| /* multi_arith.h: multi-precision integer arithmetic functions, needed |
| to do extended-precision floating point. |
| |
| (c) 1998 David Huggins-Daines. |
| |
| Somewhat based on arch/alpha/math-emu/ieee-math.c, which is (c) |
| David Mosberger-Tang. |
| |
| You may copy, modify, and redistribute this file under the terms of |
| the GNU General Public License, version 2, or any later version, at |
| your convenience. */ |
| |
| /* Note: |
| |
| These are not general multi-precision math routines. Rather, they |
| implement the subset of integer arithmetic that we need in order to |
| multiply, divide, and normalize 128-bit unsigned mantissae. */ |
| |
| #ifndef MULTI_ARITH_H |
| #define MULTI_ARITH_H |
| |
| #if 0 /* old code... */ |
| |
| /* Unsigned only, because we don't need signs to multiply and divide. */ |
| typedef unsigned int int128[4]; |
| |
| /* Word order */ |
| enum { |
| MSW128, |
| NMSW128, |
| NLSW128, |
| LSW128 |
| }; |
| |
| /* big-endian */ |
| #define LO_WORD(ll) (((unsigned int *) &ll)[1]) |
| #define HI_WORD(ll) (((unsigned int *) &ll)[0]) |
| |
| /* Convenience functions to stuff various integer values into int128s */ |
| |
| static inline void zero128(int128 a) |
| { |
| a[LSW128] = a[NLSW128] = a[NMSW128] = a[MSW128] = 0; |
| } |
| |
| /* Human-readable word order in the arguments */ |
| static inline void set128(unsigned int i3, unsigned int i2, unsigned int i1, |
| unsigned int i0, int128 a) |
| { |
| a[LSW128] = i0; |
| a[NLSW128] = i1; |
| a[NMSW128] = i2; |
| a[MSW128] = i3; |
| } |
| |
| /* Convenience functions (for testing as well) */ |
| static inline void int64_to_128(unsigned long long src, int128 dest) |
| { |
| dest[LSW128] = (unsigned int) src; |
| dest[NLSW128] = src >> 32; |
| dest[NMSW128] = dest[MSW128] = 0; |
| } |
| |
| static inline void int128_to_64(const int128 src, unsigned long long *dest) |
| { |
| *dest = src[LSW128] | (long long) src[NLSW128] << 32; |
| } |
| |
| static inline void put_i128(const int128 a) |
| { |
| printk("%08x %08x %08x %08x\n", a[MSW128], a[NMSW128], |
| a[NLSW128], a[LSW128]); |
| } |
| |
| /* Internal shifters: |
| |
| Note that these are only good for 0 < count < 32. |
| */ |
| |
| static inline void _lsl128(unsigned int count, int128 a) |
| { |
| a[MSW128] = (a[MSW128] << count) | (a[NMSW128] >> (32 - count)); |
| a[NMSW128] = (a[NMSW128] << count) | (a[NLSW128] >> (32 - count)); |
| a[NLSW128] = (a[NLSW128] << count) | (a[LSW128] >> (32 - count)); |
| a[LSW128] <<= count; |
| } |
| |
| static inline void _lsr128(unsigned int count, int128 a) |
| { |
| a[LSW128] = (a[LSW128] >> count) | (a[NLSW128] << (32 - count)); |
| a[NLSW128] = (a[NLSW128] >> count) | (a[NMSW128] << (32 - count)); |
| a[NMSW128] = (a[NMSW128] >> count) | (a[MSW128] << (32 - count)); |
| a[MSW128] >>= count; |
| } |
| |
| /* Should be faster, one would hope */ |
| |
| static inline void lslone128(int128 a) |
| { |
| asm volatile ("lsl.l #1,%0\n" |
| "roxl.l #1,%1\n" |
