_addr + MITE_CHCR(i));
}
mite->fifo_size = mite_fifo_size(mite, 0);
printk(KERN_INFO "mite: fifo size is %i.\n", mite->fifo_size);
mite->used = 1;
return 0;
}
EXPORT_SYMBOL(mite_setup2);
int mite_setup(struct mite_struct *mite)
{
return mite_setup2(mite, 0);
}
EXPORT_SYMBOL(mite_setup);
void mite_cleanup(void)
{
struct mite_struct *mite, *next;
for (mite = mite_devices; mite; mite = next) {
pci_dev_put(mite->pcidev);
next = mite->next;
kfree(mite);
}
}
void mite_unsetup(struct mite_struct *mite)
{
/* unsigned long offset, start, length; */
if (!mite)
return;
if (mite->mite_io_addr) {
iounmap(mite->mite_io_addr);
mite->mite_io_addr = NULL;
}
if (mite->daq_io_addr) {
iounmap(mite->daq_io_addr);
mite->daq_io_addr = NULL;
}
if (mite->mite_phys_addr) {
comedi_pci_disable(mite->pcidev);
mite->mite_phys_addr = 0;
}
mite->used = 0;
}
EXPORT_SYMBOL(mite_unsetup);
void mite_list_devices(void)
{
struct mite_struct *mite, *next;
printk(KERN_INFO "Available NI device IDs:");
if (mite_devices)
for (mite = mite_devices; mite; mite = next) {
next = mite->next;
printk(KERN_INFO " 0x%04x", mite_device_id(mite));
if (mite->used)
printk(KERN_INFO "(used)");
}
printk(KERN_INFO "\n");
}
EXPORT_SYMBOL(mite_list_devices);
struct mite_channel *mite_request_channel_in_range(struct mite_struct *mite,
struct
mite_dma_descriptor_ring
*ring, unsigned min_channel,
unsigned max_channel)
{
int i;
unsigned long flags;
struct mite_channel *channel = NULL;
/* spin lock so mite_release_channel can be called safely
* from interrupts
*/
spin_lock_irqsave(&mite->lock, flags);
for (i = min_channel; i <= max_channel; ++i) {
if (mite->channel_allocated[i] == 0) {
mite->channel_allocated[i] = 1;
channel = &mite->channels[i];
channel->ring = ring;
break;
}
}
spin_unlock_irqrestore(&mite->lock, flags);
return channel;
}
EXPORT_SYMBOL(mite_request_channel_in_range);
void mite_release_channel(struct mite_channel *mite_chan)
{
struct mite_struct *mite = mite_chan->mite;
unsigned long flags;
/* spin lock to prevent races with mite_request_channel */
spin_lock_irqsave(&mite->lock, flags);
if (mite->channel_allocated[mite_chan->channel]) {
mite_dma_disarm(mite_chan);
mite_dma_reset(mite_chan);
/*
* disable all channel's interrupts (do it after disarm/reset so
* MITE_CHCR reg isn't changed while dma is still active!)
*/
writel(CHCR_CLR_DMA_IE | CHCR_CLR_LINKP_IE |
CHCR_CLR_SAR_IE | CHCR_CLR_DONE_IE |
CHCR_CLR_MRDY_IE | CHCR_CLR_DRDY_IE |
CHCR_CLR_LC_IE | CHCR_CLR_CONT_RB_IE,
mite->mite_io_addr + MITE_CHCR(mite_chan->channel));
mite->channel_allocated[mite_chan->channel] = 0;
mite_chan->ring = NULL;
mmiowb();
}
spin_unlock_irqrestore(&mite->lock, flags);
}
EXPORT_SYMBOL(mite_release_channel);
void mite_dma_arm(struct mite_channel *mite_chan)
{
struct mite_struct *mite = mite_chan->mite;
int chor;
unsigned long flags;
MDPRINTK("mite_dma_arm ch%i\n", channel);
/*
* memory barrier is intended to insure any twiddling with the buffer
* is done before writing to the mite to arm dma transfer
*/
smp_mb();
/* arm */
chor = CHOR_START;
spin_lock_irqsave(&mite->lock, flags);
mite_chan->done = 0;
writel(chor, mite->mite_io_addr + MITE_CHOR(mite_chan->channel));
mmiowb();
spin_unlock_irqrestore(&mite->lock, flags);
/* mite_dma_tcr(mite, channel); */
}
EXPORT_SYMBOL(mite_dma_arm);
/**************************************/
int mite_buf_change(struct mite_dma_descriptor_ring *ring,
