| #ifndef __ALPHA_UACCESS_H |
| #define __ALPHA_UACCESS_H |
| |
| #include <linux/errno.h> |
| #include <linux/sched.h> |
| |
| |
| /* |
| * The fs value determines whether argument validity checking should be |
| * performed or not. If get_fs() == USER_DS, checking is performed, with |
| * get_fs() == KERNEL_DS, checking is bypassed. |
| * |
| * Or at least it did once upon a time. Nowadays it is a mask that |
| * defines which bits of the address space are off limits. This is a |
| * wee bit faster than the above. |
| * |
| * For historical reasons, these macros are grossly misnamed. |
| */ |
| |
| #define KERNEL_DS ((mm_segment_t) { 0UL }) |
| #define USER_DS ((mm_segment_t) { -0x40000000000UL }) |
| |
| #define VERIFY_READ 0 |
| #define VERIFY_WRITE 1 |
| |
| #define get_fs() (current_thread_info()->addr_limit) |
| #define get_ds() (KERNEL_DS) |
| #define set_fs(x) (current_thread_info()->addr_limit = (x)) |
| |
| #define segment_eq(a,b) ((a).seg == (b).seg) |
| |
| /* |
| * Is a address valid? This does a straightforward calculation rather |
| * than tests. |
| * |
| * Address valid if: |
| * - "addr" doesn't have any high-bits set |
| * - AND "size" doesn't have any high-bits set |
| * - AND "addr+size" doesn't have any high-bits set |
| * - OR we are in kernel mode. |
| */ |
| #define __access_ok(addr,size,segment) \ |
| (((segment).seg & (addr | size | (addr+size))) == 0) |
| |
| #define access_ok(type,addr,size) \ |
| ({ \ |
| __chk_user_ptr(addr); \ |
| __access_ok(((unsigned long)(addr)),(size),get_fs()); \ |
| }) |
| |
| /* |
| * These are the main single-value transfer routines. They automatically |
| * use the right size if we just have the right pointer type. |
| * |
| * As the alpha uses the same address space for kernel and user |
| * data, we can just do these as direct assignments. (Of course, the |
| * exception handling means that it's no longer "just"...) |
| * |
| * Careful to not |
| * (a) re-use the arguments for side effects (sizeof/typeof is ok) |
| * (b) require any knowledge of processes at this stage |
| */ |
| #define put_user(x,ptr) \ |
| __put_user_check((__typeof__(*(ptr)))(x),(ptr),sizeof(*(ptr)),get_fs()) |
| #define get_user(x,ptr) \ |
| __get_user_check((x),(ptr),sizeof(*(ptr)),get_fs()) |
| |
| /* |
| * The "__xxx" versions do not do address space checking, useful when |
| * doing multiple accesses to the same area (the programmer has to do the |
| * checks by hand with "access_ok()") |
| */ |
| #define __put_user(x,ptr) \ |
| __put_user_nocheck((__typeof__(*(ptr)))(x),(ptr),sizeof(*(ptr))) |
| #define __get_user(x,ptr) \ |
| __get_user_nocheck((x),(ptr),sizeof(*(ptr))) |
| |
| /* |
| * The "lda %1, 2b-1b(%0)" bits are magic to get the assembler to |
| * encode the bits we need for resolving the exception. See the |
| * more extensive comments with fixup_inline_exception below for |
| * more information. |
| */ |
| |
| extern void __get_user_unknown(void); |
| |
| #define __get_user_nocheck(x,ptr,size) \ |
| ({ \ |
| long __gu_err = 0; \ |
| unsigned long __gu_val; \ |
| __chk_user_ptr(ptr); \ |