| "roxl.l #1,%2\n" |
| "roxl.l #1,%3\n" |
| : |
| "=d" (a[LSW128]), |
| "=d"(a[NLSW128]), |
| "=d"(a[NMSW128]), |
| "=d"(a[MSW128]) |
| : |
| "0"(a[LSW128]), |
| "1"(a[NLSW128]), |
| "2"(a[NMSW128]), |
| "3"(a[MSW128])); |
| } |
| |
| static inline void lsrone128(int128 a) |
| { |
| asm volatile ("lsr.l #1,%0\n" |
| "roxr.l #1,%1\n" |
| "roxr.l #1,%2\n" |
| "roxr.l #1,%3\n" |
| : |
| "=d" (a[MSW128]), |
| "=d"(a[NMSW128]), |
| "=d"(a[NLSW128]), |
| "=d"(a[LSW128]) |
| : |
| "0"(a[MSW128]), |
| "1"(a[NMSW128]), |
| "2"(a[NLSW128]), |
| "3"(a[LSW128])); |
| } |
| |
| /* Generalized 128-bit shifters: |
| |
| These bit-shift to a multiple of 32, then move whole longwords. */ |
| |
| static inline void lsl128(unsigned int count, int128 a) |
| { |
| int wordcount, i; |
| |
| if (count % 32) |
| _lsl128(count % 32, a); |
| |
| if (0 == (wordcount = count / 32)) |
| return; |
| |
| /* argh, gak, endian-sensitive */ |
| for (i = 0; i < 4 - wordcount; i++) { |
| a[i] = a[i + wordcount]; |
| } |
| for (i = 3; i >= 4 - wordcount; --i) { |
| a[i] = 0; |
| } |
| } |
| |
| static inline void lsr128(unsigned int count, int128 a) |
| { |
| int wordcount, i; |
| |
| if (count % 32) |
| _lsr128(count % 32, a); |
| |
| if (0 == (wordcount = count / 32)) |
| return; |
| |
| for (i = 3; i >= wordcount; --i) { |
| a[i] = a[i - wordcount]; |
| } |
| for (i = 0; i < wordcount; i++) { |
| a[i] = 0; |
| } |
| } |
| |
| static inline int orl128(int a, int128 b) |
| { |
| b[LSW128] |= a; |
| } |
| |
| static inline int btsthi128(const int128 a) |
| { |
| return a[MSW128] & 0x80000000; |
| } |
| |
| /* test bits (numbered from 0 = LSB) up to and including "top" */ |
| static inline int bftestlo128(int top, const int128 a) |
| { |
| int r = 0; |
| |
| if (top > 31) |
| r |= a[LSW128]; |
| if (top > 63) |
| r |= a[NLSW128]; |
| if (top > 95) |
| r |= a[NMSW128]; |
| |
| r |= a[3 - (top / 32)] & ((1 << (top % 32 + 1)) - 1); |
| |
| return (r != 0); |
| } |
| |
| /* Aargh. We need these because GCC is broken */ |
| /* FIXME: do them in assembly, for goodness' sake! */ |
| static inline void mask64(int pos, unsigned long long *mask) |
| { |
| *mask = 0; |
| |
| if (pos < 32) { |
| LO_WORD(*mask) = (1 << pos) - 1; |
| return; |
| } |
| LO_WORD(*mask) = -1; |
| HI_WORD(*mask) = (1 << (pos - 32)) - 1; |
| } |
| |
| static inline void bset64(int pos, unsigned long long *dest) |
| { |
| /* This conditional will be optimized away. Thanks, GCC! */ |
| if (pos < 32) |
| asm volatile ("bset %1,%0":"=m" |
| (LO_WORD(*dest)):"id"(pos)); |
| else |
| asm volatile ("bset %1,%0":"=m" |
| (HI_WORD(*dest)):"id"(pos - 32)); |
| } |
| |
| static inline int btst64(int pos, unsigned long long dest) |
| { |
| if (pos < 32) |
| return (0 != (LO_WORD(dest) & (1 << pos))); |
| else |
| return (0 != (HI_WORD(dest) & (1 << (pos - 32)))); |
| } |
| |
| static inline void lsl64(int count, unsigned long long *dest) |
| { |
| if (count < 32) { |
| HI_WORD(*dest) = (HI_WORD(*dest) << count) |
