blob: cd22d693b59ed7c43a5ced374a8e80fda3d14a7a [file] [log] [blame]
/*
* File: msi.c
* Purpose: PCI Message Signaled Interrupt (MSI)
*
* Copyright (C) 2003-2004 Intel
* Copyright (C) Tom Long Nguyen (tom.l.nguyen@intel.com)
*/
#include <linux/err.h>
#include <linux/mm.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/pci.h>
#include <linux/proc_fs.h>
#include <linux/msi.h>
#include <linux/smp.h>
#include <linux/errno.h>
#include <linux/io.h>
#include <linux/slab.h>
#include "pci.h"
#include "msi.h"
static int pci_msi_enable = 1;
/* Arch hooks */
#ifndef arch_msi_check_device
int arch_msi_check_device(struct pci_dev *dev, int nvec, int type)
{
return 0;
}
#endif
#ifndef arch_setup_msi_irqs
int arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
{
struct msi_desc *entry;
int ret;
/*
* If an architecture wants to support multiple MSI, it needs to
* override arch_setup_msi_irqs()
*/
if (type == PCI_CAP_ID_MSI && nvec > 1)
return 1;
list_for_each_entry(entry, &dev->msi_list, list) {
ret = arch_setup_msi_irq(dev, entry);
if (ret < 0)
return ret;
if (ret > 0)
return -ENOSPC;
}
return 0;
}
#endif
#ifndef arch_teardown_msi_irqs
void arch_teardown_msi_irqs(struct pci_dev *dev)
{
struct msi_desc *entry;
list_for_each_entry(entry, &dev->msi_list, list) {
int i, nvec;
if (entry->irq == 0)
continue;
nvec = 1 << entry->msi_attrib.multiple;
for (i = 0; i < nvec; i++)
arch_teardown_msi_irq(entry->irq + i);
}
}
#endif
static void msi_set_enable(struct pci_dev *dev, int pos, int enable)
{
u16 control;
BUG_ON(!pos);
pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
control &= ~PCI_MSI_FLAGS_ENABLE;
if (enable)
control |= PCI_MSI_FLAGS_ENABLE;
pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
}
static void msix_set_enable(struct pci_dev *dev, int enable)
{
int pos;
u16 control;
pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
if (pos) {
pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
control &= ~PCI_MSIX_FLAGS_ENABLE;
if (enable)
control |= PCI_MSIX_FLAGS_ENABLE;
pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
}
}
static inline __attribute_const__ u32 msi_mask(unsigned x)
{
/* Don't shift by >= width of type */
if (x >= 5)
return 0xffffffff;
return (1 << (1 << x)) - 1;
}
static inline __attribute_const__ u32 msi_capable_mask(u16 control)
{
return msi_mask((control >> 1) & 7);
}
static inline __attribute_const__ u32 msi_enabled_mask(u16 control)
{
return msi_mask((control >> 4) & 7);
}
/*
* PCI 2.3 does not specify mask bits for each MSI interrupt. Attempting to
* mask all MSI interrupts by clearing the MSI enable bit does not work
* reliably as devices without an INTx disable bit will then generate a
* level IRQ which will never be cleared.
*/
static u32 __msi_mask_irq(struct msi_desc *desc, u32 mask, u32 flag)
{
u32 mask_bits = desc->masked;
if (!desc->msi_attrib.maskbit)
return 0;
mask_bits &= ~mask;
mask_bits |= flag;
pci_write_config_dword(desc->dev, desc->mask_pos, mask_bits);
return mask_bits;
}
static void msi_mask_irq(struct msi_desc *desc, u32 mask, u32 flag)
{
desc->masked = __msi_mask_irq(desc, mask, flag);
}
/*
* This internal function does not flush PCI writes to the device.
* All users must ensure that they read from the device before either
* assuming that the device state is up to date, or returning out of this
* file. This saves a few milliseconds when initialising devices with lots
* of MSI-X interrupts.
