blob: 3d691c421ebcaf2a5f263170a373a460efcca52e [file] [log] [blame]
/*
* Copyright © 2009
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Daniel Vetter <daniel@ffwll.ch>
*
* Derived from Xorg ddx, xf86-video-intel, src/i830_video.c
*/
#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
#include "i915_reg.h"
#include "intel_drv.h"
/* Limits for overlay size. According to intel doc, the real limits are:
* Y width: 4095, UV width (planar): 2047, Y height: 2047,
* UV width (planar): * 1023. But the xorg thinks 2048 for height and width. Use
* the mininum of both. */
#define IMAGE_MAX_WIDTH 2048
#define IMAGE_MAX_HEIGHT 2046 /* 2 * 1023 */
/* on 830 and 845 these large limits result in the card hanging */
#define IMAGE_MAX_WIDTH_LEGACY 1024
#define IMAGE_MAX_HEIGHT_LEGACY 1088
/* overlay register definitions */
/* OCMD register */
#define OCMD_TILED_SURFACE (0x1<<19)
#define OCMD_MIRROR_MASK (0x3<<17)
#define OCMD_MIRROR_MODE (0x3<<17)
#define OCMD_MIRROR_HORIZONTAL (0x1<<17)
#define OCMD_MIRROR_VERTICAL (0x2<<17)
#define OCMD_MIRROR_BOTH (0x3<<17)
#define OCMD_BYTEORDER_MASK (0x3<<14) /* zero for YUYV or FOURCC YUY2 */
#define OCMD_UV_SWAP (0x1<<14) /* YVYU */
#define OCMD_Y_SWAP (0x2<<14) /* UYVY or FOURCC UYVY */
#define OCMD_Y_AND_UV_SWAP (0x3<<14) /* VYUY */
#define OCMD_SOURCE_FORMAT_MASK (0xf<<10)
#define OCMD_RGB_888 (0x1<<10) /* not in i965 Intel docs */
#define OCMD_RGB_555 (0x2<<10) /* not in i965 Intel docs */
#define OCMD_RGB_565 (0x3<<10) /* not in i965 Intel docs */
#define OCMD_YUV_422_PACKED (0x8<<10)
#define OCMD_YUV_411_PACKED (0x9<<10) /* not in i965 Intel docs */
#define OCMD_YUV_420_PLANAR (0xc<<10)
#define OCMD_YUV_422_PLANAR (0xd<<10)
#define OCMD_YUV_410_PLANAR (0xe<<10) /* also 411 */
#define OCMD_TVSYNCFLIP_PARITY (0x1<<9)
#define OCMD_TVSYNCFLIP_ENABLE (0x1<<7)
#define OCMD_BUF_TYPE_MASK (Ox1<<5)
#define OCMD_BUF_TYPE_FRAME (0x0<<5)
#define OCMD_BUF_TYPE_FIELD (0x1<<5)
#define OCMD_TEST_MODE (0x1<<4)
#define OCMD_BUFFER_SELECT (0x3<<2)
#define OCMD_BUFFER0 (0x0<<2)
#define OCMD_BUFFER1 (0x1<<2)
#define OCMD_FIELD_SELECT (0x1<<2)
#define OCMD_FIELD0 (0x0<<1)
#define OCMD_FIELD1 (0x1<<1)
#define OCMD_ENABLE (0x1<<0)
/* OCONFIG register */
#define OCONF_PIPE_MASK (0x1<<18)
#define OCONF_PIPE_A (0x0<<18)
#define OCONF_PIPE_B (0x1<<18)
#define OCONF_GAMMA2_ENABLE (0x1<<16)
#define OCONF_CSC_MODE_BT601 (0x0<<5)
#define OCONF_CSC_MODE_BT709 (0x1<<5)
#define OCONF_CSC_BYPASS (0x1<<4)
#define OCONF_CC_OUT_8BIT (0x1<<3)
#define OCONF_TEST_MODE (0x1<<2)
#define OCONF_THREE_LINE_BUFFER (0x1<<0)
#define OCONF_TWO_LINE_BUFFER (0x0<<0)
/* DCLRKM (dst-key) register */
#define DST_KEY_ENABLE (0x1<<31)
#define CLK_RGB24_MASK 0x0
#define CLK_RGB16_MASK 0x070307
#define CLK_RGB15_MASK 0x070707
#define CLK_RGB8I_MASK 0xffffff
#define RGB16_TO_COLORKEY(c) \
(((c & 0xF800) << 8) | ((c & 0x07E0) << 5) | ((c & 0x001F) << 3))
#define RGB15_TO_COLORKEY(c) \
(((c & 0x7c00) << 9) | ((c & 0x03E0) << 6) | ((c & 0x001F) << 3))
/* overlay flip addr flag */
#define OFC_UPDATE 0x1
/* polyphase filter coefficients */
#define N_HORIZ_Y_TAPS 5
#define N_VERT_Y_TAPS 3
#define N_HORIZ_UV_TAPS 3
#define N_VERT_UV_TAPS 3
#define N_PHASES 17
#define MAX_TAPS 5
/* memory bufferd overlay registers */
struct overlay_registers {
u32 OBUF_0Y;
u32 OBUF_1Y;
u32 OBUF_0U;
u32 OBUF_0V;
u32 OBUF_1U;
u32 OBUF_1V;
u32 OSTRIDE;
u32 YRGB_VPH;
u32 UV_VPH;
u32 HORZ_PH;
u32 INIT_PHS;
u32 DWINPOS;
u32 DWINSZ;
u32 SWIDTH;
u32 SWIDTHSW;
u32 SHEIGHT;
u32 YRGBSCALE;
u32 UVSCALE;
u32 OCLRC0;
u32 OCLRC1;
u32 DCLRKV;
u32 DCLRKM;
u32 SCLRKVH;
u32 SCLRKVL;
u32 SCLRKEN;
u32 OCONFIG;
u32 OCMD;
u32 RESERVED1; /* 0x6C */
u32 OSTART_0Y;
u32 OSTART_1Y;
u32 OSTART_0U;
u32 OSTART_0V;
u32 OSTART_1U;
u32 OSTART_1V;
u32 OTILEOFF_0Y;
u32 OTILEOFF_1Y;
