blob: 68a1c9b91e74d199fbb6a4cce1a604ef09eea230 [file] [log] [blame]
#include <linux/slab.h>
#include "qlge.h"
/* Read a NIC register from the alternate function. */
static u32 ql_read_other_func_reg(struct ql_adapter *qdev,
u32 reg)
{
u32 register_to_read;
u32 reg_val;
unsigned int status = 0;
register_to_read = MPI_NIC_REG_BLOCK
| MPI_NIC_READ
| (qdev->alt_func << MPI_NIC_FUNCTION_SHIFT)
| reg;
status = ql_read_mpi_reg(qdev, register_to_read, &reg_val);
if (status != 0)
return 0xffffffff;
return reg_val;
}
/* Write a NIC register from the alternate function. */
static int ql_write_other_func_reg(struct ql_adapter *qdev,
u32 reg, u32 reg_val)
{
u32 register_to_read;
int status = 0;
register_to_read = MPI_NIC_REG_BLOCK
| MPI_NIC_READ
| (qdev->alt_func << MPI_NIC_FUNCTION_SHIFT)
| reg;
status = ql_write_mpi_reg(qdev, register_to_read, reg_val);
return status;
}
static int ql_wait_other_func_reg_rdy(struct ql_adapter *qdev, u32 reg,
u32 bit, u32 err_bit)
{
u32 temp;
int count = 10;
while (count) {
temp = ql_read_other_func_reg(qdev, reg);
/* check for errors */
if (temp & err_bit)
return -1;
else if (temp & bit)
return 0;
mdelay(10);
count--;
}
return -1;
}
static int ql_read_other_func_serdes_reg(struct ql_adapter *qdev, u32 reg,
u32 *data)
{
int status;
/* wait for reg to come ready */
status = ql_wait_other_func_reg_rdy(qdev, XG_SERDES_ADDR / 4,
XG_SERDES_ADDR_RDY, 0);
if (status)
goto exit;
/* set up for reg read */
ql_write_other_func_reg(qdev, XG_SERDES_ADDR/4, reg | PROC_ADDR_R);
/* wait for reg to come ready */
status = ql_wait_other_func_reg_rdy(qdev, XG_SERDES_ADDR / 4,
XG_SERDES_ADDR_RDY, 0);
if (status)
goto exit;
/* get the data */
*data = ql_read_other_func_reg(qdev, (XG_SERDES_DATA / 4));
exit:
return status;
}
/* Read out the SERDES registers */
static int ql_read_serdes_reg(struct ql_adapter *qdev, u32 reg, u32 * data)
{
int status;
/* wait for reg to come ready */
status = ql_wait_reg_rdy(qdev, XG_SERDES_ADDR, XG_SERDES_ADDR_RDY, 0);
if (status)
goto exit;
/* set up for reg read */
ql_write32(qdev, XG_SERDES_ADDR, reg | PROC_ADDR_R);
/* wait for reg to come ready */
status = ql_wait_reg_rdy(qdev, XG_SERDES_ADDR, XG_SERDES_ADDR_RDY, 0);
if (status)
goto exit;
/* get the data */
*data = ql_read32(qdev, XG_SERDES_DATA);
exit:
return status;
}
static void ql_get_both_serdes(struct ql_adapter *qdev, u32 addr,
u32 *direct_ptr, u32 *indirect_ptr,
unsigned int direct_valid, unsigned int indirect_valid)
{
unsigned int status;
status = 1;
if (direct_valid)
status = ql_read_serdes_reg(qdev, addr, direct_ptr);
/* Dead fill any failures or invalids. */
if (status)
*direct_ptr = 0xDEADBEEF;
status = 1;
if (indirect_valid)
status = ql_read_other_func_serdes_reg(
qdev, addr, indirect_ptr);
/* Dead fill any failures or invalids. */
if (status)
*indirect_ptr = 0xDEADBEEF;
}
static int ql_get_serdes_regs(struct ql_adapter *qdev,
struct ql_mpi_coredump *mpi_coredump)
{
int status;
unsigned int xfi_direct_valid, xfi_indirect_valid, xaui_direct_valid;