| | (LO_WORD(*dest) >> count); |
| LO_WORD(*dest) <<= count; |
| return; |
| } |
| count -= 32; |
| HI_WORD(*dest) = LO_WORD(*dest) << count; |
| LO_WORD(*dest) = 0; |
| } |
| |
| static inline void lsr64(int count, unsigned long long *dest) |
| { |
| if (count < 32) { |
| LO_WORD(*dest) = (LO_WORD(*dest) >> count) |
| | (HI_WORD(*dest) << (32 - count)); |
| HI_WORD(*dest) >>= count; |
| return; |
| } |
| count -= 32; |
| LO_WORD(*dest) = HI_WORD(*dest) >> count; |
| HI_WORD(*dest) = 0; |
| } |
| #endif |
| |
| static inline void fp_denormalize(struct fp_ext *reg, unsigned int cnt) |
| { |
| reg->exp += cnt; |
| |
| switch (cnt) { |
| case 0 ... 8: |
| reg->lowmant = reg->mant.m32[1] << (8 - cnt); |
| reg->mant.m32[1] = (reg->mant.m32[1] >> cnt) | |
| (reg->mant.m32[0] << (32 - cnt)); |
| reg->mant.m32[0] = reg->mant.m32[0] >> cnt; |
| break; |
| case 9 ... 32: |
| reg->lowmant = reg->mant.m32[1] >> (cnt - 8); |
| if (reg->mant.m32[1] << (40 - cnt)) |
| reg->lowmant |= 1; |
| reg->mant.m32[1] = (reg->mant.m32[1] >> cnt) | |
| (reg->mant.m32[0] << (32 - cnt)); |
| reg->mant.m32[0] = reg->mant.m32[0] >> cnt; |
| break; |
| case 33 ... 39: |
| asm volatile ("bfextu %1{%2,#8},%0" : "=d" (reg->lowmant) |
| : "m" (reg->mant.m32[0]), "d" (64 - cnt)); |
| if (reg->mant.m32[1] << (40 - cnt)) |
| reg->lowmant |= 1; |
| reg->mant.m32[1] = reg->mant.m32[0] >> (cnt - 32); |
| reg->mant.m32[0] = 0; |
| break; |
| case 40 ... 71: |
| reg->lowmant = reg->mant.m32[0] >> (cnt - 40); |
| if ((reg->mant.m32[0] << (72 - cnt)) || reg->mant.m32[1]) |
| reg->lowmant |= 1; |
| reg->mant.m32[1] = reg->mant.m32[0] >> (cnt - 32); |
| reg->mant.m32[0] = 0; |
| break; |
| default: |
| reg->lowmant = reg->mant.m32[0] || reg->mant.m32[1]; |
| reg->mant.m32[0] = 0; |
| reg->mant.m32[1] = 0; |
| break; |
| } |
| } |
| |
| static inline int fp_overnormalize(struct fp_ext *reg) |
| { |
| int shift; |
| |
| if (reg->mant.m32[0]) { |
| asm ("bfffo %1{#0,#32},%0" : "=d" (shift) : "dm" (reg->mant.m32[0])); |
| reg->mant.m32[0] = (reg->mant.m32[0] << shift) | (reg->mant.m32[1] >> (32 - shift)); |
| reg->mant.m32[1] = (reg->mant.m32[1] << shift); |
| } else { |
| asm ("bfffo %1{#0,#32},%0" : "=d" (shift) : "dm" (reg->mant.m32[1])); |
| reg->mant.m32[0] = (reg->mant.m32[1] << shift); |
| reg->mant.m32[1] = 0; |
| shift += 32; |
| } |
| |
| return shift; |
| } |
| |
| static inline int fp_addmant(struct fp_ext *dest, struct fp_ext *src) |
| { |
| int carry; |
| |
| /* we assume here, gcc only insert move and a clr instr */ |
| asm volatile ("add.b %1,%0" : "=d,g" (dest->lowmant) |
| : "g,d" (src->lowmant), "0,0" (dest->lowmant)); |
| asm volatile ("addx.l %1,%0" : "=d" (dest->mant.m32[1]) |
| : "d" (src->mant.m32[1]), "0" (dest->mant.m32[1])); |
| asm volatile ("addx.l %1,%0" : "=d" (dest->mant.m32[0]) |
| : "d" (src->mant.m32[0]), "0" (dest->mant.m32[0])); |
| asm volatile ("addx.l %0,%0" : "=d" (carry) : "0" (0)); |
| |
| return carry; |
| } |