u32 OTILEOFF_0U;
u32 OTILEOFF_0V;
u32 OTILEOFF_1U;
u32 OTILEOFF_1V;
u32 FASTHSCALE; /* 0xA0 */
u32 UVSCALEV; /* 0xA4 */
u32 RESERVEDC[(0x200 - 0xA8) / 4]; /* 0xA8 - 0x1FC */
u16 Y_VCOEFS[N_VERT_Y_TAPS * N_PHASES]; /* 0x200 */
u16 RESERVEDD[0x100 / 2 - N_VERT_Y_TAPS * N_PHASES];
u16 Y_HCOEFS[N_HORIZ_Y_TAPS * N_PHASES]; /* 0x300 */
u16 RESERVEDE[0x200 / 2 - N_HORIZ_Y_TAPS * N_PHASES];
u16 UV_VCOEFS[N_VERT_UV_TAPS * N_PHASES]; /* 0x500 */
u16 RESERVEDF[0x100 / 2 - N_VERT_UV_TAPS * N_PHASES];
u16 UV_HCOEFS[N_HORIZ_UV_TAPS * N_PHASES]; /* 0x600 */
u16 RESERVEDG[0x100 / 2 - N_HORIZ_UV_TAPS * N_PHASES];
};
/* overlay flip addr flag */
#define OFC_UPDATE 0x1
#define OVERLAY_NONPHYSICAL(dev) (IS_G33(dev) || IS_I965G(dev))
#define OVERLAY_EXISTS(dev) (!IS_G4X(dev) && !IS_IRONLAKE(dev) && !IS_GEN6(dev))
static struct overlay_registers *intel_overlay_map_regs_atomic(struct intel_overlay *overlay)
{
drm_i915_private_t *dev_priv = overlay->dev->dev_private;
struct overlay_registers *regs;
/* no recursive mappings */
BUG_ON(overlay->virt_addr);
if (OVERLAY_NONPHYSICAL(overlay->dev)) {
regs = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
overlay->reg_bo->gtt_offset);
if (!regs) {
DRM_ERROR("failed to map overlay regs in GTT\n");
return NULL;
}
} else
regs = overlay->reg_bo->phys_obj->handle->vaddr;
return overlay->virt_addr = regs;
}
static void intel_overlay_unmap_regs_atomic(struct intel_overlay *overlay)
{
if (OVERLAY_NONPHYSICAL(overlay->dev))
io_mapping_unmap_atomic(overlay->virt_addr);
overlay->virt_addr = NULL;
return;
}
/* overlay needs to be disable in OCMD reg */
static int intel_overlay_on(struct intel_overlay *overlay)
{
struct drm_device *dev = overlay->dev;
int ret;
drm_i915_private_t *dev_priv = dev->dev_private;
BUG_ON(overlay->active);
overlay->active = 1;
overlay->hw_wedged = NEEDS_WAIT_FOR_FLIP;
BEGIN_LP_RING(4);
OUT_RING(MI_OVERLAY_FLIP | MI_OVERLAY_ON);
OUT_RING(overlay->flip_addr | OFC_UPDATE);
OUT_RING(MI_WAIT_FOR_EVENT | MI_WAIT_FOR_OVERLAY_FLIP);
OUT_RING(MI_NOOP);
ADVANCE_LP_RING();
overlay->last_flip_req =
i915_add_request(dev, NULL, 0, &dev_priv->render_ring);
if (overlay->last_flip_req == 0)
return -ENOMEM;
ret = i915_do_wait_request(dev,
overlay->last_flip_req, 1, &dev_priv->render_ring);
if (ret != 0)
return ret;
overlay->hw_wedged = 0;
overlay->last_flip_req = 0;
return 0;
}
/* overlay needs to be enabled in OCMD reg */
static void intel_overlay_continue(struct intel_overlay *overlay,
bool load_polyphase_filter)
{
struct drm_device *dev = overlay->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
u32 flip_addr = overlay->flip_addr;
u32 tmp;
BUG_ON(!overlay->active);
if (load_polyphase_filter)
flip_addr |= OFC_UPDATE;
/* check for underruns */
tmp = I915_READ(DOVSTA);
if (tmp & (1 << 17))
DRM_DEBUG("overlay underrun, DOVSTA: %x\n", tmp);
BEGIN_LP_RING(2);
OUT_RING(MI_OVERLAY_FLIP | MI_OVERLAY_CONTINUE);
OUT_RING(flip_addr);
ADVANCE_LP_RING();
overlay->last_flip_req =
i915_add_request(dev, NULL, 0, &dev_priv->render_ring);
}
static int intel_overlay_wait_flip(struct intel_overlay *overlay)
{
struct drm_device *dev = overlay->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
int ret;
u32 tmp;
if (overlay->last_flip_req != 0) {
ret = i915_do_wait_request(dev, overlay->last_flip_req,
1, &dev_priv->render_ring);
if (ret == 0) {
overlay->last_flip_req = 0;
tmp = I915_READ(ISR);
if (!(tmp & I915_OVERLAY_PLANE_FLIP_PENDING_INTERRUPT))
return 0;
}
}
/* synchronous slowpath */
overlay->hw_wedged = RELEASE_OLD_VID;
BEGIN_LP_RING(2);
OUT_RING(MI_WAIT_FOR_EVENT | MI_WAIT_FOR_OVERLAY_FLIP);
OUT_RING(MI_NOOP);
ADVANCE_LP_RING();
overlay->last_flip_req =
i915_add_request(dev, NULL, 0, &dev_priv->render_ring);
if (overlay->last_flip_req == 0)
return -ENOMEM;
ret = i915_do_wait_request(dev, overlay->last_flip_req,