unsigned int xaui_indirect_valid, i;
u32 *direct_ptr, temp;
u32 *indirect_ptr;
xfi_direct_valid = xfi_indirect_valid = 0;
xaui_direct_valid = xaui_indirect_valid = 1;
/* The XAUI needs to be read out per port */
if (qdev->func & 1) {
/* We are NIC 2 */
status = ql_read_other_func_serdes_reg(qdev,
XG_SERDES_XAUI_HSS_PCS_START, &temp);
if (status)
temp = XG_SERDES_ADDR_XAUI_PWR_DOWN;
if ((temp & XG_SERDES_ADDR_XAUI_PWR_DOWN) ==
XG_SERDES_ADDR_XAUI_PWR_DOWN)
xaui_indirect_valid = 0;
status = ql_read_serdes_reg(qdev,
XG_SERDES_XAUI_HSS_PCS_START, &temp);
if (status)
temp = XG_SERDES_ADDR_XAUI_PWR_DOWN;
if ((temp & XG_SERDES_ADDR_XAUI_PWR_DOWN) ==
XG_SERDES_ADDR_XAUI_PWR_DOWN)
xaui_direct_valid = 0;
} else {
/* We are NIC 1 */
status = ql_read_other_func_serdes_reg(qdev,
XG_SERDES_XAUI_HSS_PCS_START, &temp);
if (status)
temp = XG_SERDES_ADDR_XAUI_PWR_DOWN;
if ((temp & XG_SERDES_ADDR_XAUI_PWR_DOWN) ==
XG_SERDES_ADDR_XAUI_PWR_DOWN)
xaui_indirect_valid = 0;
status = ql_read_serdes_reg(qdev,
XG_SERDES_XAUI_HSS_PCS_START, &temp);
if (status)
temp = XG_SERDES_ADDR_XAUI_PWR_DOWN;
if ((temp & XG_SERDES_ADDR_XAUI_PWR_DOWN) ==
XG_SERDES_ADDR_XAUI_PWR_DOWN)
xaui_direct_valid = 0;
}
/*
* XFI register is shared so only need to read one
* functions and then check the bits.
*/
status = ql_read_serdes_reg(qdev, XG_SERDES_ADDR_STS, &temp);
if (status)
temp = 0;
if ((temp & XG_SERDES_ADDR_XFI1_PWR_UP) ==
XG_SERDES_ADDR_XFI1_PWR_UP) {
/* now see if i'm NIC 1 or NIC 2 */
if (qdev->func & 1)
/* I'm NIC 2, so the indirect (NIC1) xfi is up. */
xfi_indirect_valid = 1;
else
xfi_direct_valid = 1;
}
if ((temp & XG_SERDES_ADDR_XFI2_PWR_UP) ==
XG_SERDES_ADDR_XFI2_PWR_UP) {
/* now see if i'm NIC 1 or NIC 2 */
if (qdev->func & 1)
/* I'm NIC 2, so the indirect (NIC1) xfi is up. */
xfi_direct_valid = 1;
else
xfi_indirect_valid = 1;
}
/* Get XAUI_AN register block. */
if (qdev->func & 1) {
/* Function 2 is direct */
direct_ptr = mpi_coredump->serdes2_xaui_an;
indirect_ptr = mpi_coredump->serdes_xaui_an;
} else {
/* Function 1 is direct */
direct_ptr = mpi_coredump->serdes_xaui_an;
indirect_ptr = mpi_coredump->serdes2_xaui_an;
}
for (i = 0; i <= 0x000000034; i += 4, direct_ptr++, indirect_ptr++)
ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr,
xaui_direct_valid, xaui_indirect_valid);
/* Get XAUI_HSS_PCS register block. */
if (qdev->func & 1) {
direct_ptr =
mpi_coredump->serdes2_xaui_hss_pcs;
indirect_ptr =
mpi_coredump->serdes_xaui_hss_pcs;
} else {
direct_ptr =
mpi_coredump->serdes_xaui_hss_pcs;
indirect_ptr =
mpi_coredump->serdes2_xaui_hss_pcs;
}
for (i = 0x800; i <= 0x880; i += 4, direct_ptr++, indirect_ptr++)
ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr,
xaui_direct_valid, xaui_indirect_valid);
/* Get XAUI_XFI_AN register block. */
if (qdev->func & 1) {
direct_ptr = mpi_coredump->serdes2_xfi_an;
indirect_ptr = mpi_coredump->serdes_xfi_an;
} else {
direct_ptr = mpi_coredump->serdes_xfi_an;
indirect_ptr = mpi_coredump->serdes2_xfi_an;
}