| |
| static inline int fp_addcarry(struct fp_ext *reg) |
| { |
| if (++reg->exp == 0x7fff) { |
| if (reg->mant.m64) |
| fp_set_sr(FPSR_EXC_INEX2); |
| reg->mant.m64 = 0; |
| fp_set_sr(FPSR_EXC_OVFL); |
| return 0; |
| } |
| reg->lowmant = (reg->mant.m32[1] << 7) | (reg->lowmant ? 1 : 0); |
| reg->mant.m32[1] = (reg->mant.m32[1] >> 1) | |
| (reg->mant.m32[0] << 31); |
| reg->mant.m32[0] = (reg->mant.m32[0] >> 1) | 0x80000000; |
| |
| return 1; |
| } |
| |
| static inline void fp_submant(struct fp_ext *dest, struct fp_ext *src1, |
| struct fp_ext *src2) |
| { |
| /* we assume here, gcc only insert move and a clr instr */ |
| asm volatile ("sub.b %1,%0" : "=d,g" (dest->lowmant) |
| : "g,d" (src2->lowmant), "0,0" (src1->lowmant)); |
| asm volatile ("subx.l %1,%0" : "=d" (dest->mant.m32[1]) |
| : "d" (src2->mant.m32[1]), "0" (src1->mant.m32[1])); |
| asm volatile ("subx.l %1,%0" : "=d" (dest->mant.m32[0]) |
| : "d" (src2->mant.m32[0]), "0" (src1->mant.m32[0])); |
| } |
| |
| #define fp_mul64(desth, destl, src1, src2) ({ \ |
| asm ("mulu.l %2,%1:%0" : "=d" (destl), "=d" (desth) \ |
| : "dm" (src1), "0" (src2)); \ |
| }) |
| #define fp_div64(quot, rem, srch, srcl, div) \ |
| asm ("divu.l %2,%1:%0" : "=d" (quot), "=d" (rem) \ |
| : "dm" (div), "1" (srch), "0" (srcl)) |
| #define fp_add64(dest1, dest2, src1, src2) ({ \ |
| asm ("add.l %1,%0" : "=d,dm" (dest2) \ |
| : "dm,d" (src2), "0,0" (dest2)); \ |
| asm ("addx.l %1,%0" : "=d" (dest1) \ |
| : "d" (src1), "0" (dest1)); \ |
| }) |
| #define fp_addx96(dest, src) ({ \ |
| /* we assume here, gcc only insert move and a clr instr */ \ |
| asm volatile ("add.l %1,%0" : "=d,g" (dest->m32[2]) \ |
| : "g,d" (temp.m32[1]), "0,0" (dest->m32[2])); \ |
| asm volatile ("addx.l %1,%0" : "=d" (dest->m32[1]) \ |
| : "d" (temp.m32[0]), "0" (dest->m32[1])); \ |
| asm volatile ("addx.l %1,%0" : "=d" (dest->m32[0]) \ |
| : "d" (0), "0" (dest->m32[0])); \ |
| }) |
| #define fp_sub64(dest, src) ({ \ |
| asm ("sub.l %1,%0" : "=d,dm" (dest.m32[1]) \ |
| : "dm,d" (src.m32[1]), "0,0" (dest.m32[1])); \ |
| asm ("subx.l %1,%0" : "=d" (dest.m32[0]) \ |
| : "d" (src.m32[0]), "0" (dest.m32[0])); \ |
| }) |
| #define fp_sub96c(dest, srch, srcm, srcl) ({ \ |
| char carry; \ |
| asm ("sub.l %1,%0" : "=d,dm" (dest.m32[2]) \ |
| : "dm,d" (srcl), "0,0" (dest.m32[2])); \ |
| asm ("subx.l %1,%0" : "=d" (dest.m32[1]) \ |
| : "d" (srcm), "0" (dest.m32[1])); \ |
| asm ("subx.l %2,%1; scs %0" : "=d" (carry), "=d" (dest.m32[0]) \ |
| : "d" (srch), "1" (dest.m32[0])); \ |
| carry; \ |
| }) |
| |
| static inline void fp_multiplymant(union fp_mant128 *dest, struct fp_ext *src1, |
| struct fp_ext *src2) |
| { |
| union fp_mant64 temp; |
| |
| fp_mul64(dest->m32[0], dest->m32[1], src1->mant.m32[0], src2->mant.m32[0]); |
| fp_mul64(dest->m32[2], dest->m32[3], src1->mant.m32[1], src2->mant.m32[1]); |
| |
| fp_mul64(temp.m32[0], temp.m32[1], src1->mant.m32[0], src2->mant.m32[1]); |
| fp_addx96(dest, temp); |
| |