1, &dev_priv->render_ring);
if (ret != 0)
return ret;
overlay->hw_wedged = 0;
overlay->last_flip_req = 0;
return 0;
}
/* overlay needs to be disabled in OCMD reg */
static int intel_overlay_off(struct intel_overlay *overlay)
{
u32 flip_addr = overlay->flip_addr;
struct drm_device *dev = overlay->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
int ret;
BUG_ON(!overlay->active);
/* According to intel docs the overlay hw may hang (when switching
* off) without loading the filter coeffs. It is however unclear whether
* this applies to the disabling of the overlay or to the switching off
* of the hw. Do it in both cases */
flip_addr |= OFC_UPDATE;
/* wait for overlay to go idle */
overlay->hw_wedged = SWITCH_OFF_STAGE_1;
BEGIN_LP_RING(4);
OUT_RING(MI_OVERLAY_FLIP | MI_OVERLAY_CONTINUE);
OUT_RING(flip_addr);
OUT_RING(MI_WAIT_FOR_EVENT | MI_WAIT_FOR_OVERLAY_FLIP);
OUT_RING(MI_NOOP);
ADVANCE_LP_RING();
overlay->last_flip_req =
i915_add_request(dev, NULL, 0, &dev_priv->render_ring);
if (overlay->last_flip_req == 0)
return -ENOMEM;
ret = i915_do_wait_request(dev, overlay->last_flip_req,
1, &dev_priv->render_ring);
if (ret != 0)
return ret;
/* turn overlay off */
overlay->hw_wedged = SWITCH_OFF_STAGE_2;
BEGIN_LP_RING(4);
OUT_RING(MI_OVERLAY_FLIP | MI_OVERLAY_OFF);
OUT_RING(flip_addr);
OUT_RING(MI_WAIT_FOR_EVENT | MI_WAIT_FOR_OVERLAY_FLIP);
OUT_RING(MI_NOOP);
ADVANCE_LP_RING();
overlay->last_flip_req =
i915_add_request(dev, NULL, 0, &dev_priv->render_ring);
if (overlay->last_flip_req == 0)
return -ENOMEM;
ret = i915_do_wait_request(dev, overlay->last_flip_req,
1, &dev_priv->render_ring);
if (ret != 0)
return ret;
overlay->hw_wedged = 0;
overlay->last_flip_req = 0;
return ret;
}
static void intel_overlay_off_tail(struct intel_overlay *overlay)
{
struct drm_gem_object *obj;
/* never have the overlay hw on without showing a frame */
BUG_ON(!overlay->vid_bo);
obj = &overlay->vid_bo->base;
i915_gem_object_unpin(obj);
drm_gem_object_unreference(obj);
overlay->vid_bo = NULL;
overlay->crtc->overlay = NULL;
overlay->crtc = NULL;
overlay->active = 0;
}
/* recover from an interruption due to a signal
* We have to be careful not to repeat work forever an make forward progess. */
int intel_overlay_recover_from_interrupt(struct intel_overlay *overlay,
int interruptible)
{
struct drm_device *dev = overlay->dev;
struct drm_gem_object *obj;
drm_i915_private_t *dev_priv = dev->dev_private;
u32 flip_addr;
int ret;
if (overlay->hw_wedged == HW_WEDGED)
return -EIO;
if (overlay->last_flip_req == 0) {
overlay->last_flip_req =
i915_add_request(dev, NULL, 0, &dev_priv->render_ring);
if (overlay->last_flip_req == 0)
return -ENOMEM;
}
ret = i915_do_wait_request(dev, overlay->last_flip_req,
interruptible, &dev_priv->render_ring);
if (ret != 0)
return ret;
switch (overlay->hw_wedged) {
case RELEASE_OLD_VID:
obj = &overlay->old_vid_bo->base;
i915_gem_object_unpin(obj);
drm_gem_object_unreference(obj);
overlay->old_vid_bo = NULL;
break;
case SWITCH_OFF_STAGE_1:
flip_addr = overlay->flip_addr;
flip_addr |= OFC_UPDATE;
overlay->hw_wedged = SWITCH_OFF_STAGE_2;
BEGIN_LP_RING(4);
OUT_RING(MI_OVERLAY_FLIP | MI_OVERLAY_OFF);
OUT_RING(flip_addr);
OUT_RING(MI_WAIT_FOR_EVENT | MI_WAIT_FOR_OVERLAY_FLIP);
OUT_RING(MI_NOOP);
ADVANCE_LP_RING();
overlay->last_flip_req = i915_add_request(dev, NULL,
0, &dev_priv->render_ring);
if (overlay->last_flip_req == 0)
return -ENOMEM;
ret = i915_do_wait_request(dev, overlay->last_flip_req,
interruptible, &dev_priv->render_ring);
if (ret != 0)
return ret;
case SWITCH_OFF_STAGE_2:
intel_overlay_off_tail(overlay);
break;
default:
BUG_ON(overlay->hw_wedged != NEEDS_WAIT_FOR_FLIP);
}
overlay->hw_wedged = 0;
overlay->last_flip_req = 0;
return 0;
}
/* Wait for pending overlay flip and release old frame.