*/
static u32 __msix_mask_irq(struct msi_desc *desc, u32 flag)
{
u32 mask_bits = desc->masked;
unsigned offset = desc->msi_attrib.entry_nr * PCI_MSIX_ENTRY_SIZE +
PCI_MSIX_ENTRY_VECTOR_CTRL;
mask_bits &= ~1;
mask_bits |= flag;
writel(mask_bits, desc->mask_base + offset);
return mask_bits;
}
static void msix_mask_irq(struct msi_desc *desc, u32 flag)
{
desc->masked = __msix_mask_irq(desc, flag);
}
static void msi_set_mask_bit(unsigned irq, u32 flag)
{
struct msi_desc *desc = get_irq_msi(irq);
if (desc->msi_attrib.is_msix) {
msix_mask_irq(desc, flag);
readl(desc->mask_base); /* Flush write to device */
} else {
unsigned offset = irq - desc->dev->irq;
msi_mask_irq(desc, 1 << offset, flag << offset);
}
}
void mask_msi_irq(unsigned int irq)
{
msi_set_mask_bit(irq, 1);
}
void unmask_msi_irq(unsigned int irq)
{
msi_set_mask_bit(irq, 0);
}
void read_msi_msg_desc(struct irq_desc *desc, struct msi_msg *msg)
{
struct msi_desc *entry = get_irq_desc_msi(desc);
BUG_ON(entry->dev->current_state != PCI_D0);
if (entry->msi_attrib.is_msix) {
void __iomem *base = entry->mask_base +
entry->msi_attrib.entry_nr * PCI_MSIX_ENTRY_SIZE;
msg->address_lo = readl(base + PCI_MSIX_ENTRY_LOWER_ADDR);
msg->address_hi = readl(base + PCI_MSIX_ENTRY_UPPER_ADDR);
msg->data = readl(base + PCI_MSIX_ENTRY_DATA);
} else {
struct pci_dev *dev = entry->dev;
int pos = entry->msi_attrib.pos;
u16 data;
pci_read_config_dword(dev, msi_lower_address_reg(pos),
&msg->address_lo);
if (entry->msi_attrib.is_64) {
pci_read_config_dword(dev, msi_upper_address_reg(pos),
&msg->address_hi);
pci_read_config_word(dev, msi_data_reg(pos, 1), &data);
} else {
msg->address_hi = 0;
pci_read_config_word(dev, msi_data_reg(pos, 0), &data);
}
msg->data = data;
}
}
void read_msi_msg(unsigned int irq, struct msi_msg *msg)
{
struct irq_desc *desc = irq_to_desc(irq);
read_msi_msg_desc(desc, msg);
}
void get_cached_msi_msg_desc(struct irq_desc *desc, struct msi_msg *msg)
{
struct msi_desc *entry = get_irq_desc_msi(desc);
/* Assert that the cache is valid, assuming that
* valid messages are not all-zeroes. */
BUG_ON(!(entry->msg.address_hi | entry->msg.address_lo |
entry->msg.data));
*msg = entry->msg;
}
void get_cached_msi_msg(unsigned int irq, struct msi_msg *msg)
{
struct irq_desc *desc = irq_to_desc(irq);
get_cached_msi_msg_desc(desc, msg);
}
void write_msi_msg_desc(struct irq_desc *desc, struct msi_msg *msg)
{
struct msi_desc *entry = get_irq_desc_msi(desc);
if (entry->dev->current_state != PCI_D0) {
/* Don't touch the hardware now */
} else if (entry->msi_attrib.is_msix) {
void __iomem *base;
base = entry->mask_base +
entry->msi_attrib.entry_nr * PCI_MSIX_ENTRY_SIZE;
writel(msg->address_lo, base + PCI_MSIX_ENTRY_LOWER_ADDR);
writel(msg->address_hi, base + PCI_MSIX_ENTRY_UPPER_ADDR);
writel(msg->data, base + PCI_MSIX_ENTRY_DATA);
} else {
struct pci_dev *dev = entry->dev;
int pos = entry->msi_attrib.pos;
u16 msgctl;
pci_read_config_word(dev, msi_control_reg(pos), &msgctl);
msgctl &= ~PCI_MSI_FLAGS_QSIZE;
msgctl |= entry->msi_attrib.multiple << 4;
pci_write_config_word(dev, msi_control_reg(pos), msgctl);
pci_write_config_dword(dev, msi_lower_address_reg(pos),
msg->address_lo);
if (entry->msi_attrib.is_64) {