| fp_mul64(temp.m32[0], temp.m32[1], src1->mant.m32[1], src2->mant.m32[0]); |
| fp_addx96(dest, temp); |
| } |
| |
| static inline void fp_dividemant(union fp_mant128 *dest, struct fp_ext *src, |
| struct fp_ext *div) |
| { |
| union fp_mant128 tmp; |
| union fp_mant64 tmp64; |
| unsigned long *mantp = dest->m32; |
| unsigned long fix, rem, first, dummy; |
| int i; |
| |
| /* the algorithm below requires dest to be smaller than div, |
| but both have the high bit set */ |
| if (src->mant.m64 >= div->mant.m64) { |
| fp_sub64(src->mant, div->mant); |
| *mantp = 1; |
| } else |
| *mantp = 0; |
| mantp++; |
| |
| /* basic idea behind this algorithm: we can't divide two 64bit numbers |
| (AB/CD) directly, but we can calculate AB/C0, but this means this |
| quotient is off by C0/CD, so we have to multiply the first result |
| to fix the result, after that we have nearly the correct result |
| and only a few corrections are needed. */ |
| |
| /* C0/CD can be precalculated, but it's an 64bit division again, but |
| we can make it a bit easier, by dividing first through C so we get |
| 10/1D and now only a single shift and the value fits into 32bit. */ |
| fix = 0x80000000; |
| dummy = div->mant.m32[1] / div->mant.m32[0] + 1; |
| dummy = (dummy >> 1) | fix; |
| fp_div64(fix, dummy, fix, 0, dummy); |
| fix--; |
| |
| for (i = 0; i < 3; i++, mantp++) { |
| if (src->mant.m32[0] == div->mant.m32[0]) { |
| fp_div64(first, rem, 0, src->mant.m32[1], div->mant.m32[0]); |
| |
| fp_mul64(*mantp, dummy, first, fix); |
| *mantp += fix; |
| } else { |
| fp_div64(first, rem, src->mant.m32[0], src->mant.m32[1], div->mant.m32[0]); |
| |
| fp_mul64(*mantp, dummy, first, fix); |
| } |
| |
| fp_mul64(tmp.m32[0], tmp.m32[1], div->mant.m32[0], first - *mantp); |
| fp_add64(tmp.m32[0], tmp.m32[1], 0, rem); |
| tmp.m32[2] = 0; |
| |
| fp_mul64(tmp64.m32[0], tmp64.m32[1], *mantp, div->mant.m32[1]); |
| fp_sub96c(tmp, 0, tmp64.m32[0], tmp64.m32[1]); |
| |
| src->mant.m32[0] = tmp.m32[1]; |
| src->mant.m32[1] = tmp.m32[2]; |
| |
| while (!fp_sub96c(tmp, 0, div->mant.m32[0], div->mant.m32[1])) { |
| src->mant.m32[0] = tmp.m32[1]; |
| src->mant.m32[1] = tmp.m32[2]; |
| *mantp += 1; |
| } |
| } |
| } |
| |
| #if 0 |
| static inline unsigned int fp_fls128(union fp_mant128 *src) |
| { |
| unsigned long data; |
| unsigned int res, off; |
| |
| if ((data = src->m32[0])) |
| off = 0; |
| else if ((data = src->m32[1])) |
| off = 32; |
| else if ((data = src->m32[2])) |
| off = 64; |
| else if ((data = src->m32[3])) |
| off = 96; |
| else |
| return 128; |
| |
| asm ("bfffo %1{#0,#32},%0" : "=d" (res) : "dm" (data)); |
| return res + off; |
| } |
| |
| static inline void fp_shiftmant128(union fp_mant128 *src, int shift) |
| { |
| unsigned long sticky; |
| |
| switch (shift) { |
| case 0: |
| return; |
| case 1: |
| asm volatile ("lsl.l #1,%0" |
| : "=d" (src->m32[3]) : "0" (src->m32[3])); |
| asm volatile ("roxl.l #1,%0" |
| : "=d" (src->m32[2]) : "0" (src->m32[2])); |