for (i = 0x1000; i <= 0x1034; i += 4, direct_ptr++, indirect_ptr++)
ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr,
xfi_direct_valid, xfi_indirect_valid);
/* Get XAUI_XFI_TRAIN register block. */
if (qdev->func & 1) {
direct_ptr = mpi_coredump->serdes2_xfi_train;
indirect_ptr =
mpi_coredump->serdes_xfi_train;
} else {
direct_ptr = mpi_coredump->serdes_xfi_train;
indirect_ptr =
mpi_coredump->serdes2_xfi_train;
}
for (i = 0x1050; i <= 0x107c; i += 4, direct_ptr++, indirect_ptr++)
ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr,
xfi_direct_valid, xfi_indirect_valid);
/* Get XAUI_XFI_HSS_PCS register block. */
if (qdev->func & 1) {
direct_ptr =
mpi_coredump->serdes2_xfi_hss_pcs;
indirect_ptr =
mpi_coredump->serdes_xfi_hss_pcs;
} else {
direct_ptr =
mpi_coredump->serdes_xfi_hss_pcs;
indirect_ptr =
mpi_coredump->serdes2_xfi_hss_pcs;
}
for (i = 0x1800; i <= 0x1838; i += 4, direct_ptr++, indirect_ptr++)
ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr,
xfi_direct_valid, xfi_indirect_valid);
/* Get XAUI_XFI_HSS_TX register block. */
if (qdev->func & 1) {
direct_ptr =
mpi_coredump->serdes2_xfi_hss_tx;
indirect_ptr =
mpi_coredump->serdes_xfi_hss_tx;
} else {
direct_ptr = mpi_coredump->serdes_xfi_hss_tx;
indirect_ptr =
mpi_coredump->serdes2_xfi_hss_tx;
}
for (i = 0x1c00; i <= 0x1c1f; i++, direct_ptr++, indirect_ptr++)
ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr,
xfi_direct_valid, xfi_indirect_valid);
/* Get XAUI_XFI_HSS_RX register block. */
if (qdev->func & 1) {
direct_ptr =
mpi_coredump->serdes2_xfi_hss_rx;
indirect_ptr =
mpi_coredump->serdes_xfi_hss_rx;
} else {
direct_ptr = mpi_coredump->serdes_xfi_hss_rx;
indirect_ptr =
mpi_coredump->serdes2_xfi_hss_rx;
}
for (i = 0x1c40; i <= 0x1c5f; i++, direct_ptr++, indirect_ptr++)
ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr,
xfi_direct_valid, xfi_indirect_valid);
/* Get XAUI_XFI_HSS_PLL register block. */
if (qdev->func & 1) {
direct_ptr =
mpi_coredump->serdes2_xfi_hss_pll;
indirect_ptr =
mpi_coredump->serdes_xfi_hss_pll;
} else {
direct_ptr =
mpi_coredump->serdes_xfi_hss_pll;
indirect_ptr =
mpi_coredump->serdes2_xfi_hss_pll;
}
for (i = 0x1e00; i <= 0x1e1f; i++, direct_ptr++, indirect_ptr++)
ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr,
xfi_direct_valid, xfi_indirect_valid);
return 0;
}
static int ql_read_other_func_xgmac_reg(struct ql_adapter *qdev, u32 reg,
u32 *data)
{
int status = 0;
/* wait for reg to come ready */
status = ql_wait_other_func_reg_rdy(qdev, XGMAC_ADDR / 4,
XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
if (status)
goto exit;
/* set up for reg read */
ql_write_other_func_reg(qdev, XGMAC_ADDR / 4, reg | XGMAC_ADDR_R);
/* wait for reg to come ready */
status = ql_wait_other_func_reg_rdy(qdev, XGMAC_ADDR / 4,
XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
if (status)
goto exit;
/* get the data */
*data = ql_read_other_func_reg(qdev, XGMAC_DATA / 4);
exit:
return status;
}
/* Read the 400 xgmac control/statistics registers
* skipping unused locations.