pci_write_config_dword(dev, msi_upper_address_reg(pos),
msg->address_hi);
pci_write_config_word(dev, msi_data_reg(pos, 1),
msg->data);
} else {
pci_write_config_word(dev, msi_data_reg(pos, 0),
msg->data);
}
}
entry->msg = *msg;
}
void write_msi_msg(unsigned int irq, struct msi_msg *msg)
{
struct irq_desc *desc = irq_to_desc(irq);
write_msi_msg_desc(desc, msg);
}
static void free_msi_irqs(struct pci_dev *dev)
{
struct msi_desc *entry, *tmp;
list_for_each_entry(entry, &dev->msi_list, list) {
int i, nvec;
if (!entry->irq)
continue;
nvec = 1 << entry->msi_attrib.multiple;
for (i = 0; i < nvec; i++)
BUG_ON(irq_has_action(entry->irq + i));
}
arch_teardown_msi_irqs(dev);
list_for_each_entry_safe(entry, tmp, &dev->msi_list, list) {
if (entry->msi_attrib.is_msix) {
if (list_is_last(&entry->list, &dev->msi_list))
iounmap(entry->mask_base);
}
list_del(&entry->list);
kfree(entry);
}
}
static struct msi_desc *alloc_msi_entry(struct pci_dev *dev)
{
struct msi_desc *desc = kzalloc(sizeof(*desc), GFP_KERNEL);
if (!desc)
return NULL;
INIT_LIST_HEAD(&desc->list);
desc->dev = dev;
return desc;
}
static void pci_intx_for_msi(struct pci_dev *dev, int enable)
{
if (!(dev->dev_flags & PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG))
pci_intx(dev, enable);
}
static void __pci_restore_msi_state(struct pci_dev *dev)
{
int pos;
u16 control;
struct msi_desc *entry;
if (!dev->msi_enabled)
return;
entry = get_irq_msi(dev->irq);
pos = entry->msi_attrib.pos;
pci_intx_for_msi(dev, 0);
msi_set_enable(dev, pos, 0);
write_msi_msg(dev->irq, &entry->msg);
pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
msi_mask_irq(entry, msi_capable_mask(control), entry->masked);
control &= ~PCI_MSI_FLAGS_QSIZE;
control |= (entry->msi_attrib.multiple << 4) | PCI_MSI_FLAGS_ENABLE;
pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
}
static void __pci_restore_msix_state(struct pci_dev *dev)
{
int pos;
struct msi_desc *entry;
u16 control;
if (!dev->msix_enabled)
return;
BUG_ON(list_empty(&dev->msi_list));
entry = list_first_entry(&dev->msi_list, struct msi_desc, list);
pos = entry->msi_attrib.pos;
pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
/* route the table */
pci_intx_for_msi(dev, 0);
control |= PCI_MSIX_FLAGS_ENABLE | PCI_MSIX_FLAGS_MASKALL;
pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
list_for_each_entry(entry, &dev->msi_list, list) {
write_msi_msg(entry->irq, &entry->msg);
msix_mask_irq(entry, entry->masked);
}
control &= ~PCI_MSIX_FLAGS_MASKALL;
pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
}
void pci_restore_msi_state(struct pci_dev *dev)
{
__pci_restore_msi_state(dev);
__pci_restore_msix_state(dev);
}
EXPORT_SYMBOL_GPL(pci_restore_msi_state);
/**
* msi_capability_init - configure device's MSI capability structure
* @dev: pointer to the pci_dev data structure of MSI device function
* @nvec: number of interrupts to allocate
*
* Setup the MSI capability structure of the device with the requested
* number of interrupts. A return value of zero indicates the successful
* setup of an entry with the new MSI irq. A negative return value indicates
* an error, and a positive return value indicates the number of interrupts
* which could have been allocated.