* Needs to be called before the overlay register are changed
* via intel_overlay_(un)map_regs_atomic */
static int intel_overlay_release_old_vid(struct intel_overlay *overlay)
{
int ret;
struct drm_gem_object *obj;
/* only wait if there is actually an old frame to release to
* guarantee forward progress */
if (!overlay->old_vid_bo)
return 0;
ret = intel_overlay_wait_flip(overlay);
if (ret != 0)
return ret;
obj = &overlay->old_vid_bo->base;
i915_gem_object_unpin(obj);
drm_gem_object_unreference(obj);
overlay->old_vid_bo = NULL;
return 0;
}
struct put_image_params {
int format;
short dst_x;
short dst_y;
short dst_w;
short dst_h;
short src_w;
short src_scan_h;
short src_scan_w;
short src_h;
short stride_Y;
short stride_UV;
int offset_Y;
int offset_U;
int offset_V;
};
static int packed_depth_bytes(u32 format)
{
switch (format & I915_OVERLAY_DEPTH_MASK) {
case I915_OVERLAY_YUV422:
return 4;
case I915_OVERLAY_YUV411:
/* return 6; not implemented */
default:
return -EINVAL;
}
}
static int packed_width_bytes(u32 format, short width)
{
switch (format & I915_OVERLAY_DEPTH_MASK) {
case I915_OVERLAY_YUV422:
return width << 1;
default:
return -EINVAL;
}
}
static int uv_hsubsampling(u32 format)
{
switch (format & I915_OVERLAY_DEPTH_MASK) {
case I915_OVERLAY_YUV422:
case I915_OVERLAY_YUV420:
return 2;
case I915_OVERLAY_YUV411:
case I915_OVERLAY_YUV410:
return 4;
default:
return -EINVAL;
}
}
static int uv_vsubsampling(u32 format)
{
switch (format & I915_OVERLAY_DEPTH_MASK) {
case I915_OVERLAY_YUV420:
case I915_OVERLAY_YUV410:
return 2;
case I915_OVERLAY_YUV422:
case I915_OVERLAY_YUV411:
return 1;
default:
return -EINVAL;
}
}
static u32 calc_swidthsw(struct drm_device *dev, u32 offset, u32 width)
{
u32 mask, shift, ret;
if (IS_I9XX(dev)) {
mask = 0x3f;
shift = 6;
} else {
mask = 0x1f;
shift = 5;
}
ret = ((offset + width + mask) >> shift) - (offset >> shift);
if (IS_I9XX(dev))
ret <<= 1;
ret -=1;
return ret << 2;
}
static const u16 y_static_hcoeffs[N_HORIZ_Y_TAPS * N_PHASES] = {
0x3000, 0xb4a0, 0x1930, 0x1920, 0xb4a0,
0x3000, 0xb500, 0x19d0, 0x1880, 0xb440,
0x3000, 0xb540, 0x1a88, 0x2f80, 0xb3e0,
0x3000, 0xb580, 0x1b30, 0x2e20, 0xb380,
0x3000, 0xb5c0, 0x1bd8, 0x2cc0, 0xb320,
0x3020, 0xb5e0, 0x1c60, 0x2b80, 0xb2c0,
0x3020, 0xb5e0, 0x1cf8, 0x2a20, 0xb260,
0x3020, 0xb5e0, 0x1d80, 0x28e0, 0xb200,
0x3020, 0xb5c0, 0x1e08, 0x3f40, 0xb1c0,
0x3020, 0xb580, 0x1e78, 0x3ce0, 0xb160,
0x3040, 0xb520, 0x1ed8, 0x3aa0, 0xb120,
0x3040, 0xb4a0, 0x1f30, 0x3880, 0xb0e0,
0x3040, 0xb400, 0x1f78, 0x3680, 0xb0a0,
0x3020, 0xb340, 0x1fb8, 0x34a0, 0xb060,
0x3020, 0xb240, 0x1fe0, 0x32e0, 0xb040,
0x3020, 0xb140, 0x1ff8, 0x3160, 0xb020,
0xb000, 0x3000, 0x0800, 0x3000, 0xb000};
static const u16 uv_static_hcoeffs[N_HORIZ_UV_TAPS * N_PHASES] = {
0x3000, 0x1800, 0x1800, 0xb000, 0x18d0, 0x2e60,
0xb000, 0x1990, 0x2ce0, 0xb020, 0x1a68, 0x2b40,
0xb040, 0x1b20, 0x29e0, 0xb060, 0x1bd8, 0x2880,
0xb080, 0x1c88, 0x3e60, 0xb0a0, 0x1d28, 0x3c00,
0xb0c0, 0x1db8, 0x39e0, 0xb0e0, 0x1e40, 0x37e0,
0xb100, 0x1eb8, 0x3620, 0xb100, 0x1f18, 0x34a0,
0xb100, 0x1f68, 0x3360, 0xb0e0, 0x1fa8, 0x3240,
0xb0c0, 0x1fe0, 0x3140, 0xb060, 0x1ff0, 0x30a0,
0x3000, 0x0800, 0x3000};
static void update_polyphase_filter(struct overlay_registers *regs)
{
memcpy(regs->Y_HCOEFS, y_static_hcoeffs, sizeof(y_static_hcoeffs));
memcpy(regs->UV_HCOEFS, uv_static_hcoeffs, sizeof(uv_static_hcoeffs));
}
static bool update_scaling_factors(struct intel_overlay *overlay,
struct overlay_registers *regs,
struct put_image_params *params)
{
/* fixed point with a 12 bit shift */
u32 xscale, yscale, xscale_UV, yscale_UV;
#define FP_SHIFT 12
#define FRACT_MASK 0xfff
bool scale_changed = false;
int uv_hscale = uv_hsubsampling(params->format);
int uv_vscale = uv_vsubsampling(params->format);
if (params->dst_w > 1)
xscale = ((params->src_scan_w - 1) << FP_SHIFT)
/(params->dst_w);
else
xscale = 1 << FP_SHIFT;
if (params->dst_h > 1)
yscale = ((params->src_scan_h - 1) << FP_SHIFT)
/(params->dst_h);
else
yscale = 1 << FP_SHIFT;
/*if (params->format & I915_OVERLAY_YUV_PLANAR) {*/
xscale_UV = xscale/uv_hscale;
yscale_UV = yscale/uv_vscale;
/* make the Y scale to UV scale ratio an exact multiply */
xscale = xscale_UV * uv_hscale;
yscale = yscale_UV * uv_vscale;
/*} else {
xscale_UV = 0;
yscale_UV = 0;
}*/
if (xscale != overlay->old_xscale || yscale != overlay->old_yscale)
scale_changed = true;