struct comedi_async *async)
{
unsigned int n_links;
int i;
if (ring->descriptors) {
dma_free_coherent(ring->hw_dev,
ring->n_links *
sizeof(struct mite_dma_descriptor),
ring->descriptors,
ring->descriptors_dma_addr);
}
ring->descriptors = NULL;
ring->descriptors_dma_addr = 0;
ring->n_links = 0;
if (async->prealloc_bufsz == 0)
return 0;
n_links = async->prealloc_bufsz >> PAGE_SHIFT;
MDPRINTK("ring->hw_dev=%p, n_links=0x%04x\n", ring->hw_dev, n_links);
ring->descriptors =
dma_alloc_coherent(ring->hw_dev,
n_links * sizeof(struct mite_dma_descriptor),
&ring->descriptors_dma_addr, GFP_KERNEL);
if (!ring->descriptors) {
printk(KERN_ERR "mite: ring buffer allocation failed\n");
return -ENOMEM;
}
ring->n_links = n_links;
for (i = 0; i < n_links; i++) {
ring->descriptors[i].count = cpu_to_le32(PAGE_SIZE);
ring->descriptors[i].addr =
cpu_to_le32(async->buf_page_list[i].dma_addr);
ring->descriptors[i].next =
cpu_to_le32(ring->descriptors_dma_addr + (i +
1) *
sizeof(struct mite_dma_descriptor));
}
ring->descriptors[n_links - 1].next =
cpu_to_le32(ring->descriptors_dma_addr);
/*
* barrier is meant to insure that all the writes to the dma descriptors
* have completed before the dma controller is commanded to read them
*/
smp_wmb();
return 0;
}
EXPORT_SYMBOL(mite_buf_change);
void mite_prep_dma(struct mite_channel *mite_chan,
unsigned int num_device_bits, unsigned int num_memory_bits)
{
unsigned int chor, chcr, mcr, dcr, lkcr;
struct mite_struct *mite = mite_chan->mite;
MDPRINTK("mite_prep_dma ch%i\n", mite_chan->channel);
/* reset DMA and FIFO */
chor = CHOR_DMARESET | CHOR_FRESET;
writel(chor, mite->mite_io_addr + MITE_CHOR(mite_chan->channel));
/* short link chaining mode */
chcr = CHCR_SET_DMA_IE | CHCR_LINKSHORT | CHCR_SET_DONE_IE |
CHCR_BURSTEN;
/*
* Link Complete Interrupt: interrupt every time a link
* in MITE_RING is completed. This can generate a lot of
* extra interrupts, but right now we update the values
* of buf_int_ptr and buf_int_count at each interrupt. A
* better method is to poll the MITE before each user
* "read()" to calculate the number of bytes available.
*/
chcr |= CHCR_SET_LC_IE;
if (num_memory_bits == 32 && num_device_bits == 16) {
/*
* Doing a combined 32 and 16 bit byteswap gets the 16 bit
* samples into the fifo in the right order. Tested doing 32 bit
* memory to 16 bit device transfers to the analog out of a
* pxi-6281, which has mite version = 1, type = 4. This also
* works for dma reads from the counters on e-series boards.
*/
chcr |= CHCR_BYTE_SWAP_DEVICE | CHCR_BYTE_SWAP_MEMORY;
}
if (mite_chan->dir == COMEDI_INPUT)
chcr |= CHCR_DEV_TO_MEM;
writel(chcr, mite->mite_io_addr + MITE_CHCR(mite_chan->channel));
/* to/from memory */
mcr = CR_RL(64) | CR_ASEQUP;
switch (num_memory_bits) {
case 8:
mcr |= CR_PSIZE8;
break;
case 16:
mcr |= CR_PSIZE16;
break;
case 32:
mcr |= CR_PSIZE32;
break;
default:
printk(KERN_WARNING "mite: bug! invalid mem bit width for dma "
"transfer\n");
break;
}
writel(mcr, mite->mite_io_addr + MITE_MCR(mite_chan->channel));
/* from/to device */
dcr = CR_RL(64) | CR_ASEQUP;
dcr |= CR_PORTIO | CR_AMDEVICE | CR_REQSDRQ(mite_chan->channel);
switch (num_device_bits) {
case 8:
dcr |= CR_PSIZE8;
break;
case 16:
dcr |= CR_PSIZE16;
break;
case 32:
dcr |= CR_PSIZE32;
break;
default:
printk(KERN_WARNING "mite: bug! invalid dev bit width for dma "
"transfer\n");
break;
}