*/
static int msi_capability_init(struct pci_dev *dev, int nvec)
{
struct msi_desc *entry;
int pos, ret;
u16 control;
unsigned mask;
pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
msi_set_enable(dev, pos, 0); /* Disable MSI during set up */
pci_read_config_word(dev, msi_control_reg(pos), &control);
/* MSI Entry Initialization */
entry = alloc_msi_entry(dev);
if (!entry)
return -ENOMEM;
entry->msi_attrib.is_msix = 0;
entry->msi_attrib.is_64 = is_64bit_address(control);
entry->msi_attrib.entry_nr = 0;
entry->msi_attrib.maskbit = is_mask_bit_support(control);
entry->msi_attrib.default_irq = dev->irq; /* Save IOAPIC IRQ */
entry->msi_attrib.pos = pos;
entry->mask_pos = msi_mask_reg(pos, entry->msi_attrib.is_64);
/* All MSIs are unmasked by default, Mask them all */
if (entry->msi_attrib.maskbit)
pci_read_config_dword(dev, entry->mask_pos, &entry->masked);
mask = msi_capable_mask(control);
msi_mask_irq(entry, mask, mask);
list_add_tail(&entry->list, &dev->msi_list);
/* Configure MSI capability structure */
ret = arch_setup_msi_irqs(dev, nvec, PCI_CAP_ID_MSI);
if (ret) {
msi_mask_irq(entry, mask, ~mask);
free_msi_irqs(dev);
return ret;
}
/* Set MSI enabled bits */
pci_intx_for_msi(dev, 0);
msi_set_enable(dev, pos, 1);
dev->msi_enabled = 1;
dev->irq = entry->irq;
return 0;
}
static void __iomem *msix_map_region(struct pci_dev *dev, unsigned pos,
unsigned nr_entries)
{
unsigned long phys_addr;
u32 table_offset;
u8 bir;
pci_read_config_dword(dev, msix_table_offset_reg(pos), &table_offset);
bir = (u8)(table_offset & PCI_MSIX_FLAGS_BIRMASK);
table_offset &= ~PCI_MSIX_FLAGS_BIRMASK;
phys_addr = pci_resource_start(dev, bir) + table_offset;
return ioremap_nocache(phys_addr, nr_entries * PCI_MSIX_ENTRY_SIZE);
}
static int msix_setup_entries(struct pci_dev *dev, unsigned pos,
void __iomem *base, struct msix_entry *entries,
int nvec)
{
struct msi_desc *entry;
int i;
for (i = 0; i < nvec; i++) {
entry = alloc_msi_entry(dev);
if (!entry) {
if (!i)
iounmap(base);
else
free_msi_irqs(dev);
/* No enough memory. Don't try again */
return -ENOMEM;
}
entry->msi_attrib.is_msix = 1;
entry->msi_attrib.is_64 = 1;
entry->msi_attrib.entry_nr = entries[i].entry;
entry->msi_attrib.default_irq = dev->irq;
entry->msi_attrib.pos = pos;
entry->mask_base = base;
list_add_tail(&entry->list, &dev->msi_list);
}
return 0;
}
static void msix_program_entries(struct pci_dev *dev,
struct msix_entry *entries)
{
struct msi_desc *entry;
int i = 0;
list_for_each_entry(entry, &dev->msi_list, list) {
int offset = entries[i].entry * PCI_MSIX_ENTRY_SIZE +
PCI_MSIX_ENTRY_VECTOR_CTRL;
entries[i].vector = entry->irq;
set_irq_msi(entry->irq, entry);
entry->masked = readl(entry->mask_base + offset);
msix_mask_irq(entry, 1);
i++;
}
}
/**
* msix_capability_init - configure device's MSI-X capability
* @dev: pointer to the pci_dev data structure of MSI-X device function
* @entries: pointer to an array of struct msix_entry entries
* @nvec: number of @entries
*
* Setup the MSI-X capability structure of device function with a
* single MSI-X irq. A return of zero indicates the successful setup of
* requested MSI-X entries with allocated irqs or non-zero for otherwise.
**/
static int msix_capability_init(struct pci_dev *dev,
struct msix_entry *entries, int nvec)
{
int pos, ret;
u16 control;
void __iomem *base;
pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
/* Ensure MSI-X is disabled while it is set up */
control &= ~PCI_MSIX_FLAGS_ENABLE;
pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
/* Request & Map MSI-X table region */
base = msix_map_region(dev, pos, multi_msix_capable(control));
if (!base)
return -ENOMEM;
ret = msix_setup_entries(dev, pos, base, entries, nvec);
if (ret)
return ret;
ret = arch_setup_msi_irqs(dev, nvec, PCI_CAP_ID_MSIX);
if (ret)
goto error;
/*
* Some devices require MSI-X to be enabled before we can touch the
* MSI-X registers. We need to mask all the vectors to prevent
* interrupts coming in before they're fully set up.