overlay->old_xscale = xscale;
overlay->old_yscale = yscale;
regs->YRGBSCALE = ((yscale & FRACT_MASK) << 20)
| ((xscale >> FP_SHIFT) << 16)
| ((xscale & FRACT_MASK) << 3);
regs->UVSCALE = ((yscale_UV & FRACT_MASK) << 20)
| ((xscale_UV >> FP_SHIFT) << 16)
| ((xscale_UV & FRACT_MASK) << 3);
regs->UVSCALEV = ((yscale >> FP_SHIFT) << 16)
| ((yscale_UV >> FP_SHIFT) << 0);
if (scale_changed)
update_polyphase_filter(regs);
return scale_changed;
}
static void update_colorkey(struct intel_overlay *overlay,
struct overlay_registers *regs)
{
u32 key = overlay->color_key;
switch (overlay->crtc->base.fb->bits_per_pixel) {
case 8:
regs->DCLRKV = 0;
regs->DCLRKM = CLK_RGB8I_MASK | DST_KEY_ENABLE;
case 16:
if (overlay->crtc->base.fb->depth == 15) {
regs->DCLRKV = RGB15_TO_COLORKEY(key);
regs->DCLRKM = CLK_RGB15_MASK | DST_KEY_ENABLE;
} else {
regs->DCLRKV = RGB16_TO_COLORKEY(key);
regs->DCLRKM = CLK_RGB16_MASK | DST_KEY_ENABLE;
}
case 24:
case 32:
regs->DCLRKV = key;
regs->DCLRKM = CLK_RGB24_MASK | DST_KEY_ENABLE;
}
}
static u32 overlay_cmd_reg(struct put_image_params *params)
{
u32 cmd = OCMD_ENABLE | OCMD_BUF_TYPE_FRAME | OCMD_BUFFER0;
if (params->format & I915_OVERLAY_YUV_PLANAR) {
switch (params->format & I915_OVERLAY_DEPTH_MASK) {
case I915_OVERLAY_YUV422:
cmd |= OCMD_YUV_422_PLANAR;
break;
case I915_OVERLAY_YUV420:
cmd |= OCMD_YUV_420_PLANAR;
break;
case I915_OVERLAY_YUV411:
case I915_OVERLAY_YUV410:
cmd |= OCMD_YUV_410_PLANAR;
break;
}
} else { /* YUV packed */
switch (params->format & I915_OVERLAY_DEPTH_MASK) {
case I915_OVERLAY_YUV422:
cmd |= OCMD_YUV_422_PACKED;
break;
case I915_OVERLAY_YUV411:
cmd |= OCMD_YUV_411_PACKED;
break;
}
switch (params->format & I915_OVERLAY_SWAP_MASK) {
case I915_OVERLAY_NO_SWAP:
break;
case I915_OVERLAY_UV_SWAP:
cmd |= OCMD_UV_SWAP;
break;
case I915_OVERLAY_Y_SWAP:
cmd |= OCMD_Y_SWAP;
break;
case I915_OVERLAY_Y_AND_UV_SWAP:
cmd |= OCMD_Y_AND_UV_SWAP;
break;
}
}
return cmd;
}
int intel_overlay_do_put_image(struct intel_overlay *overlay,
struct drm_gem_object *new_bo,
struct put_image_params *params)
{
int ret, tmp_width;
struct overlay_registers *regs;
bool scale_changed = false;
struct drm_i915_gem_object *bo_priv = to_intel_bo(new_bo);
struct drm_device *dev = overlay->dev;
BUG_ON(!mutex_is_locked(&dev->struct_mutex));
BUG_ON(!mutex_is_locked(&dev->mode_config.mutex));
BUG_ON(!overlay);
ret = intel_overlay_release_old_vid(overlay);
if (ret != 0)
return ret;
ret = i915_gem_object_pin(new_bo, PAGE_SIZE);
if (ret != 0)
return ret;
ret = i915_gem_object_set_to_gtt_domain(new_bo, 0);
if (ret != 0)
goto out_unpin;
if (!overlay->active) {
regs = intel_overlay_map_regs_atomic(overlay);
if (!regs) {
ret = -ENOMEM;
goto out_unpin;
}
regs->OCONFIG = OCONF_CC_OUT_8BIT;
if (IS_I965GM(overlay->dev))
regs->OCONFIG |= OCONF_CSC_MODE_BT709;
regs->OCONFIG |= overlay->crtc->pipe == 0 ?
OCONF_PIPE_A : OCONF_PIPE_B;
intel_overlay_unmap_regs_atomic(overlay);
ret = intel_overlay_on(overlay);
if (ret != 0)
goto out_unpin;
}
regs = intel_overlay_map_regs_atomic(overlay);
if (!regs) {
ret = -ENOMEM;
goto out_unpin;
}
regs->DWINPOS = (params->dst_y << 16) | params->dst_x;
regs->DWINSZ = (params->dst_h << 16) | params->dst_w;
if (params->format & I915_OVERLAY_YUV_PACKED)
tmp_width = packed_width_bytes(params->format, params->src_w);
else
tmp_width = params->src_w;
regs->SWIDTH = params->src_w;
regs->SWIDTHSW = calc_swidthsw(overlay->dev,
params->offset_Y, tmp_width);
regs->SHEIGHT = params->src_h;
regs->OBUF_0Y = bo_priv->gtt_offset + params-> offset_Y;
regs->OSTRIDE = params->stride_Y;
if (params->format & I915_OVERLAY_YUV_PLANAR) {
int uv_hscale = uv_hsubsampling(params->format);
int uv_vscale = uv_vsubsampling(params->format);
u32 tmp_U, tmp_V;
regs->SWIDTH |= (params->src_w/uv_hscale) << 16;
tmp_U = calc_swidthsw(overlay->dev, params->offset_U,
params->src_w/uv_hscale);
tmp_V = calc_swidthsw(overlay->dev, params->offset_V,
params->src_w/uv_hscale);
regs->SWIDTHSW |= max_t(u32, tmp_U, tmp_V) << 16;
regs->SHEIGHT |= (params->src_h/uv_vscale) << 16;
regs->OBUF_0U = bo_priv->gtt_offset + params->offset_U;
regs->OBUF_0V = bo_priv->gtt_offset + params->offset_V;
regs->OSTRIDE |= params->stride_UV << 16;
}
scale_changed = update_scaling_factors(overlay, regs, params);
update_colorkey(overlay, regs);
regs->OCMD = overlay_cmd_reg(params);
intel_overlay_unmap_regs_atomic(overlay);