| switch (size) { \ |
| case 1: __get_user_8(ptr); break; \ |
| case 2: __get_user_16(ptr); break; \ |
| case 4: __get_user_32(ptr); break; \ |
| case 8: __get_user_64(ptr); break; \ |
| default: __get_user_unknown(); break; \ |
| } \ |
| (x) = (__typeof__(*(ptr))) __gu_val; \ |
| __gu_err; \ |
| }) |
| |
| #define __get_user_check(x,ptr,size,segment) \ |
| ({ \ |
| long __gu_err = -EFAULT; \ |
| unsigned long __gu_val = 0; \ |
| const __typeof__(*(ptr)) __user *__gu_addr = (ptr); \ |
| if (__access_ok((unsigned long)__gu_addr,size,segment)) { \ |
| __gu_err = 0; \ |
| switch (size) { \ |
| case 1: __get_user_8(__gu_addr); break; \ |
| case 2: __get_user_16(__gu_addr); break; \ |
| case 4: __get_user_32(__gu_addr); break; \ |
| case 8: __get_user_64(__gu_addr); break; \ |
| default: __get_user_unknown(); break; \ |
| } \ |
| } \ |
| (x) = (__typeof__(*(ptr))) __gu_val; \ |
| __gu_err; \ |
| }) |
| |
| struct __large_struct { unsigned long buf[100]; }; |
| #define __m(x) (*(struct __large_struct __user *)(x)) |
| |
| #define __get_user_64(addr) \ |
| __asm__("1: ldq %0,%2\n" \ |
| "2:\n" \ |
| ".section __ex_table,\"a\"\n" \ |
| " .long 1b - .\n" \ |
| " lda %0, 2b-1b(%1)\n" \ |
| ".previous" \ |
| : "=r"(__gu_val), "=r"(__gu_err) \ |
| : "m"(__m(addr)), "1"(__gu_err)) |
| |
| #define __get_user_32(addr) \ |
| __asm__("1: ldl %0,%2\n" \ |
| "2:\n" \ |
| ".section __ex_table,\"a\"\n" \ |
| " .long 1b - .\n" \ |
| " lda %0, 2b-1b(%1)\n" \ |
| ".previous" \ |
| : "=r"(__gu_val), "=r"(__gu_err) \ |
| : "m"(__m(addr)), "1"(__gu_err)) |
| |
| #ifdef __alpha_bwx__ |
| /* Those lucky bastards with ev56 and later CPUs can do byte/word moves. */ |
| |
| #define __get_user_16(addr) \ |
| __asm__("1: ldwu %0,%2\n" \ |
| "2:\n" \ |
| ".section __ex_table,\"a\"\n" \ |
| " .long 1b - .\n" \ |
| " lda %0, 2b-1b(%1)\n" \ |
| ".previous" \ |
| : "=r"(__gu_val), "=r"(__gu_err) \ |
| : "m"(__m(addr)), "1"(__gu_err)) |
| |
| #define __get_user_8(addr) \ |
| __asm__("1: ldbu %0,%2\n" \ |
| "2:\n" \ |
| ".section __ex_table,\"a\"\n" \ |
| " .long 1b - .\n" \ |
| " lda %0, 2b-1b(%1)\n" \ |
| ".previous" \ |
| : "=r"(__gu_val), "=r"(__gu_err) \ |
| : "m"(__m(addr)), "1"(__gu_err)) |
| #else |
| /* Unfortunately, we can't get an unaligned access trap for the sub-word |
| load, so we have to do a general unaligned operation. */ |
| |
| #define __get_user_16(addr) \ |
| { \ |
| long __gu_tmp; \ |
| __asm__("1: ldq_u %0,0(%3)\n" \ |
| "2: ldq_u %1,1(%3)\n" \ |
| " extwl %0,%3,%0\n" \ |
| " extwh %1,%3,%1\n" \ |
| " or %0,%1,%0\n" \ |
| "3:\n" \ |
| ".section __ex_table,\"a\"\n" \ |
| " .long 1b - .\n" \ |
| " lda %0, 3b-1b(%2)\n" \ |
| " .long 2b - .\n" \ |
| " lda %0, 3b-2b(%2)\n" \ |
| ".previous" \ |
| : "=&r"(__gu_val), "=&r"(__gu_tmp), "=r"(__gu_err) \ |
| : "r"(addr), "2"(__gu_err)); \ |
| } |
| |
| #define __get_user_8(addr) \ |
| __asm__("1: ldq_u %0,0(%2)\n" \ |
| " extbl %0,%2,%0\n" \ |
| "2:\n" \ |
| ".section __ex_table,\"a\"\n" \ |
| " .long 1b - .\n" \ |
| " lda %0, 2b-1b(%1)\n" \ |
| ".previous" \ |
| : "=&r"(__gu_val), "=r"(__gu_err) \ |
