| /**************************************************************************** |
| * Driver for Solarflare Solarstorm network controllers and boards |
| * Copyright 2006-2009 Solarflare Communications Inc. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 as published |
| * by the Free Software Foundation, incorporated herein by reference. |
| */ |
| /* |
| * Driver for AMCC QT202x SFP+ and XFP adapters; see www.amcc.com for details |
| */ |
| |
| #include <linux/slab.h> |
| #include <linux/timer.h> |
| #include <linux/delay.h> |
| #include "efx.h" |
| #include "mdio_10g.h" |
| #include "phy.h" |
| #include "nic.h" |
| |
| #define QT202X_REQUIRED_DEVS (MDIO_DEVS_PCS | \ |
| MDIO_DEVS_PMAPMD | \ |
| MDIO_DEVS_PHYXS) |
| |
| #define QT202X_LOOPBACKS ((1 << LOOPBACK_PCS) | \ |
| (1 << LOOPBACK_PMAPMD) | \ |
| (1 << LOOPBACK_PHYXS_WS)) |
| |
| /****************************************************************************/ |
| /* Quake-specific MDIO registers */ |
| #define MDIO_QUAKE_LED0_REG (0xD006) |
| |
| /* QT2025C only */ |
| #define PCS_FW_HEARTBEAT_REG 0xd7ee |
| #define PCS_FW_HEARTB_LBN 0 |
| #define PCS_FW_HEARTB_WIDTH 8 |
| #define PCS_FW_PRODUCT_CODE_1 0xd7f0 |
| #define PCS_FW_VERSION_1 0xd7f3 |
| #define PCS_FW_BUILD_1 0xd7f6 |
| #define PCS_UC8051_STATUS_REG 0xd7fd |
| #define PCS_UC_STATUS_LBN 0 |
| #define PCS_UC_STATUS_WIDTH 8 |
| #define PCS_UC_STATUS_FW_SAVE 0x20 |
| #define PMA_PMD_FTX_CTRL2_REG 0xc309 |
| #define PMA_PMD_FTX_STATIC_LBN 13 |
| #define PMA_PMD_VEND1_REG 0xc001 |
| #define PMA_PMD_VEND1_LBTXD_LBN 15 |
| #define PCS_VEND1_REG 0xc000 |
| #define PCS_VEND1_LBTXD_LBN 5 |
| |
| void falcon_qt202x_set_led(struct efx_nic *p, int led, int mode) |
| { |
| int addr = MDIO_QUAKE_LED0_REG + led; |
| efx_mdio_write(p, MDIO_MMD_PMAPMD, addr, mode); |
| } |
| |
| struct qt202x_phy_data { |
| enum efx_phy_mode phy_mode; |
| bool bug17190_in_bad_state; |
| unsigned long bug17190_timer; |
| u32 firmware_ver; |
| }; |
| |
| #define QT2022C2_MAX_RESET_TIME 500 |
| #define QT2022C2_RESET_WAIT 10 |
| |
| #define QT2025C_MAX_HEARTB_TIME (5 * HZ) |
| #define QT2025C_HEARTB_WAIT 100 |
| #define QT2025C_MAX_FWSTART_TIME (25 * HZ / 10) |
| #define QT2025C_FWSTART_WAIT 100 |
| |
| #define BUG17190_INTERVAL (2 * HZ) |
| |
| static int qt2025c_wait_heartbeat(struct efx_nic *efx) |
| { |
| unsigned long timeout = jiffies + QT2025C_MAX_HEARTB_TIME; |
| int reg, old_counter = 0; |
| |
| /* Wait for firmware heartbeat to start */ |
| for (;;) { |
| int counter; |
| reg = efx_mdio_read(efx, MDIO_MMD_PCS, PCS_FW_HEARTBEAT_REG); |
| if (reg < 0) |
| return reg; |
| counter = ((reg >> PCS_FW_HEARTB_LBN) & |
| ((1 << PCS_FW_HEARTB_WIDTH) - 1)); |
| if (old_counter == 0) |
| old_counter = counter; |
| else if (counter != old_counter) |
| break; |
| if (time_after(jiffies, timeout)) { |