intel_overlay_continue(overlay, scale_changed);
overlay->old_vid_bo = overlay->vid_bo;
overlay->vid_bo = to_intel_bo(new_bo);
return 0;
out_unpin:
i915_gem_object_unpin(new_bo);
return ret;
}
int intel_overlay_switch_off(struct intel_overlay *overlay)
{
int ret;
struct overlay_registers *regs;
struct drm_device *dev = overlay->dev;
BUG_ON(!mutex_is_locked(&dev->struct_mutex));
BUG_ON(!mutex_is_locked(&dev->mode_config.mutex));
if (overlay->hw_wedged) {
ret = intel_overlay_recover_from_interrupt(overlay, 1);
if (ret != 0)
return ret;
}
if (!overlay->active)
return 0;
ret = intel_overlay_release_old_vid(overlay);
if (ret != 0)
return ret;
regs = intel_overlay_map_regs_atomic(overlay);
regs->OCMD = 0;
intel_overlay_unmap_regs_atomic(overlay);
ret = intel_overlay_off(overlay);
if (ret != 0)
return ret;
intel_overlay_off_tail(overlay);
return 0;
}
static int check_overlay_possible_on_crtc(struct intel_overlay *overlay,
struct intel_crtc *crtc)
{
drm_i915_private_t *dev_priv = overlay->dev->dev_private;
u32 pipeconf;
int pipeconf_reg = (crtc->pipe == 0) ? PIPEACONF : PIPEBCONF;
if (!crtc->base.enabled || crtc->dpms_mode != DRM_MODE_DPMS_ON)
return -EINVAL;
pipeconf = I915_READ(pipeconf_reg);
/* can't use the overlay with double wide pipe */
if (!IS_I965G(overlay->dev) && pipeconf & PIPEACONF_DOUBLE_WIDE)
return -EINVAL;
return 0;
}
static void update_pfit_vscale_ratio(struct intel_overlay *overlay)
{
struct drm_device *dev = overlay->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
u32 ratio;
u32 pfit_control = I915_READ(PFIT_CONTROL);
/* XXX: This is not the same logic as in the xorg driver, but more in
* line with the intel documentation for the i965 */
if (!IS_I965G(dev) && (pfit_control & VERT_AUTO_SCALE)) {
ratio = I915_READ(PFIT_AUTO_RATIOS) >> PFIT_VERT_SCALE_SHIFT;
} else { /* on i965 use the PGM reg to read out the autoscaler values */
ratio = I915_READ(PFIT_PGM_RATIOS);
if (IS_I965G(dev))
ratio >>= PFIT_VERT_SCALE_SHIFT_965;
else
ratio >>= PFIT_VERT_SCALE_SHIFT;
}
overlay->pfit_vscale_ratio = ratio;
}
static int check_overlay_dst(struct intel_overlay *overlay,
struct drm_intel_overlay_put_image *rec)
{
struct drm_display_mode *mode = &overlay->crtc->base.mode;
if ((rec->dst_x < mode->crtc_hdisplay)
&& (rec->dst_x + rec->dst_width
<= mode->crtc_hdisplay)
&& (rec->dst_y < mode->crtc_vdisplay)
&& (rec->dst_y + rec->dst_height
<= mode->crtc_vdisplay))
return 0;
else
return -EINVAL;
}
static int check_overlay_scaling(struct put_image_params *rec)
{
u32 tmp;
/* downscaling limit is 8.0 */
tmp = ((rec->src_scan_h << 16) / rec->dst_h) >> 16;
if (tmp > 7)
return -EINVAL;
tmp = ((rec->src_scan_w << 16) / rec->dst_w) >> 16;
if (tmp > 7)
return -EINVAL;
return 0;
}
static int check_overlay_src(struct drm_device *dev,
struct drm_intel_overlay_put_image *rec,
struct drm_gem_object *new_bo)
{
u32 stride_mask;
int depth;
int uv_hscale = uv_hsubsampling(rec->flags);
int uv_vscale = uv_vsubsampling(rec->flags);
size_t tmp;
/* check src dimensions */
if (IS_845G(dev) || IS_I830(dev)) {
if (rec->src_height > IMAGE_MAX_HEIGHT_LEGACY
|| rec->src_width > IMAGE_MAX_WIDTH_LEGACY)
return -EINVAL;
} else {
if (rec->src_height > IMAGE_MAX_HEIGHT
|| rec->src_width > IMAGE_MAX_WIDTH)
return -EINVAL;
}
/* better safe than sorry, use 4 as the maximal subsampling ratio */
if (rec->src_height < N_VERT_Y_TAPS*4
|| rec->src_width < N_HORIZ_Y_TAPS*4)
return -EINVAL;
/* check alignment constraints */
switch (rec->flags & I915_OVERLAY_TYPE_MASK) {
case I915_OVERLAY_RGB:
/* not implemented */
return -EINVAL;
case I915_OVERLAY_YUV_PACKED:
depth = packed_depth_bytes(rec->flags);
if (uv_vscale != 1)
return -EINVAL;
if (depth < 0)
return depth;
/* ignore UV planes */
rec->stride_UV = 0;
rec->offset_U = 0;
rec->offset_V = 0;
/* check pixel alignment */
if (rec->offset_Y % depth)
return -EINVAL;
break;
case I915_OVERLAY_YUV_PLANAR:
if (uv_vscale < 0 || uv_hscale < 0)
return -EINVAL;
/* no offset restrictions for planar formats */
break;
default:
return -EINVAL;
}
if (rec->src_width % uv_hscale)
return -EINVAL;
/* stride checking */
if (IS_I830(dev) || IS_845G(dev))
stride_mask = 255;
else
stride_mask = 63;
if (rec->stride_Y & stride_mask || rec->stride_UV & stride_mask)
return -EINVAL;
if (IS_I965G(dev) && rec->stride_Y < 512)
return -EINVAL;
tmp = (rec->flags & I915_OVERLAY_TYPE_MASK) == I915_OVERLAY_YUV_PLANAR ?