| : "r"(addr), "1"(__gu_err)) |
| #endif |
| |
| extern void __put_user_unknown(void); |
| |
| #define __put_user_nocheck(x,ptr,size) \ |
| ({ \ |
| long __pu_err = 0; \ |
| __chk_user_ptr(ptr); \ |
| switch (size) { \ |
| case 1: __put_user_8(x,ptr); break; \ |
| case 2: __put_user_16(x,ptr); break; \ |
| case 4: __put_user_32(x,ptr); break; \ |
| case 8: __put_user_64(x,ptr); break; \ |
| default: __put_user_unknown(); break; \ |
| } \ |
| __pu_err; \ |
| }) |
| |
| #define __put_user_check(x,ptr,size,segment) \ |
| ({ \ |
| long __pu_err = -EFAULT; \ |
| __typeof__(*(ptr)) __user *__pu_addr = (ptr); \ |
| if (__access_ok((unsigned long)__pu_addr,size,segment)) { \ |
| __pu_err = 0; \ |
| switch (size) { \ |
| case 1: __put_user_8(x,__pu_addr); break; \ |
| case 2: __put_user_16(x,__pu_addr); break; \ |
| case 4: __put_user_32(x,__pu_addr); break; \ |
| case 8: __put_user_64(x,__pu_addr); break; \ |
| default: __put_user_unknown(); break; \ |
| } \ |
| } \ |
| __pu_err; \ |
| }) |
| |
| /* |
| * The "__put_user_xx()" macros tell gcc they read from memory |
| * instead of writing: this is because they do not write to |
| * any memory gcc knows about, so there are no aliasing issues |
| */ |
| #define __put_user_64(x,addr) \ |
| __asm__ __volatile__("1: stq %r2,%1\n" \ |
| "2:\n" \ |
| ".section __ex_table,\"a\"\n" \ |
| " .long 1b - .\n" \ |
| " lda $31,2b-1b(%0)\n" \ |
| ".previous" \ |
| : "=r"(__pu_err) \ |
| : "m" (__m(addr)), "rJ" (x), "0"(__pu_err)) |
| |
| #define __put_user_32(x,addr) \ |
| __asm__ __volatile__("1: stl %r2,%1\n" \ |
| "2:\n" \ |
| ".section __ex_table,\"a\"\n" \ |
| " .long 1b - .\n" \ |
| " lda $31,2b-1b(%0)\n" \ |
| ".previous" \ |
| : "=r"(__pu_err) \ |
| : "m"(__m(addr)), "rJ"(x), "0"(__pu_err)) |
| |
| #ifdef __alpha_bwx__ |
| /* Those lucky bastards with ev56 and later CPUs can do byte/word moves. */ |
| |
| #define __put_user_16(x,addr) \ |
| __asm__ __volatile__("1: stw %r2,%1\n" \ |
| "2:\n" \ |
| ".section __ex_table,\"a\"\n" \ |
| " .long 1b - .\n" \ |
| " lda $31,2b-1b(%0)\n" \ |
| ".previous" \ |
| : "=r"(__pu_err) \ |
| : "m"(__m(addr)), "rJ"(x), "0"(__pu_err)) |
| |
| #define __put_user_8(x,addr) \ |
| __asm__ __volatile__("1: stb %r2,%1\n" \ |
| "2:\n" \ |
| ".section __ex_table,\"a\"\n" \ |
| " .long 1b - .\n" \ |
| " lda $31,2b-1b(%0)\n" \ |
| ".previous" \ |
| : "=r"(__pu_err) \ |
| : "m"(__m(addr)), "rJ"(x), "0"(__pu_err)) |
| #else |
| /* Unfortunately, we can't get an unaligned access trap for the sub-word |
| write, so we have to do a general unaligned operation. */ |
| |
| #define __put_user_16(x,addr) \ |
| { \ |
| long __pu_tmp1, __pu_tmp2, __pu_tmp3, __pu_tmp4; \ |
| __asm__ __volatile__( \ |
| "1: ldq_u %2,1(%5)\n" \ |
| "2: ldq_u %1,0(%5)\n" \ |
| " inswh %6,%5,%4\n" \ |
| " inswl %6,%5,%3\n" \ |
| " mskwh %2,%5,%2\n" \ |
| " mskwl %1,%5,%1\n" \ |
| " or %2,%4,%2\n" \ |
| " or %1,%3,%1\n" \ |
| "3: stq_u %2,1(%5)\n" \ |
| "4: stq_u %1,0(%5)\n" \ |
| "5:\n" \ |
| ".section __ex_table,\"a\"\n" \ |
| " .long 1b - .\n" \ |
| " lda $31, 5b-1b(%0)\n" \ |
| " .long 2b - .\n" \ |