*/
static int ql_get_xgmac_regs(struct ql_adapter *qdev, u32 * buf,
unsigned int other_function)
{
int status = 0;
int i;
for (i = PAUSE_SRC_LO; i < XGMAC_REGISTER_END; i += 4, buf++) {
/* We're reading 400 xgmac registers, but we filter out
* serveral locations that are non-responsive to reads.
*/
if ((i == 0x00000114) ||
(i == 0x00000118) ||
(i == 0x0000013c) ||
(i == 0x00000140) ||
(i > 0x00000150 && i < 0x000001fc) ||
(i > 0x00000278 && i < 0x000002a0) ||
(i > 0x000002c0 && i < 0x000002cf) ||
(i > 0x000002dc && i < 0x000002f0) ||
(i > 0x000003c8 && i < 0x00000400) ||
(i > 0x00000400 && i < 0x00000410) ||
(i > 0x00000410 && i < 0x00000420) ||
(i > 0x00000420 && i < 0x00000430) ||
(i > 0x00000430 && i < 0x00000440) ||
(i > 0x00000440 && i < 0x00000450) ||
(i > 0x00000450 && i < 0x00000500) ||
(i > 0x0000054c && i < 0x00000568) ||
(i > 0x000005c8 && i < 0x00000600)) {
if (other_function)
status =
ql_read_other_func_xgmac_reg(qdev, i, buf);
else
status = ql_read_xgmac_reg(qdev, i, buf);
if (status)
*buf = 0xdeadbeef;
break;
}
}
return status;
}
static int ql_get_ets_regs(struct ql_adapter *qdev, u32 * buf)
{
int status = 0;
int i;
for (i = 0; i < 8; i++, buf++) {
ql_write32(qdev, NIC_ETS, i << 29 | 0x08000000);
*buf = ql_read32(qdev, NIC_ETS);
}
for (i = 0; i < 2; i++, buf++) {
ql_write32(qdev, CNA_ETS, i << 29 | 0x08000000);
*buf = ql_read32(qdev, CNA_ETS);
}
return status;
}
static void ql_get_intr_states(struct ql_adapter *qdev, u32 * buf)
{
int i;
for (i = 0; i < qdev->rx_ring_count; i++, buf++) {
ql_write32(qdev, INTR_EN,
qdev->intr_context[i].intr_read_mask);
*buf = ql_read32(qdev, INTR_EN);
}
}
static int ql_get_cam_entries(struct ql_adapter *qdev, u32 * buf)
{
int i, status;
u32 value[3];
status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
if (status)
return status;
for (i = 0; i < 16; i++) {
status = ql_get_mac_addr_reg(qdev,
MAC_ADDR_TYPE_CAM_MAC, i, value);
if (status) {
netif_err(qdev, drv, qdev->ndev,
"Failed read of mac index register.\n");
goto err;
}
*buf++ = value[0]; /* lower MAC address */
*buf++ = value[1]; /* upper MAC address */
*buf++ = value[2]; /* output */
}
for (i = 0; i < 32; i++) {
status = ql_get_mac_addr_reg(qdev,
MAC_ADDR_TYPE_MULTI_MAC, i, value);
if (status) {
netif_err(qdev, drv, qdev->ndev,
"Failed read of mac index register.\n");
goto err;
}
*buf++ = value[0]; /* lower Mcast address */
*buf++ = value[1]; /* upper Mcast address */
}
err:
ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
return status;
}
static int ql_get_routing_entries(struct ql_adapter *qdev, u32 * buf)
{
int status;
u32 value, i;
status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
if (status)
return status;
for (i = 0; i < 16; i++) {
status = ql_get_routing_reg(qdev, i, &value);
if (status) {
netif_err(qdev, drv, qdev->ndev,
"Failed read of routing index register.\n");
goto err;
} else {
*buf++ = value;
}
}
err:
ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