4 : 8;
if (rec->stride_Y > tmp*1024 || rec->stride_UV > 2*1024)
return -EINVAL;
/* check buffer dimensions */
switch (rec->flags & I915_OVERLAY_TYPE_MASK) {
case I915_OVERLAY_RGB:
case I915_OVERLAY_YUV_PACKED:
/* always 4 Y values per depth pixels */
if (packed_width_bytes(rec->flags, rec->src_width)
> rec->stride_Y)
return -EINVAL;
tmp = rec->stride_Y*rec->src_height;
if (rec->offset_Y + tmp > new_bo->size)
return -EINVAL;
break;
case I915_OVERLAY_YUV_PLANAR:
if (rec->src_width > rec->stride_Y)
return -EINVAL;
if (rec->src_width/uv_hscale > rec->stride_UV)
return -EINVAL;
tmp = rec->stride_Y*rec->src_height;
if (rec->offset_Y + tmp > new_bo->size)
return -EINVAL;
tmp = rec->stride_UV*rec->src_height;
tmp /= uv_vscale;
if (rec->offset_U + tmp > new_bo->size
|| rec->offset_V + tmp > new_bo->size)
return -EINVAL;
break;
}
return 0;
}
int intel_overlay_put_image(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_intel_overlay_put_image *put_image_rec = data;
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_overlay *overlay;
struct drm_mode_object *drmmode_obj;
struct intel_crtc *crtc;
struct drm_gem_object *new_bo;
struct put_image_params *params;
int ret;
if (!dev_priv) {
DRM_ERROR("called with no initialization\n");
return -EINVAL;
}
overlay = dev_priv->overlay;
if (!overlay) {
DRM_DEBUG("userspace bug: no overlay\n");
return -ENODEV;
}
if (!(put_image_rec->flags & I915_OVERLAY_ENABLE)) {
mutex_lock(&dev->mode_config.mutex);
mutex_lock(&dev->struct_mutex);
ret = intel_overlay_switch_off(overlay);
mutex_unlock(&dev->struct_mutex);
mutex_unlock(&dev->mode_config.mutex);
return ret;
}
params = kmalloc(sizeof(struct put_image_params), GFP_KERNEL);
if (!params)
return -ENOMEM;
drmmode_obj = drm_mode_object_find(dev, put_image_rec->crtc_id,
DRM_MODE_OBJECT_CRTC);
if (!drmmode_obj) {
ret = -ENOENT;
goto out_free;
}
crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
new_bo = drm_gem_object_lookup(dev, file_priv,
put_image_rec->bo_handle);
if (!new_bo) {
ret = -ENOENT;
goto out_free;
}
mutex_lock(&dev->mode_config.mutex);
mutex_lock(&dev->struct_mutex);
if (overlay->hw_wedged) {
ret = intel_overlay_recover_from_interrupt(overlay, 1);
if (ret != 0)
goto out_unlock;
}
if (overlay->crtc != crtc) {
struct drm_display_mode *mode = &crtc->base.mode;
ret = intel_overlay_switch_off(overlay);
if (ret != 0)
goto out_unlock;
ret = check_overlay_possible_on_crtc(overlay, crtc);
if (ret != 0)
goto out_unlock;
overlay->crtc = crtc;
crtc->overlay = overlay;
if (intel_panel_fitter_pipe(dev) == crtc->pipe
/* and line to wide, i.e. one-line-mode */
&& mode->hdisplay > 1024) {
overlay->pfit_active = 1;
update_pfit_vscale_ratio(overlay);
} else
overlay->pfit_active = 0;
}
ret = check_overlay_dst(overlay, put_image_rec);
if (ret != 0)
goto out_unlock;
if (overlay->pfit_active) {
params->dst_y = ((((u32)put_image_rec->dst_y) << 12) /
overlay->pfit_vscale_ratio);
/* shifting right rounds downwards, so add 1 */
params->dst_h = ((((u32)put_image_rec->dst_height) << 12) /
overlay->pfit_vscale_ratio) + 1;
} else {
params->dst_y = put_image_rec->dst_y;
params->dst_h = put_image_rec->dst_height;
}
params->dst_x = put_image_rec->dst_x;
params->dst_w = put_image_rec->dst_width;
params->src_w = put_image_rec->src_width;
params->src_h = put_image_rec->src_height;
params->src_scan_w = put_image_rec->src_scan_width;
params->src_scan_h = put_image_rec->src_scan_height;
if (params->src_scan_h > params->src_h
|| params->src_scan_w > params->src_w) {
ret = -EINVAL;
goto out_unlock;
}
ret = check_overlay_src(dev, put_image_rec, new_bo);
if (ret != 0)
goto out_unlock;
params->format = put_image_rec->flags & ~I915_OVERLAY_FLAGS_MASK;
params->stride_Y = put_image_rec->stride_Y;
params->stride_UV = put_image_rec->stride_UV;
params->offset_Y = put_image_rec->offset_Y;
params->offset_U = put_image_rec->offset_U;
params->offset_V = put_image_rec->offset_V;
/* Check scaling after src size to prevent a divide-by-zero. */
ret = check_overlay_scaling(params);
if (ret != 0)
goto out_unlock;
ret = intel_overlay_do_put_image(overlay, new_bo, params);
if (ret != 0)
goto out_unlock;
mutex_unlock(&dev->struct_mutex);
mutex_unlock(&dev->mode_config.mutex);
kfree(params);
return 0;
out_unlock:
mutex_unlock(&dev->struct_mutex);
mutex_unlock(&dev->mode_config.mutex);
drm_gem_object_unreference_unlocked(new_bo);
out_free:
kfree(params);
return ret;
}
static void update_reg_attrs(struct intel_overlay *overlay,
struct overlay_registers *regs)
{
regs->OCLRC0 = (overlay->contrast << 18) | (overlay->brightness & 0xff);
regs->OCLRC1 = overlay->saturation;
}
static bool check_gamma_bounds(u32 gamma1, u32 gamma2)
{
int i;
if (gamma1 & 0xff000000 || gamma2 & 0xff000000)
return false;
for (i = 0; i < 3; i++) {