*/
control |= PCI_MSIX_FLAGS_MASKALL | PCI_MSIX_FLAGS_ENABLE;
pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
msix_program_entries(dev, entries);
/* Set MSI-X enabled bits and unmask the function */
pci_intx_for_msi(dev, 0);
dev->msix_enabled = 1;
control &= ~PCI_MSIX_FLAGS_MASKALL;
pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
return 0;
error:
if (ret < 0) {
/*
* If we had some success, report the number of irqs
* we succeeded in setting up.
*/
struct msi_desc *entry;
int avail = 0;
list_for_each_entry(entry, &dev->msi_list, list) {
if (entry->irq != 0)
avail++;
}
if (avail != 0)
ret = avail;
}
free_msi_irqs(dev);
return ret;
}
/**
* pci_msi_check_device - check whether MSI may be enabled on a device
* @dev: pointer to the pci_dev data structure of MSI device function
* @nvec: how many MSIs have been requested ?
* @type: are we checking for MSI or MSI-X ?
*
* Look at global flags, the device itself, and its parent busses
* to determine if MSI/-X are supported for the device. If MSI/-X is
* supported return 0, else return an error code.
**/
static int pci_msi_check_device(struct pci_dev *dev, int nvec, int type)
{
struct pci_bus *bus;
int ret;
/* MSI must be globally enabled and supported by the device */
if (!pci_msi_enable || !dev || dev->no_msi)
return -EINVAL;
/*
* You can't ask to have 0 or less MSIs configured.
* a) it's stupid ..
* b) the list manipulation code assumes nvec >= 1.
*/
if (nvec < 1)
return -ERANGE;
/*
* Any bridge which does NOT route MSI transactions from its
* secondary bus to its primary bus must set NO_MSI flag on
* the secondary pci_bus.
* We expect only arch-specific PCI host bus controller driver
* or quirks for specific PCI bridges to be setting NO_MSI.
*/
for (bus = dev->bus; bus; bus = bus->parent)
if (bus->bus_flags & PCI_BUS_FLAGS_NO_MSI)
return -EINVAL;
ret = arch_msi_check_device(dev, nvec, type);
if (ret)
return ret;
if (!pci_find_capability(dev, type))
return -EINVAL;
return 0;
}
/**
* pci_enable_msi_block - configure device's MSI capability structure
* @dev: device to configure
* @nvec: number of interrupts to configure
*
* Allocate IRQs for a device with the MSI capability.
* This function returns a negative errno if an error occurs. If it
* is unable to allocate the number of interrupts requested, it returns
* the number of interrupts it might be able to allocate. If it successfully
* allocates at least the number of interrupts requested, it returns 0 and
* updates the @dev's irq member to the lowest new interrupt number; the
* other interrupt numbers allocated to this device are consecutive.
*/
int pci_enable_msi_block(struct pci_dev *dev, unsigned int nvec)
{
int status, pos, maxvec;
u16 msgctl;
pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
if (!pos)
return -EINVAL;
pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &msgctl);
maxvec = 1 << ((msgctl & PCI_MSI_FLAGS_QMASK) >> 1);
if (nvec > maxvec)
return maxvec;
status = pci_msi_check_device(dev, nvec, PCI_CAP_ID_MSI);
if (status)
return status;
WARN_ON(!!dev->msi_enabled);
/* Check whether driver already requested MSI-X irqs */
if (dev->msix_enabled) {
dev_info(&dev->dev, "can't enable MSI "
"(MSI-X already enabled)\n");
return -EINVAL;
}
status = msi_capability_init(dev, nvec);
return status;
}
EXPORT_SYMBOL(pci_enable_msi_block);
void pci_msi_shutdown(struct pci_dev *dev)
{
struct msi_desc *desc;
u32 mask;
u16 ctrl;
unsigned pos;
if (!pci_msi_enable || !dev || !dev->msi_enabled)
return;
BUG_ON(list_empty(&dev->msi_list));
desc = list_first_entry(&dev->msi_list, struct msi_desc, list);
pos = desc->msi_attrib.pos;
msi_set_enable(dev, pos, 0);
pci_intx_for_msi(dev, 1);
dev->msi_enabled = 0;
/* Return the device with MSI unmasked as initial states */
pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &ctrl);
mask = msi_capable_mask(ctrl);
/* Keep cached state to be restored */
__msi_mask_irq(desc, mask, ~mask);
/* Restore dev->irq to its default pin-assertion irq */
dev->irq = desc->msi_attrib.default_irq;
}
void pci_disable_msi(struct pci_dev *dev)
{
if (!pci_msi_enable || !dev || !dev->msi_enabled)
return;
pci_msi_shutdown(dev);
free_msi_irqs(dev);
}
EXPORT_SYMBOL(pci_disable_msi);
/**
* pci_msix_table_size - return the number of device's MSI-X table entries
* @dev: pointer to the pci_dev data structure of MSI-X device function
*/
int pci_msix_table_size(struct pci_dev *dev)
{
int pos;
u16 control;
pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
if (!pos)
return 0;
pci_read_config_word(dev, msi_control_reg(pos), &control);
return multi_msix_capable(control);
}
/**
* pci_enable_msix - configure device's MSI-X capability structure
* @dev: pointer to the pci_dev data structure of MSI-X device function
* @entries: pointer to an array of MSI-X entries
* @nvec: number of MSI-X irqs requested for allocation by device driver
*
* Setup the MSI-X capability structure of device function with the number
* of requested irqs upon its software driver call to request for
* MSI-X mode enabled on its hardware device function. A return of zero
* indicates the successful configuration of MSI-X capability structure
* with new allocated MSI-X irqs. A return of < 0 indicates a failure.