return status;
}
/* Read the MPI Processor shadow registers */
static int ql_get_mpi_shadow_regs(struct ql_adapter *qdev, u32 * buf)
{
u32 i;
int status;
for (i = 0; i < MPI_CORE_SH_REGS_CNT; i++, buf++) {
status = ql_write_mpi_reg(qdev, RISC_124,
(SHADOW_OFFSET | i << SHADOW_REG_SHIFT));
if (status)
goto end;
status = ql_read_mpi_reg(qdev, RISC_127, buf);
if (status)
goto end;
}
end:
return status;
}
/* Read the MPI Processor core registers */
static int ql_get_mpi_regs(struct ql_adapter *qdev, u32 * buf,
u32 offset, u32 count)
{
int i, status = 0;
for (i = 0; i < count; i++, buf++) {
status = ql_read_mpi_reg(qdev, offset + i, buf);
if (status)
return status;
}
return status;
}
/* Read the ASIC probe dump */
static unsigned int *ql_get_probe(struct ql_adapter *qdev, u32 clock,
u32 valid, u32 *buf)
{
u32 module, mux_sel, probe, lo_val, hi_val;
for (module = 0; module < PRB_MX_ADDR_MAX_MODS; module++) {
if (!((valid >> module) & 1))
continue;
for (mux_sel = 0; mux_sel < PRB_MX_ADDR_MAX_MUX; mux_sel++) {
probe = clock
| PRB_MX_ADDR_ARE
| mux_sel
| (module << PRB_MX_ADDR_MOD_SEL_SHIFT);
ql_write32(qdev, PRB_MX_ADDR, probe);
lo_val = ql_read32(qdev, PRB_MX_DATA);
if (mux_sel == 0) {
*buf = probe;
buf++;
}
probe |= PRB_MX_ADDR_UP;
ql_write32(qdev, PRB_MX_ADDR, probe);
hi_val = ql_read32(qdev, PRB_MX_DATA);
*buf = lo_val;
buf++;
*buf = hi_val;
buf++;
}
}
return buf;
}
static int ql_get_probe_dump(struct ql_adapter *qdev, unsigned int *buf)
{
/* First we have to enable the probe mux */
ql_write_mpi_reg(qdev, MPI_TEST_FUNC_PRB_CTL, MPI_TEST_FUNC_PRB_EN);
buf = ql_get_probe(qdev, PRB_MX_ADDR_SYS_CLOCK,
PRB_MX_ADDR_VALID_SYS_MOD, buf);
buf = ql_get_probe(qdev, PRB_MX_ADDR_PCI_CLOCK,
PRB_MX_ADDR_VALID_PCI_MOD, buf);
buf = ql_get_probe(qdev, PRB_MX_ADDR_XGM_CLOCK,
PRB_MX_ADDR_VALID_XGM_MOD, buf);
buf = ql_get_probe(qdev, PRB_MX_ADDR_FC_CLOCK,
PRB_MX_ADDR_VALID_FC_MOD, buf);
return 0;
}
/* Read out the routing index registers */
static int ql_get_routing_index_registers(struct ql_adapter *qdev, u32 *buf)
{
int status;
u32 type, index, index_max;
u32 result_index;
u32 result_data;
u32 val;
status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
if (status)
return status;
for (type = 0; type < 4; type++) {
if (type < 2)
index_max = 8;
else
index_max = 16;
for (index = 0; index < index_max; index++) {
val = RT_IDX_RS
| (type << RT_IDX_TYPE_SHIFT)
| (index << RT_IDX_IDX_SHIFT);
ql_write32(qdev, RT_IDX, val);
result_index = 0;
while ((result_index & RT_IDX_MR) == 0)
result_index = ql_read32(qdev, RT_IDX);
result_data = ql_read32(qdev, RT_DATA);
*buf = type;
buf++;
*buf = index;
buf++;
*buf = result_index;
buf++;
*buf = result_data;
buf++;
}
}
ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
return status;
}
/* Read out the MAC protocol registers */
static void ql_get_mac_protocol_registers(struct ql_adapter *qdev, u32 *buf)
{
u32 result_index, result_data;
u32 type;
u32 index;