if (((gamma1 >> i * 8) & 0xff) >= ((gamma2 >> i*8) & 0xff))
return false;
}
return true;
}
static bool check_gamma5_errata(u32 gamma5)
{
int i;
for (i = 0; i < 3; i++) {
if (((gamma5 >> i*8) & 0xff) == 0x80)
return false;
}
return true;
}
static int check_gamma(struct drm_intel_overlay_attrs *attrs)
{
if (!check_gamma_bounds(0, attrs->gamma0)
|| !check_gamma_bounds(attrs->gamma0, attrs->gamma1)
|| !check_gamma_bounds(attrs->gamma1, attrs->gamma2)
|| !check_gamma_bounds(attrs->gamma2, attrs->gamma3)
|| !check_gamma_bounds(attrs->gamma3, attrs->gamma4)
|| !check_gamma_bounds(attrs->gamma4, attrs->gamma5)
|| !check_gamma_bounds(attrs->gamma5, 0x00ffffff))
return -EINVAL;
if (!check_gamma5_errata(attrs->gamma5))
return -EINVAL;
return 0;
}
int intel_overlay_attrs(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_intel_overlay_attrs *attrs = data;
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_overlay *overlay;
struct overlay_registers *regs;
int ret;
if (!dev_priv) {
DRM_ERROR("called with no initialization\n");
return -EINVAL;
}
overlay = dev_priv->overlay;
if (!overlay) {
DRM_DEBUG("userspace bug: no overlay\n");
return -ENODEV;
}
mutex_lock(&dev->mode_config.mutex);
mutex_lock(&dev->struct_mutex);
if (!(attrs->flags & I915_OVERLAY_UPDATE_ATTRS)) {
attrs->color_key = overlay->color_key;
attrs->brightness = overlay->brightness;
attrs->contrast = overlay->contrast;
attrs->saturation = overlay->saturation;
if (IS_I9XX(dev)) {
attrs->gamma0 = I915_READ(OGAMC0);
attrs->gamma1 = I915_READ(OGAMC1);
attrs->gamma2 = I915_READ(OGAMC2);
attrs->gamma3 = I915_READ(OGAMC3);
attrs->gamma4 = I915_READ(OGAMC4);
attrs->gamma5 = I915_READ(OGAMC5);
}
ret = 0;
} else {
overlay->color_key = attrs->color_key;
if (attrs->brightness >= -128 && attrs->brightness <= 127) {
overlay->brightness = attrs->brightness;
} else {
ret = -EINVAL;
goto out_unlock;
}
if (attrs->contrast <= 255) {
overlay->contrast = attrs->contrast;
} else {
ret = -EINVAL;
goto out_unlock;
}
if (attrs->saturation <= 1023) {
overlay->saturation = attrs->saturation;
} else {
ret = -EINVAL;
goto out_unlock;
}
regs = intel_overlay_map_regs_atomic(overlay);
if (!regs) {
ret = -ENOMEM;
goto out_unlock;
}
update_reg_attrs(overlay, regs);
intel_overlay_unmap_regs_atomic(overlay);
if (attrs->flags & I915_OVERLAY_UPDATE_GAMMA) {
if (!IS_I9XX(dev)) {
ret = -EINVAL;
goto out_unlock;
}
if (overlay->active) {
ret = -EBUSY;
goto out_unlock;
}
ret = check_gamma(attrs);
if (ret != 0)
goto out_unlock;
I915_WRITE(OGAMC0, attrs->gamma0);
I915_WRITE(OGAMC1, attrs->gamma1);
I915_WRITE(OGAMC2, attrs->gamma2);
I915_WRITE(OGAMC3, attrs->gamma3);
I915_WRITE(OGAMC4, attrs->gamma4);
I915_WRITE(OGAMC5, attrs->gamma5);
}
ret = 0;
}
out_unlock:
mutex_unlock(&dev->struct_mutex);
mutex_unlock(&dev->mode_config.mutex);
return ret;
}
void intel_setup_overlay(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_overlay *overlay;
struct drm_gem_object *reg_bo;
struct overlay_registers *regs;
int ret;
if (!OVERLAY_EXISTS(dev))
return;
overlay = kzalloc(sizeof(struct intel_overlay), GFP_KERNEL);
if (!overlay)
return;
overlay->dev = dev;
reg_bo = i915_gem_alloc_object(dev, PAGE_SIZE);
if (!reg_bo)
goto out_free;
overlay->reg_bo = to_intel_bo(reg_bo);
if (OVERLAY_NONPHYSICAL(dev)) {
ret = i915_gem_object_pin(reg_bo, PAGE_SIZE);
if (ret) {
DRM_ERROR("failed to pin overlay register bo\n");
goto out_free_bo;
}
overlay->flip_addr = overlay->reg_bo->gtt_offset;
ret = i915_gem_object_set_to_gtt_domain(reg_bo, true);
if (ret) {
DRM_ERROR("failed to move overlay register bo into the GTT\n");
goto out_unpin_bo;
}
} else {
ret = i915_gem_attach_phys_object(dev, reg_bo,
I915_GEM_PHYS_OVERLAY_REGS);
if (ret) {
DRM_ERROR("failed to attach phys overlay regs\n");
goto out_free_bo;
}
overlay->flip_addr = overlay->reg_bo->phys_obj->handle->busaddr;
}
/* init all values */
overlay->color_key = 0x0101fe;
overlay->brightness = -19;
overlay->contrast = 75;
overlay->saturation = 146;
regs = intel_overlay_map_regs_atomic(overlay);
if (!regs)
goto out_free_bo;
memset(regs, 0, sizeof(struct overlay_registers));
update_polyphase_filter(regs);
update_reg_attrs(overlay, regs);
intel_overlay_unmap_regs_atomic(overlay);
dev_priv->overlay = overlay;
DRM_INFO("initialized overlay support\n");
return;
out_unpin_bo:
i915_gem_object_unpin(reg_bo);
out_free_bo:
drm_gem_object_unreference(reg_bo);
out_free:
kfree(overlay);
return;
}
void intel_cleanup_overlay(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
if (dev_priv->overlay) {
/* The bo's should be free'd by the generic code already.
* Furthermore modesetting teardown happens beforehand so the
* hardware should be off already */
BUG_ON(dev_priv->overlay->active);
kfree(dev_priv->overlay);
}
}