| /* Some cables have EEPROMs that conflict with the |
| * PHY's on-board EEPROM so it cannot load firmware */ |
| EFX_ERR(efx, "If an SFP+ direct attach cable is" |
| " connected, please check that it complies" |
| " with the SFP+ specification\n"); |
| return -ETIMEDOUT; |
| } |
| msleep(QT2025C_HEARTB_WAIT); |
| } |
| |
| return 0; |
| } |
| |
| static int qt2025c_wait_fw_status_good(struct efx_nic *efx) |
| { |
| unsigned long timeout = jiffies + QT2025C_MAX_FWSTART_TIME; |
| int reg; |
| |
| /* Wait for firmware status to look good */ |
| for (;;) { |
| reg = efx_mdio_read(efx, MDIO_MMD_PCS, PCS_UC8051_STATUS_REG); |
| if (reg < 0) |
| return reg; |
| if ((reg & |
| ((1 << PCS_UC_STATUS_WIDTH) - 1) << PCS_UC_STATUS_LBN) >= |
| PCS_UC_STATUS_FW_SAVE) |
| break; |
| if (time_after(jiffies, timeout)) |
| return -ETIMEDOUT; |
| msleep(QT2025C_FWSTART_WAIT); |
| } |
| |
| return 0; |
| } |
| |
| static void qt2025c_restart_firmware(struct efx_nic *efx) |
| { |
| /* Restart microcontroller execution of firmware from RAM */ |
| efx_mdio_write(efx, 3, 0xe854, 0x00c0); |
| efx_mdio_write(efx, 3, 0xe854, 0x0040); |
| msleep(50); |
| } |
| |
| static int qt2025c_wait_reset(struct efx_nic *efx) |
| { |
| int rc; |
| |
| rc = qt2025c_wait_heartbeat(efx); |
| if (rc != 0) |
| return rc; |
| |
| rc = qt2025c_wait_fw_status_good(efx); |
| if (rc == -ETIMEDOUT) { |
| /* Bug 17689: occasionally heartbeat starts but firmware status |
| * code never progresses beyond 0x00. Try again, once, after |
| * restarting execution of the firmware image. */ |
| EFX_LOG(efx, "bashing QT2025C microcontroller\n"); |
| qt2025c_restart_firmware(efx); |
| rc = qt2025c_wait_heartbeat(efx); |
| if (rc != 0) |
| return rc; |
| rc = qt2025c_wait_fw_status_good(efx); |
| } |
| |
| return rc; |
| } |
| |
| static void qt2025c_firmware_id(struct efx_nic *efx) |
| { |
| struct qt202x_phy_data *phy_data = efx->phy_data; |
| u8 firmware_id[9]; |
| size_t i; |
| |
| for (i = 0; i < sizeof(firmware_id); i++) |
| firmware_id[i] = efx_mdio_read(efx, MDIO_MMD_PCS, |
| PCS_FW_PRODUCT_CODE_1 + i); |
| EFX_INFO(efx, "QT2025C firmware %xr%d v%d.%d.%d.%d [20%02d-%02d-%02d]\n", |
| (firmware_id[0] << 8) | firmware_id[1], firmware_id[2], |
| firmware_id[3] >> 4, firmware_id[3] & 0xf, |
| firmware_id[4], firmware_id[5], |
| firmware_id[6], firmware_id[7], firmware_id[8]); |
| phy_data->firmware_ver = ((firmware_id[3] & 0xf0) << 20) | |
| ((firmware_id[3] & 0x0f) << 16) | |
| (firmware_id[4] << 8) | firmware_id[5]; |
| } |
| |
| static void qt2025c_bug17190_workaround(struct efx_nic *efx) |
| { |
| struct qt202x_phy_data *phy_data = efx->phy_data; |
| |
| /* The PHY can get stuck in a state where it reports PHY_XS and PMA/PMD |
| * layers up, but PCS down (no block_lock). If we notice this state |
| * persisting for a couple of seconds, we switch PMA/PMD loopback |