| " lda $31, 5b-2b(%0)\n" \ |
| " .long 3b - .\n" \ |
| " lda $31, 5b-3b(%0)\n" \ |
| " .long 4b - .\n" \ |
| " lda $31, 5b-4b(%0)\n" \ |
| ".previous" \ |
| : "=r"(__pu_err), "=&r"(__pu_tmp1), \ |
| "=&r"(__pu_tmp2), "=&r"(__pu_tmp3), \ |
| "=&r"(__pu_tmp4) \ |
| : "r"(addr), "r"((unsigned long)(x)), "0"(__pu_err)); \ |
| } |
| |
| #define __put_user_8(x,addr) \ |
| { \ |
| long __pu_tmp1, __pu_tmp2; \ |
| __asm__ __volatile__( \ |
| "1: ldq_u %1,0(%4)\n" \ |
| " insbl %3,%4,%2\n" \ |
| " mskbl %1,%4,%1\n" \ |
| " or %1,%2,%1\n" \ |
| "2: stq_u %1,0(%4)\n" \ |
| "3:\n" \ |
| ".section __ex_table,\"a\"\n" \ |
| " .long 1b - .\n" \ |
| " lda $31, 3b-1b(%0)\n" \ |
| " .long 2b - .\n" \ |
| " lda $31, 3b-2b(%0)\n" \ |
| ".previous" \ |
| : "=r"(__pu_err), \ |
| "=&r"(__pu_tmp1), "=&r"(__pu_tmp2) \ |
| : "r"((unsigned long)(x)), "r"(addr), "0"(__pu_err)); \ |
| } |
| #endif |
| |
| |
| /* |
| * Complex access routines |
| */ |
| |
| /* This little bit of silliness is to get the GP loaded for a function |
| that ordinarily wouldn't. Otherwise we could have it done by the macro |
| directly, which can be optimized the linker. */ |
| #ifdef MODULE |
| #define __module_address(sym) "r"(sym), |
| #define __module_call(ra, arg, sym) "jsr $" #ra ",(%" #arg ")," #sym |
| #else |
| #define __module_address(sym) |
| #define __module_call(ra, arg, sym) "bsr $" #ra "," #sym " !samegp" |
| #endif |
| |
| extern void __copy_user(void); |
| |
| extern inline long |
| __copy_tofrom_user_nocheck(void *to, const void *from, long len) |
| { |
| register void * __cu_to __asm__("$6") = to; |
| register const void * __cu_from __asm__("$7") = from; |
| register long __cu_len __asm__("$0") = len; |
| |
| __asm__ __volatile__( |
| __module_call(28, 3, __copy_user) |
| : "=r" (__cu_len), "=r" (__cu_from), "=r" (__cu_to) |
| : __module_address(__copy_user) |
| "0" (__cu_len), "1" (__cu_from), "2" (__cu_to) |
| : "$1","$2","$3","$4","$5","$28","memory"); |
| |
| return __cu_len; |
| } |
| |
| extern inline long |
| __copy_tofrom_user(void *to, const void *from, long len, const void __user *validate) |
| { |
| if (__access_ok((unsigned long)validate, len, get_fs())) |
| len = __copy_tofrom_user_nocheck(to, from, len); |
| return len; |
| } |
| |
| #define __copy_to_user(to,from,n) \ |
| ({ \ |
| __chk_user_ptr(to); \ |
| __copy_tofrom_user_nocheck((__force void *)(to),(from),(n)); \ |
| }) |
| #define __copy_from_user(to,from,n) \ |
| ({ \ |
| __chk_user_ptr(from); \ |
| __copy_tofrom_user_nocheck((to),(__force void *)(from),(n)); \ |
| }) |
| |
| #define __copy_to_user_inatomic __copy_to_user |
| #define __copy_from_user_inatomic __copy_from_user |
| |
| |
| extern inline long |
| copy_to_user(void __user *to, const void *from, long n) |
| { |
| return __copy_tofrom_user((__force void *)to, from, n, to); |
| } |
| |
| extern inline long |
| copy_from_user(void *to, const void __user *from, long n) |
| { |
| return __copy_tofrom_user(to, (__force void *)from, n, from); |
| } |
| |
| extern void __do_clear_user(void); |
| |
| extern inline long |
| __clear_user(void __user *to, long len) |