writel(dcr, mite->mite_io_addr + MITE_DCR(mite_chan->channel));
/* reset the DAR */
writel(0, mite->mite_io_addr + MITE_DAR(mite_chan->channel));
/* the link is 32bits */
lkcr = CR_RL(64) | CR_ASEQUP | CR_PSIZE32;
writel(lkcr, mite->mite_io_addr + MITE_LKCR(mite_chan->channel));
/* starting address for link chaining */
writel(mite_chan->ring->descriptors_dma_addr,
mite->mite_io_addr + MITE_LKAR(mite_chan->channel));
MDPRINTK("exit mite_prep_dma\n");
}
EXPORT_SYMBOL(mite_prep_dma);
u32 mite_device_bytes_transferred(struct mite_channel *mite_chan)
{
struct mite_struct *mite = mite_chan->mite;
return readl(mite->mite_io_addr + MITE_DAR(mite_chan->channel));
}
u32 mite_bytes_in_transit(struct mite_channel *mite_chan)
{
struct mite_struct *mite = mite_chan->mite;
return readl(mite->mite_io_addr +
MITE_FCR(mite_chan->channel)) & 0x000000FF;
}
EXPORT_SYMBOL(mite_bytes_in_transit);
/* returns lower bound for number of bytes transferred from device to memory */
u32 mite_bytes_written_to_memory_lb(struct mite_channel *mite_chan)
{
u32 device_byte_count;
device_byte_count = mite_device_bytes_transferred(mite_chan);
return device_byte_count - mite_bytes_in_transit(mite_chan);
}
EXPORT_SYMBOL(mite_bytes_written_to_memory_lb);
/* returns upper bound for number of bytes transferred from device to memory */
u32 mite_bytes_written_to_memory_ub(struct mite_channel *mite_chan)
{
u32 in_transit_count;
in_transit_count = mite_bytes_in_transit(mite_chan);
return mite_device_bytes_transferred(mite_chan) - in_transit_count;
}
EXPORT_SYMBOL(mite_bytes_written_to_memory_ub);
/* returns lower bound for number of bytes read from memory to device */
u32 mite_bytes_read_from_memory_lb(struct mite_channel *mite_chan)
{
u32 device_byte_count;
device_byte_count = mite_device_bytes_transferred(mite_chan);
return device_byte_count + mite_bytes_in_transit(mite_chan);
}
EXPORT_SYMBOL(mite_bytes_read_from_memory_lb);
/* returns upper bound for number of bytes read from memory to device */
u32 mite_bytes_read_from_memory_ub(struct mite_channel *mite_chan)
{
u32 in_transit_count;
in_transit_count = mite_bytes_in_transit(mite_chan);
return mite_device_bytes_transferred(mite_chan) + in_transit_count;
}
EXPORT_SYMBOL(mite_bytes_read_from_memory_ub);
unsigned mite_dma_tcr(struct mite_channel *mite_chan)
{
struct mite_struct *mite = mite_chan->mite;
int tcr;
int lkar;
lkar = readl(mite->mite_io_addr + MITE_LKAR(mite_chan->channel));
tcr = readl(mite->mite_io_addr + MITE_TCR(mite_chan->channel));
MDPRINTK("mite_dma_tcr ch%i, lkar=0x%08x tcr=%d\n", mite_chan->channel,
lkar, tcr);
return tcr;
}
EXPORT_SYMBOL(mite_dma_tcr);
void mite_dma_disarm(struct mite_channel *mite_chan)
{
struct mite_struct *mite = mite_chan->mite;
unsigned chor;
/* disarm */
chor = CHOR_ABORT;
writel(chor, mite->mite_io_addr + MITE_CHOR(mite_chan->channel));
}
EXPORT_SYMBOL(mite_dma_disarm);
int mite_sync_input_dma(struct mite_channel *mite_chan,
struct comedi_async *async)
{
int count;
unsigned int nbytes, old_alloc_count;
const unsigned bytes_per_scan = cfc_bytes_per_scan(async->subdevice);
old_alloc_count = async->buf_write_alloc_count;
/* write alloc as much as we can */
comedi_buf_write_alloc(async, async->prealloc_bufsz);
nbytes = mite_bytes_written_to_memory_lb(mite_chan);
if ((int)(mite_bytes_written_to_memory_ub(mite_chan) -
old_alloc_count) > 0) {
printk("mite: DMA overwrite of free area\n");