| * briefly on and then off again, which is normally sufficient to |
| * recover it. |
| */ |
| if (efx->link_state.up || |
| !efx_mdio_links_ok(efx, MDIO_DEVS_PMAPMD | MDIO_DEVS_PHYXS)) { |
| phy_data->bug17190_in_bad_state = false; |
| return; |
| } |
| |
| if (!phy_data->bug17190_in_bad_state) { |
| phy_data->bug17190_in_bad_state = true; |
| phy_data->bug17190_timer = jiffies + BUG17190_INTERVAL; |
| return; |
| } |
| |
| if (time_after_eq(jiffies, phy_data->bug17190_timer)) { |
| EFX_LOG(efx, "bashing QT2025C PMA/PMD\n"); |
| efx_mdio_set_flag(efx, MDIO_MMD_PMAPMD, MDIO_CTRL1, |
| MDIO_PMA_CTRL1_LOOPBACK, true); |
| msleep(100); |
| efx_mdio_set_flag(efx, MDIO_MMD_PMAPMD, MDIO_CTRL1, |
| MDIO_PMA_CTRL1_LOOPBACK, false); |
| phy_data->bug17190_timer = jiffies + BUG17190_INTERVAL; |
| } |
| } |
| |
| static int qt2025c_select_phy_mode(struct efx_nic *efx) |
| { |
| struct qt202x_phy_data *phy_data = efx->phy_data; |
| struct falcon_board *board = falcon_board(efx); |
| int reg, rc, i; |
| uint16_t phy_op_mode; |
| |
| /* Only 2.0.1.0+ PHY firmware supports the more optimal SFP+ |
| * Self-Configure mode. Don't attempt any switching if we encounter |
| * older firmware. */ |
| if (phy_data->firmware_ver < 0x02000100) |
| return 0; |
| |
| /* In general we will get optimal behaviour in "SFP+ Self-Configure" |
| * mode; however, that powers down most of the PHY when no module is |
| * present, so we must use a different mode (any fixed mode will do) |
| * to be sure that loopbacks will work. */ |
| phy_op_mode = (efx->loopback_mode == LOOPBACK_NONE) ? 0x0038 : 0x0020; |
| |
| /* Only change mode if really necessary */ |
| reg = efx_mdio_read(efx, 1, 0xc319); |
| if ((reg & 0x0038) == phy_op_mode) |
| return 0; |
| EFX_LOG(efx, "Switching PHY to mode 0x%04x\n", phy_op_mode); |
| |
| /* This sequence replicates the register writes configured in the boot |
| * EEPROM (including the differences between board revisions), except |
| * that the operating mode is changed, and the PHY is prevented from |
| * unnecessarily reloading the main firmware image again. */ |
| efx_mdio_write(efx, 1, 0xc300, 0x0000); |
| /* (Note: this portion of the boot EEPROM sequence, which bit-bashes 9 |
| * STOPs onto the firmware/module I2C bus to reset it, varies across |
| * board revisions, as the bus is connected to different GPIO/LED |
| * outputs on the PHY.) */ |
| if (board->major == 0 && board->minor < 2) { |
| efx_mdio_write(efx, 1, 0xc303, 0x4498); |
| for (i = 0; i < 9; i++) { |
| efx_mdio_write(efx, 1, 0xc303, 0x4488); |
| efx_mdio_write(efx, 1, 0xc303, 0x4480); |
| efx_mdio_write(efx, 1, 0xc303, 0x4490); |
| efx_mdio_write(efx, 1, 0xc303, 0x4498); |
| } |
| } else { |
| efx_mdio_write(efx, 1, 0xc303, 0x0920); |
| efx_mdio_write(efx, 1, 0xd008, 0x0004); |
| for (i = 0; i < 9; i++) { |