| { |
| register void __user * __cl_to __asm__("$6") = to; |
| register long __cl_len __asm__("$0") = len; |
| __asm__ __volatile__( |
| __module_call(28, 2, __do_clear_user) |
| : "=r"(__cl_len), "=r"(__cl_to) |
| : __module_address(__do_clear_user) |
| "0"(__cl_len), "1"(__cl_to) |
| : "$1","$2","$3","$4","$5","$28","memory"); |
| return __cl_len; |
| } |
| |
| extern inline long |
| clear_user(void __user *to, long len) |
| { |
| if (__access_ok((unsigned long)to, len, get_fs())) |
| len = __clear_user(to, len); |
| return len; |
| } |
| |
| #undef __module_address |
| #undef __module_call |
| |
| /* Returns: -EFAULT if exception before terminator, N if the entire |
| buffer filled, else strlen. */ |
| |
| extern long __strncpy_from_user(char *__to, const char __user *__from, long __to_len); |
| |
| extern inline long |
| strncpy_from_user(char *to, const char __user *from, long n) |
| { |
| long ret = -EFAULT; |
| if (__access_ok((unsigned long)from, 0, get_fs())) |
| ret = __strncpy_from_user(to, from, n); |
| return ret; |
| } |
| |
| /* Returns: 0 if bad, string length+1 (memory size) of string if ok */ |
| extern long __strlen_user(const char __user *); |
| |
| extern inline long strlen_user(const char __user *str) |
| { |
| return access_ok(VERIFY_READ,str,0) ? __strlen_user(str) : 0; |
| } |
| |
| /* Returns: 0 if exception before NUL or reaching the supplied limit (N), |
| * a value greater than N if the limit would be exceeded, else strlen. */ |
| extern long __strnlen_user(const char __user *, long); |
| |
| extern inline long strnlen_user(const char __user *str, long n) |
| { |
| return access_ok(VERIFY_READ,str,0) ? __strnlen_user(str, n) : 0; |
| } |
| |
| /* |
| * About the exception table: |
| * |
| * - insn is a 32-bit pc-relative offset from the faulting insn. |
| * - nextinsn is a 16-bit offset off of the faulting instruction |
| * (not off of the *next* instruction as branches are). |
| * - errreg is the register in which to place -EFAULT. |
| * - valreg is the final target register for the load sequence |
| * and will be zeroed. |
| * |
| * Either errreg or valreg may be $31, in which case nothing happens. |
| * |
| * The exception fixup information "just so happens" to be arranged |
| * as in a MEM format instruction. This lets us emit our three |
| * values like so: |
| * |
| * lda valreg, nextinsn(errreg) |
| * |
| */ |
| |
| struct exception_table_entry |
| { |
| signed int insn; |
| union exception_fixup { |
| unsigned unit; |
| struct { |
| signed int nextinsn : 16; |
| unsigned int errreg : 5; |
| unsigned int valreg : 5; |
| } bits; |
| } fixup; |
| }; |
| |
| /* Returns the new pc */ |
| #define fixup_exception(map_reg, _fixup, pc) \ |
| ({ \ |
| if ((_fixup)->fixup.bits.valreg != 31) \ |
| map_reg((_fixup)->fixup.bits.valreg) = 0; \ |
| if ((_fixup)->fixup.bits.errreg != 31) \ |
| map_reg((_fixup)->fixup.bits.errreg) = -EFAULT; \ |
| (pc) + (_fixup)->fixup.bits.nextinsn; \ |
| }) |
| |
| #define ARCH_HAS_SORT_EXTABLE |
| #define ARCH_HAS_SEARCH_EXTABLE |
| |
| #endif /* __ALPHA_UACCESS_H */ |