| asm volatile ("roxl.l #1,%0" |
| : "=d" (src->m32[1]) : "0" (src->m32[1])); |
| asm volatile ("roxl.l #1,%0" |
| : "=d" (src->m32[0]) : "0" (src->m32[0])); |
| return; |
| case 2 ... 31: |
| src->m32[0] = (src->m32[0] << shift) | (src->m32[1] >> (32 - shift)); |
| src->m32[1] = (src->m32[1] << shift) | (src->m32[2] >> (32 - shift)); |
| src->m32[2] = (src->m32[2] << shift) | (src->m32[3] >> (32 - shift)); |
| src->m32[3] = (src->m32[3] << shift); |
| return; |
| case 32 ... 63: |
| shift -= 32; |
| src->m32[0] = (src->m32[1] << shift) | (src->m32[2] >> (32 - shift)); |
| src->m32[1] = (src->m32[2] << shift) | (src->m32[3] >> (32 - shift)); |
| src->m32[2] = (src->m32[3] << shift); |
| src->m32[3] = 0; |
| return; |
| case 64 ... 95: |
| shift -= 64; |
| src->m32[0] = (src->m32[2] << shift) | (src->m32[3] >> (32 - shift)); |
| src->m32[1] = (src->m32[3] << shift); |
| src->m32[2] = src->m32[3] = 0; |
| return; |
| case 96 ... 127: |
| shift -= 96; |
| src->m32[0] = (src->m32[3] << shift); |
| src->m32[1] = src->m32[2] = src->m32[3] = 0; |
| return; |
| case -31 ... -1: |
| shift = -shift; |
| sticky = 0; |
| if (src->m32[3] << (32 - shift)) |
| sticky = 1; |
| src->m32[3] = (src->m32[3] >> shift) | (src->m32[2] << (32 - shift)) | sticky; |
| src->m32[2] = (src->m32[2] >> shift) | (src->m32[1] << (32 - shift)); |
| src->m32[1] = (src->m32[1] >> shift) | (src->m32[0] << (32 - shift)); |
| src->m32[0] = (src->m32[0] >> shift); |
| return; |
| case -63 ... -32: |
| shift = -shift - 32; |
| sticky = 0; |
| if ((src->m32[2] << (32 - shift)) || src->m32[3]) |
| sticky = 1; |
| src->m32[3] = (src->m32[2] >> shift) | (src->m32[1] << (32 - shift)) | sticky; |
| src->m32[2] = (src->m32[1] >> shift) | (src->m32[0] << (32 - shift)); |
| src->m32[1] = (src->m32[0] >> shift); |
| src->m32[0] = 0; |
| return; |
| case -95 ... -64: |
| shift = -shift - 64; |
| sticky = 0; |
| if ((src->m32[1] << (32 - shift)) || src->m32[2] || src->m32[3]) |
| sticky = 1; |
| src->m32[3] = (src->m32[1] >> shift) | (src->m32[0] << (32 - shift)) | sticky; |
| src->m32[2] = (src->m32[0] >> shift); |
| src->m32[1] = src->m32[0] = 0; |
| return; |
| case -127 ... -96: |
| shift = -shift - 96; |
| sticky = 0; |
| if ((src->m32[0] << (32 - shift)) || src->m32[1] || src->m32[2] || src->m32[3]) |
| sticky = 1; |
| src->m32[3] = (src->m32[0] >> shift) | sticky; |
| src->m32[2] = src->m32[1] = src->m32[0] = 0; |
| return; |
| } |
| |
| if (shift < 0 && (src->m32[0] || src->m32[1] || src->m32[2] || src->m32[3])) |
| src->m32[3] = 1; |
| else |
| src->m32[3] = 0; |
| src->m32[2] = 0; |
| src->m32[1] = 0; |
| src->m32[0] = 0; |
| } |
| #endif |
| |
| static inline void fp_putmant128(struct fp_ext *dest, union fp_mant128 *src, |
| int shift) |
| { |
| unsigned long tmp; |
| |
| switch (shift) { |
| case 0: |
| dest->mant.m64 = src->m64[0]; |
| dest->lowmant = src->m32[2] >> 24; |
| if (src->m32[3] || (src->m32[2] << 8)) |
| dest->lowmant |= 1; |
| break; |
| case 1: |