| efx_mdio_write(efx, 1, 0xc303, 0x0900); |
| efx_mdio_write(efx, 1, 0xd008, 0x0005); |
| efx_mdio_write(efx, 1, 0xc303, 0x0920); |
| efx_mdio_write(efx, 1, 0xd008, 0x0004); |
| } |
| efx_mdio_write(efx, 1, 0xc303, 0x4900); |
| } |
| efx_mdio_write(efx, 1, 0xc303, 0x4900); |
| efx_mdio_write(efx, 1, 0xc302, 0x0004); |
| efx_mdio_write(efx, 1, 0xc316, 0x0013); |
| efx_mdio_write(efx, 1, 0xc318, 0x0054); |
| efx_mdio_write(efx, 1, 0xc319, phy_op_mode); |
| efx_mdio_write(efx, 1, 0xc31a, 0x0098); |
| efx_mdio_write(efx, 3, 0x0026, 0x0e00); |
| efx_mdio_write(efx, 3, 0x0027, 0x0013); |
| efx_mdio_write(efx, 3, 0x0028, 0xa528); |
| efx_mdio_write(efx, 1, 0xd006, 0x000a); |
| efx_mdio_write(efx, 1, 0xd007, 0x0009); |
| efx_mdio_write(efx, 1, 0xd008, 0x0004); |
| /* This additional write is not present in the boot EEPROM. It |
| * prevents the PHY's internal boot ROM doing another pointless (and |
| * slow) reload of the firmware image (the microcontroller's code |
| * memory is not affected by the microcontroller reset). */ |
| efx_mdio_write(efx, 1, 0xc317, 0x00ff); |
| efx_mdio_write(efx, 1, 0xc300, 0x0002); |
| msleep(20); |
| |
| /* Restart microcontroller execution of firmware from RAM */ |
| qt2025c_restart_firmware(efx); |
| |
| /* Wait for the microcontroller to be ready again */ |
| rc = qt2025c_wait_reset(efx); |
| if (rc < 0) { |
| EFX_ERR(efx, "PHY microcontroller reset during mode switch " |
| "timed out\n"); |
| return rc; |
| } |
| |
| return 0; |
| } |
| |
| static int qt202x_reset_phy(struct efx_nic *efx) |
| { |
| int rc; |
| |
| if (efx->phy_type == PHY_TYPE_QT2025C) { |
| /* Wait for the reset triggered by falcon_reset_hw() |
| * to complete */ |
| rc = qt2025c_wait_reset(efx); |
| if (rc < 0) |
| goto fail; |
| } else { |
| /* Reset the PHYXS MMD. This is documented as doing |
| * a complete soft reset. */ |
| rc = efx_mdio_reset_mmd(efx, MDIO_MMD_PHYXS, |
| QT2022C2_MAX_RESET_TIME / |
| QT2022C2_RESET_WAIT, |
| QT2022C2_RESET_WAIT); |
| if (rc < 0) |
| goto fail; |
| } |
| |
| /* Wait 250ms for the PHY to complete bootup */ |
| msleep(250); |
| |
| falcon_board(efx)->type->init_phy(efx); |
| |
| return 0; |
| |
| fail: |
| EFX_ERR(efx, "PHY reset timed out\n"); |
| return rc; |
| } |
| |
| static int qt202x_phy_probe(struct efx_nic *efx) |
| { |
| struct qt202x_phy_data *phy_data; |
| |
| phy_data = kzalloc(sizeof(struct qt202x_phy_data), GFP_KERNEL); |
| if (!phy_data) |
| return -ENOMEM; |
| efx->phy_data = phy_data; |
| phy_data->phy_mode = efx->phy_mode; |
| phy_data->bug17190_in_bad_state = false; |
| phy_data->bug17190_timer = 0; |
| |
| efx->mdio.mmds = QT202X_REQUIRED_DEVS; |
| efx->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22; |
| efx->loopback_modes = QT202X_LOOPBACKS | FALCON_XMAC_LOOPBACKS; |
| return 0; |
| } |
| |
| static int qt202x_phy_init(struct efx_nic *efx) |