* Or a return of > 0 indicates that driver request is exceeding the number
* of irqs or MSI-X vectors available. Driver should use the returned value to
* re-send its request.
**/
int pci_enable_msix(struct pci_dev *dev, struct msix_entry *entries, int nvec)
{
int status, nr_entries;
int i, j;
if (!entries)
return -EINVAL;
status = pci_msi_check_device(dev, nvec, PCI_CAP_ID_MSIX);
if (status)
return status;
nr_entries = pci_msix_table_size(dev);
if (nvec > nr_entries)
return nr_entries;
/* Check for any invalid entries */
for (i = 0; i < nvec; i++) {
if (entries[i].entry >= nr_entries)
return -EINVAL; /* invalid entry */
for (j = i + 1; j < nvec; j++) {
if (entries[i].entry == entries[j].entry)
return -EINVAL; /* duplicate entry */
}
}
WARN_ON(!!dev->msix_enabled);
/* Check whether driver already requested for MSI irq */
if (dev->msi_enabled) {
dev_info(&dev->dev, "can't enable MSI-X "
"(MSI IRQ already assigned)\n");
return -EINVAL;
}
status = msix_capability_init(dev, entries, nvec);
return status;
}
EXPORT_SYMBOL(pci_enable_msix);
void pci_msix_shutdown(struct pci_dev *dev)
{
struct msi_desc *entry;
if (!pci_msi_enable || !dev || !dev->msix_enabled)
return;
/* Return the device with MSI-X masked as initial states */
list_for_each_entry(entry, &dev->msi_list, list) {
/* Keep cached states to be restored */
__msix_mask_irq(entry, 1);
}
msix_set_enable(dev, 0);
pci_intx_for_msi(dev, 1);
dev->msix_enabled = 0;
}
void pci_disable_msix(struct pci_dev *dev)
{
if (!pci_msi_enable || !dev || !dev->msix_enabled)
return;
pci_msix_shutdown(dev);
free_msi_irqs(dev);
}
EXPORT_SYMBOL(pci_disable_msix);
/**
* msi_remove_pci_irq_vectors - reclaim MSI(X) irqs to unused state
* @dev: pointer to the pci_dev data structure of MSI(X) device function
*
* Being called during hotplug remove, from which the device function
* is hot-removed. All previous assigned MSI/MSI-X irqs, if
* allocated for this device function, are reclaimed to unused state,
* which may be used later on.
**/
void msi_remove_pci_irq_vectors(struct pci_dev *dev)
{
if (!pci_msi_enable || !dev)
return;
if (dev->msi_enabled || dev->msix_enabled)
free_msi_irqs(dev);
}
void pci_no_msi(void)
{
pci_msi_enable = 0;
}
/**
* pci_msi_enabled - is MSI enabled?
*
* Returns true if MSI has not been disabled by the command-line option
* pci=nomsi.
**/
int pci_msi_enabled(void)
{
return pci_msi_enable;
}
EXPORT_SYMBOL(pci_msi_enabled);
void pci_msi_init_pci_dev(struct pci_dev *dev)
{
INIT_LIST_HEAD(&dev->msi_list);
}