| asm volatile ("lsl.l #1,%0" |
| : "=d" (tmp) : "0" (src->m32[2])); |
| asm volatile ("roxl.l #1,%0" |
| : "=d" (dest->mant.m32[1]) : "0" (src->m32[1])); |
| asm volatile ("roxl.l #1,%0" |
| : "=d" (dest->mant.m32[0]) : "0" (src->m32[0])); |
| dest->lowmant = tmp >> 24; |
| if (src->m32[3] || (tmp << 8)) |
| dest->lowmant |= 1; |
| break; |
| case 31: |
| asm volatile ("lsr.l #1,%1; roxr.l #1,%0" |
| : "=d" (dest->mant.m32[0]) |
| : "d" (src->m32[0]), "0" (src->m32[1])); |
| asm volatile ("roxr.l #1,%0" |
| : "=d" (dest->mant.m32[1]) : "0" (src->m32[2])); |
| asm volatile ("roxr.l #1,%0" |
| : "=d" (tmp) : "0" (src->m32[3])); |
| dest->lowmant = tmp >> 24; |
| if (src->m32[3] << 7) |
| dest->lowmant |= 1; |
| break; |
| case 32: |
| dest->mant.m32[0] = src->m32[1]; |
| dest->mant.m32[1] = src->m32[2]; |
| dest->lowmant = src->m32[3] >> 24; |
| if (src->m32[3] << 8) |
| dest->lowmant |= 1; |
| break; |
| } |
| } |
| |
| #if 0 /* old code... */ |
| static inline int fls(unsigned int a) |
| { |
| int r; |
| |
| asm volatile ("bfffo %1{#0,#32},%0" |
| : "=d" (r) : "md" (a)); |
| return r; |
| } |
| |
| /* fls = "find last set" (cf. ffs(3)) */ |
| static inline int fls128(const int128 a) |
| { |
| if (a[MSW128]) |
| return fls(a[MSW128]); |
| if (a[NMSW128]) |
| return fls(a[NMSW128]) + 32; |
| /* XXX: it probably never gets beyond this point in actual |
| use, but that's indicative of a more general problem in the |
| algorithm (i.e. as per the actual 68881 implementation, we |
| really only need at most 67 bits of precision [plus |
| overflow]) so I'm not going to fix it. */ |
| if (a[NLSW128]) |
| return fls(a[NLSW128]) + 64; |
| if (a[LSW128]) |
| return fls(a[LSW128]) + 96; |
| else |
| return -1; |
| } |
| |
| static inline int zerop128(const int128 a) |
| { |
| return !(a[LSW128] | a[NLSW128] | a[NMSW128] | a[MSW128]); |
| } |
| |
| static inline int nonzerop128(const int128 a) |
| { |
| return (a[LSW128] | a[NLSW128] | a[NMSW128] | a[MSW128]); |
| } |
| |
| /* Addition and subtraction */ |
| /* Do these in "pure" assembly, because "extended" asm is unmanageable |
| here */ |
| static inline void add128(const int128 a, int128 b) |
| { |
| /* rotating carry flags */ |
| unsigned int carry[2]; |
| |
| carry[0] = a[LSW128] > (0xffffffff - b[LSW128]); |
| b[LSW128] += a[LSW128]; |
| |
| carry[1] = a[NLSW128] > (0xffffffff - b[NLSW128] - carry[0]); |
| b[NLSW128] = a[NLSW128] + b[NLSW128] + carry[0]; |
| |
| carry[0] = a[NMSW128] > (0xffffffff - b[NMSW128] - carry[1]); |
| b[NMSW128] = a[NMSW128] + b[NMSW128] + carry[1]; |
| |
| b[MSW128] = a[MSW128] + b[MSW128] + carry[0]; |
| } |
| |
| /* Note: assembler semantics: "b -= a" */ |
| static inline void sub128(const int128 a, int128 b) |
| { |
| /* rotating borrow flags */ |
| unsigned int borrow[2]; |
| |
| borrow[0] = b[LSW128] < a[LSW128]; |
| b[LSW128] -= a[LSW128]; |
| |
| borrow[1] = b[NLSW128] < a[NLSW128] + borrow[0]; |
| b[NLSW128] = b[NLSW128] - a[NLSW128] - borrow[0]; |