u32 offset;
u32 val;
u32 initial_val = MAC_ADDR_RS;
u32 max_index;
u32 max_offset;
for (type = 0; type < MAC_ADDR_TYPE_COUNT; type++) {
switch (type) {
case 0: /* CAM */
initial_val |= MAC_ADDR_ADR;
max_index = MAC_ADDR_MAX_CAM_ENTRIES;
max_offset = MAC_ADDR_MAX_CAM_WCOUNT;
break;
case 1: /* Multicast MAC Address */
max_index = MAC_ADDR_MAX_CAM_WCOUNT;
max_offset = MAC_ADDR_MAX_CAM_WCOUNT;
break;
case 2: /* VLAN filter mask */
case 3: /* MC filter mask */
max_index = MAC_ADDR_MAX_CAM_WCOUNT;
max_offset = MAC_ADDR_MAX_CAM_WCOUNT;
break;
case 4: /* FC MAC addresses */
max_index = MAC_ADDR_MAX_FC_MAC_ENTRIES;
max_offset = MAC_ADDR_MAX_FC_MAC_WCOUNT;
break;
case 5: /* Mgmt MAC addresses */
max_index = MAC_ADDR_MAX_MGMT_MAC_ENTRIES;
max_offset = MAC_ADDR_MAX_MGMT_MAC_WCOUNT;
break;
case 6: /* Mgmt VLAN addresses */
max_index = MAC_ADDR_MAX_MGMT_VLAN_ENTRIES;
max_offset = MAC_ADDR_MAX_MGMT_VLAN_WCOUNT;
break;
case 7: /* Mgmt IPv4 address */
max_index = MAC_ADDR_MAX_MGMT_V4_ENTRIES;
max_offset = MAC_ADDR_MAX_MGMT_V4_WCOUNT;
break;
case 8: /* Mgmt IPv6 address */
max_index = MAC_ADDR_MAX_MGMT_V6_ENTRIES;
max_offset = MAC_ADDR_MAX_MGMT_V6_WCOUNT;
break;
case 9: /* Mgmt TCP/UDP Dest port */
max_index = MAC_ADDR_MAX_MGMT_TU_DP_ENTRIES;
max_offset = MAC_ADDR_MAX_MGMT_TU_DP_WCOUNT;
break;
default:
printk(KERN_ERR"Bad type!!! 0x%08x\n", type);
max_index = 0;
max_offset = 0;
break;
}
for (index = 0; index < max_index; index++) {
for (offset = 0; offset < max_offset; offset++) {
val = initial_val
| (type << MAC_ADDR_TYPE_SHIFT)
| (index << MAC_ADDR_IDX_SHIFT)
| (offset);
ql_write32(qdev, MAC_ADDR_IDX, val);
result_index = 0;
while ((result_index & MAC_ADDR_MR) == 0) {
result_index = ql_read32(qdev,
MAC_ADDR_IDX);
}
result_data = ql_read32(qdev, MAC_ADDR_DATA);
*buf = result_index;
buf++;
*buf = result_data;
buf++;
}
}
}
}
static void ql_get_sem_registers(struct ql_adapter *qdev, u32 *buf)
{
u32 func_num, reg, reg_val;
int status;
for (func_num = 0; func_num < MAX_SEMAPHORE_FUNCTIONS ; func_num++) {
reg = MPI_NIC_REG_BLOCK
| (func_num << MPI_NIC_FUNCTION_SHIFT)
| (SEM / 4);
status = ql_read_mpi_reg(qdev, reg, &reg_val);
*buf = reg_val;
/* if the read failed then dead fill the element. */
if (!status)
*buf = 0xdeadbeef;
buf++;
}
}
/* Create a coredump segment header */
static void ql_build_coredump_seg_header(
struct mpi_coredump_segment_header *seg_hdr,
u32 seg_number, u32 seg_size, u8 *desc)
{
memset(seg_hdr, 0, sizeof(struct mpi_coredump_segment_header));
seg_hdr->cookie = MPI_COREDUMP_COOKIE;
seg_hdr->segNum = seg_number;
seg_hdr->segSize = seg_size;
memcpy(seg_hdr->description, desc, (sizeof(seg_hdr->description)) - 1);
}
/*
* This function should be called when a coredump / probedump
* is to be extracted from the HBA. It is assumed there is a
* qdev structure that contains the base address of the register
* space for this function as well as a coredump structure that
* will contain the dump.