async->events |= COMEDI_CB_OVERFLOW;
return -1;
}
count = nbytes - async->buf_write_count;
/* it's possible count will be negative due to
* conservative value returned by mite_bytes_written_to_memory_lb */
if (count <= 0)
return 0;
comedi_buf_write_free(async, count);
async->scan_progress += count;
if (async->scan_progress >= bytes_per_scan) {
async->scan_progress %= bytes_per_scan;
async->events |= COMEDI_CB_EOS;
}
async->events |= COMEDI_CB_BLOCK;
return 0;
}
EXPORT_SYMBOL(mite_sync_input_dma);
int mite_sync_output_dma(struct mite_channel *mite_chan,
struct comedi_async *async)
{
int count;
u32 nbytes_ub, nbytes_lb;
unsigned int old_alloc_count;
u32 stop_count =
async->cmd.stop_arg * cfc_bytes_per_scan(async->subdevice);
old_alloc_count = async->buf_read_alloc_count;
/* read alloc as much as we can */
comedi_buf_read_alloc(async, async->prealloc_bufsz);
nbytes_lb = mite_bytes_read_from_memory_lb(mite_chan);
if (async->cmd.stop_src == TRIG_COUNT &&
(int)(nbytes_lb - stop_count) > 0)
nbytes_lb = stop_count;
nbytes_ub = mite_bytes_read_from_memory_ub(mite_chan);
if (async->cmd.stop_src == TRIG_COUNT &&
(int)(nbytes_ub - stop_count) > 0)
nbytes_ub = stop_count;
if ((int)(nbytes_ub - old_alloc_count) > 0) {
printk(KERN_ERR "mite: DMA underrun\n");
async->events |= COMEDI_CB_OVERFLOW;
return -1;
}
count = nbytes_lb - async->buf_read_count;
if (count <= 0)
return 0;
if (count) {
comedi_buf_read_free(async, count);
async->events |= COMEDI_CB_BLOCK;
}
return 0;
}
EXPORT_SYMBOL(mite_sync_output_dma);
unsigned mite_get_status(struct mite_channel *mite_chan)
{
struct mite_struct *mite = mite_chan->mite;
unsigned status;
unsigned long flags;
spin_lock_irqsave(&mite->lock, flags);
status = readl(mite->mite_io_addr + MITE_CHSR(mite_chan->channel));
if (status & CHSR_DONE) {
mite_chan->done = 1;
writel(CHOR_CLRDONE,
mite->mite_io_addr + MITE_CHOR(mite_chan->channel));
}
mmiowb();
spin_unlock_irqrestore(&mite->lock, flags);
return status;
}
EXPORT_SYMBOL(mite_get_status);
int mite_done(struct mite_channel *mite_chan)
{
struct mite_struct *mite = mite_chan->mite;
unsigned long flags;
int done;
mite_get_status(mite_chan);
spin_lock_irqsave(&mite->lock, flags);
done = mite_chan->done;
spin_unlock_irqrestore(&mite->lock, flags);
return done;
}
EXPORT_SYMBOL(mite_done);
#ifdef DEBUG_MITE
static void mite_decode(char **bit_str, unsigned int bits);
/* names of bits in mite registers */
static const char *const mite_CHOR_strings[] = {
"start", "cont", "stop", "abort",
"freset", "clrlc", "clrrb", "clrdone",
"clr_lpause", "set_lpause", "clr_send_tc",
"set_send_tc", "12", "13", "14",
"15", "16", "17", "18",
"19", "20", "21", "22",
"23", "24", "25", "26",
"27", "28", "29", "30",
"dmareset",
};
static const char *const mite_CHCR_strings[] = {
"continue", "ringbuff", "2", "3",
"4", "5", "6", "7",
"8", "9", "10", "11",
"12", "13", "bursten", "fifodis",
"clr_cont_rb_ie", "set_cont_rb_ie", "clr_lc_ie", "set_lc_ie",
"clr_drdy_ie", "set_drdy_ie", "clr_mrdy_ie", "set_mrdy_ie",
"clr_done_ie", "set_done_ie", "clr_sar_ie", "set_sar_ie",
"clr_linkp_ie", "set_linkp_ie", "clr_dma_ie", "set_dma_ie",
};
static const char *const mite_MCR_strings[] = {
"amdevice", "1", "2", "3",
"4", "5", "portio", "portvxi",
"psizebyte", "psizehalf (byte & half = word)", "aseqxp1", "11",
"12", "13", "blocken", "berhand",
"reqsintlim/reqs0", "reqs1", "reqs2", "rd32",