| |
| borrow[0] = b[NMSW128] < a[NMSW128] + borrow[1]; |
| b[NMSW128] = b[NMSW128] - a[NMSW128] - borrow[1]; |
| |
| b[MSW128] = b[MSW128] - a[MSW128] - borrow[0]; |
| } |
| |
| /* Poor man's 64-bit expanding multiply */ |
| static inline void mul64(unsigned long long a, unsigned long long b, int128 c) |
| { |
| unsigned long long acc; |
| int128 acc128; |
| |
| zero128(acc128); |
| zero128(c); |
| |
| /* first the low words */ |
| if (LO_WORD(a) && LO_WORD(b)) { |
| acc = (long long) LO_WORD(a) * LO_WORD(b); |
| c[NLSW128] = HI_WORD(acc); |
| c[LSW128] = LO_WORD(acc); |
| } |
| /* Next the high words */ |
| if (HI_WORD(a) && HI_WORD(b)) { |
| acc = (long long) HI_WORD(a) * HI_WORD(b); |
| c[MSW128] = HI_WORD(acc); |
| c[NMSW128] = LO_WORD(acc); |
| } |
| /* The middle words */ |
| if (LO_WORD(a) && HI_WORD(b)) { |
| acc = (long long) LO_WORD(a) * HI_WORD(b); |
| acc128[NMSW128] = HI_WORD(acc); |
| acc128[NLSW128] = LO_WORD(acc); |
| add128(acc128, c); |
| } |
| /* The first and last words */ |
| if (HI_WORD(a) && LO_WORD(b)) { |
| acc = (long long) HI_WORD(a) * LO_WORD(b); |
| acc128[NMSW128] = HI_WORD(acc); |
| acc128[NLSW128] = LO_WORD(acc); |
| add128(acc128, c); |
| } |
| } |
| |
| /* Note: unsigned */ |
| static inline int cmp128(int128 a, int128 b) |
| { |
| if (a[MSW128] < b[MSW128]) |
| return -1; |
| if (a[MSW128] > b[MSW128]) |
| return 1; |
| if (a[NMSW128] < b[NMSW128]) |
| return -1; |
| if (a[NMSW128] > b[NMSW128]) |
| return 1; |
| if (a[NLSW128] < b[NLSW128]) |
| return -1; |
| if (a[NLSW128] > b[NLSW128]) |
| return 1; |
| |
| return (signed) a[LSW128] - b[LSW128]; |
| } |
| |
| inline void div128(int128 a, int128 b, int128 c) |
| { |
| int128 mask; |
| |
| /* Algorithm: |
| |
| Shift the divisor until it's at least as big as the |
| dividend, keeping track of the position to which we've |
| shifted it, i.e. the power of 2 which we've multiplied it |
| by. |
| |
| Then, for this power of 2 (the mask), and every one smaller |
| than it, subtract the mask from the dividend and add it to |
| the quotient until the dividend is smaller than the raised |
| divisor. At this point, divide the dividend and the mask |
| by 2 (i.e. shift one place to the right). Lather, rinse, |
| and repeat, until there are no more powers of 2 left. */ |
| |
| /* FIXME: needless to say, there's room for improvement here too. */ |
| |
| /* Shift up */ |
| /* XXX: since it just has to be "at least as big", we can |
| probably eliminate this horribly wasteful loop. I will |
| have to prove this first, though */ |
| set128(0, 0, 0, 1, mask); |
| while (cmp128(b, a) < 0 && !btsthi128(b)) { |
| lslone128(b); |
| lslone128(mask); |
| } |
| |
| /* Shift down */ |
| zero128(c); |
| do { |
| if (cmp128(a, b) >= 0) { |
| sub128(b, a); |
| add128(mask, c); |
| } |
| lsrone128(mask); |
| lsrone128(b); |
| } while (nonzerop128(mask)); |
| |
| /* The remainder is in a... */ |
| } |
| #endif |
| |
| #endif /* MULTI_ARITH_H */ |