| { |
| u32 devid; |
| int rc; |
| |
| rc = qt202x_reset_phy(efx); |
| if (rc) { |
| EFX_ERR(efx, "PHY init failed\n"); |
| return rc; |
| } |
| |
| devid = efx_mdio_read_id(efx, MDIO_MMD_PHYXS); |
| EFX_INFO(efx, "PHY ID reg %x (OUI %06x model %02x revision %x)\n", |
| devid, efx_mdio_id_oui(devid), efx_mdio_id_model(devid), |
| efx_mdio_id_rev(devid)); |
| |
| if (efx->phy_type == PHY_TYPE_QT2025C) |
| qt2025c_firmware_id(efx); |
| |
| return 0; |
| } |
| |
| static int qt202x_link_ok(struct efx_nic *efx) |
| { |
| return efx_mdio_links_ok(efx, QT202X_REQUIRED_DEVS); |
| } |
| |
| static bool qt202x_phy_poll(struct efx_nic *efx) |
| { |
| bool was_up = efx->link_state.up; |
| |
| efx->link_state.up = qt202x_link_ok(efx); |
| efx->link_state.speed = 10000; |
| efx->link_state.fd = true; |
| efx->link_state.fc = efx->wanted_fc; |
| |
| if (efx->phy_type == PHY_TYPE_QT2025C) |
| qt2025c_bug17190_workaround(efx); |
| |
| return efx->link_state.up != was_up; |
| } |
| |
| static int qt202x_phy_reconfigure(struct efx_nic *efx) |
| { |
| struct qt202x_phy_data *phy_data = efx->phy_data; |
| |
| if (efx->phy_type == PHY_TYPE_QT2025C) { |
| int rc = qt2025c_select_phy_mode(efx); |
| if (rc) |
| return rc; |
| |
| /* There are several different register bits which can |
| * disable TX (and save power) on direct-attach cables |
| * or optical transceivers, varying somewhat between |
| * firmware versions. Only 'static mode' appears to |
| * cover everything. */ |
| mdio_set_flag( |
| &efx->mdio, efx->mdio.prtad, MDIO_MMD_PMAPMD, |
| PMA_PMD_FTX_CTRL2_REG, 1 << PMA_PMD_FTX_STATIC_LBN, |
| efx->phy_mode & PHY_MODE_TX_DISABLED || |
| efx->phy_mode & PHY_MODE_LOW_POWER || |
| efx->loopback_mode == LOOPBACK_PCS || |
| efx->loopback_mode == LOOPBACK_PMAPMD); |
| } else { |
| /* Reset the PHY when moving from tx off to tx on */ |
| if (!(efx->phy_mode & PHY_MODE_TX_DISABLED) && |
| (phy_data->phy_mode & PHY_MODE_TX_DISABLED)) |
| qt202x_reset_phy(efx); |
| |
| efx_mdio_transmit_disable(efx); |
| } |
| |
| efx_mdio_phy_reconfigure(efx); |
| |
| phy_data->phy_mode = efx->phy_mode; |
| |
| return 0; |
| } |
| |
| static void qt202x_phy_get_settings(struct efx_nic *efx, struct ethtool_cmd *ecmd) |
| { |
| mdio45_ethtool_gset(&efx->mdio, ecmd); |
| } |
| |
| static void qt202x_phy_remove(struct efx_nic *efx) |
| { |
| /* Free the context block */ |
| kfree(efx->phy_data); |
| efx->phy_data = NULL; |
| } |
| |
| struct efx_phy_operations falcon_qt202x_phy_ops = { |
| .probe = qt202x_phy_probe, |
| .init = qt202x_phy_init, |
| .reconfigure = qt202x_phy_reconfigure, |
| .poll = qt202x_phy_poll, |
| .fini = efx_port_dummy_op_void, |
| .remove = qt202x_phy_remove, |
| .get_settings = qt202x_phy_get_settings, |
| .set_settings = efx_mdio_set_settings, |
| .test_alive = efx_mdio_test_alive, |
| }; |