"rd512", "rl1", "rl2", "rl8",
"24", "25", "26", "27",
"28", "29", "30", "stopen",
};
static const char *const mite_DCR_strings[] = {
"amdevice", "1", "2", "3",
"4", "5", "portio", "portvxi",
"psizebyte", "psizehalf (byte & half = word)", "aseqxp1", "aseqxp2",
"aseqxp8", "13", "blocken", "berhand",
"reqsintlim", "reqs1", "reqs2", "rd32",
"rd512", "rl1", "rl2", "rl8",
"23", "24", "25", "27",
"28", "wsdevc", "wsdevs", "rwdevpack",
};
static const char *const mite_LKCR_strings[] = {
"amdevice", "1", "2", "3",
"4", "5", "portio", "portvxi",
"psizebyte", "psizehalf (byte & half = word)", "asequp", "aseqdown",
"12", "13", "14", "berhand",
"16", "17", "18", "rd32",
"rd512", "rl1", "rl2", "rl8",
"24", "25", "26", "27",
"28", "29", "30", "chngend",
};
static const char *const mite_CHSR_strings[] = {
"d.err0", "d.err1", "m.err0", "m.err1",
"l.err0", "l.err1", "drq0", "drq1",
"end", "xferr", "operr0", "operr1",
"stops", "habort", "sabort", "error",
"16", "conts_rb", "18", "linkc",
"20", "drdy", "22", "mrdy",
"24", "done", "26", "sars",
"28", "lpauses", "30", "int",
};
void mite_dump_regs(struct mite_channel *mite_chan)
{
unsigned long mite_io_addr =
(unsigned long)mite_chan->mite->mite_io_addr;
unsigned long addr = 0;
unsigned long temp = 0;
printk(KERN_DEBUG "mite_dump_regs ch%i\n", mite_chan->channel);
printk(KERN_DEBUG "mite address is =0x%08lx\n", mite_io_addr);
addr = mite_io_addr + MITE_CHOR(channel);
printk(KERN_DEBUG "mite status[CHOR]at 0x%08lx =0x%08lx\n", addr,
temp = readl(addr));
mite_decode(mite_CHOR_strings, temp);
addr = mite_io_addr + MITE_CHCR(channel);
printk(KERN_DEBUG "mite status[CHCR]at 0x%08lx =0x%08lx\n", addr,
temp = readl(addr));
mite_decode(mite_CHCR_strings, temp);
addr = mite_io_addr + MITE_TCR(channel);
printk(KERN_DEBUG "mite status[TCR] at 0x%08lx =0x%08x\n", addr,
readl(addr));
addr = mite_io_addr + MITE_MCR(channel);
printk(KERN_DEBUG "mite status[MCR] at 0x%08lx =0x%08lx\n", addr,
temp = readl(addr));
mite_decode(mite_MCR_strings, temp);
addr = mite_io_addr + MITE_MAR(channel);
printk(KERN_DEBUG "mite status[MAR] at 0x%08lx =0x%08x\n", addr,
readl(addr));
addr = mite_io_addr + MITE_DCR(channel);
printk(KERN_DEBUG "mite status[DCR] at 0x%08lx =0x%08lx\n", addr,
temp = readl(addr));
mite_decode(mite_DCR_strings, temp);
addr = mite_io_addr + MITE_DAR(channel);
printk(KERN_DEBUG "mite status[DAR] at 0x%08lx =0x%08x\n", addr,
readl(addr));
addr = mite_io_addr + MITE_LKCR(channel);
printk(KERN_DEBUG "mite status[LKCR]at 0x%08lx =0x%08lx\n", addr,
temp = readl(addr));
mite_decode(mite_LKCR_strings, temp);
addr = mite_io_addr + MITE_LKAR(channel);
printk(KERN_DEBUG "mite status[LKAR]at 0x%08lx =0x%08x\n", addr,
readl(addr));
addr = mite_io_addr + MITE_CHSR(channel);
printk(KERN_DEBUG "mite status[CHSR]at 0x%08lx =0x%08lx\n", addr,
temp = readl(addr));
mite_decode(mite_CHSR_strings, temp);
addr = mite_io_addr + MITE_FCR(channel);
printk(KERN_DEBUG "mite status[FCR] at 0x%08lx =0x%08x\n\n", addr,
readl(addr));
}
EXPORT_SYMBOL(mite_dump_regs);
static void mite_decode(char **bit_str, unsigned int bits)
{
int i;
for (i = 31; i >= 0; i--) {
if (bits & (1 << i))
printk(KERN_DEBUG " %s", bit_str[i]);
}
printk(KERN_DEBUG "\n");
}
EXPORT_SYMBOL(mite_decode);
#endif
#ifdef MODULE
int __init init_module(void)
{
mite_init();
mite_list_devices();
return 0;
}
void __exit cleanup_module(void)
{
mite_cleanup();
}
#endif