*/
int ql_core_dump(struct ql_adapter *qdev, struct ql_mpi_coredump *mpi_coredump)
{
int status;
int i;
if (!mpi_coredump) {
netif_err(qdev, drv, qdev->ndev, "No memory available.\n");
return -ENOMEM;
}
/* Try to get the spinlock, but dont worry if
* it isn't available. If the firmware died it
* might be holding the sem.
*/
ql_sem_spinlock(qdev, SEM_PROC_REG_MASK);
status = ql_pause_mpi_risc(qdev);
if (status) {
netif_err(qdev, drv, qdev->ndev,
"Failed RISC pause. Status = 0x%.08x\n", status);
goto err;
}
/* Insert the global header */
memset(&(mpi_coredump->mpi_global_header), 0,
sizeof(struct mpi_coredump_global_header));
mpi_coredump->mpi_global_header.cookie = MPI_COREDUMP_COOKIE;
mpi_coredump->mpi_global_header.headerSize =
sizeof(struct mpi_coredump_global_header);
mpi_coredump->mpi_global_header.imageSize =
sizeof(struct ql_mpi_coredump);
memcpy(mpi_coredump->mpi_global_header.idString, "MPI Coredump",
sizeof(mpi_coredump->mpi_global_header.idString));
/* Get generic NIC reg dump */
ql_build_coredump_seg_header(&mpi_coredump->nic_regs_seg_hdr,
NIC1_CONTROL_SEG_NUM,
sizeof(struct mpi_coredump_segment_header) +
sizeof(mpi_coredump->nic_regs), "NIC1 Registers");
ql_build_coredump_seg_header(&mpi_coredump->nic2_regs_seg_hdr,
NIC2_CONTROL_SEG_NUM,
sizeof(struct mpi_coredump_segment_header) +
sizeof(mpi_coredump->nic2_regs), "NIC2 Registers");
/* Get XGMac registers. (Segment 18, Rev C. step 21) */
ql_build_coredump_seg_header(&mpi_coredump->xgmac1_seg_hdr,
NIC1_XGMAC_SEG_NUM,
sizeof(struct mpi_coredump_segment_header) +
sizeof(mpi_coredump->xgmac1), "NIC1 XGMac Registers");
ql_build_coredump_seg_header(&mpi_coredump->xgmac2_seg_hdr,
NIC2_XGMAC_SEG_NUM,
sizeof(struct mpi_coredump_segment_header) +
sizeof(mpi_coredump->xgmac2), "NIC2 XGMac Registers");
if (qdev->func & 1) {
/* Odd means our function is NIC 2 */
for (i = 0; i < NIC_REGS_DUMP_WORD_COUNT; i++)
mpi_coredump->nic2_regs[i] =
ql_read32(qdev, i * sizeof(u32));
for (i = 0; i < NIC_REGS_DUMP_WORD_COUNT; i++)
mpi_coredump->nic_regs[i] =
ql_read_other_func_reg(qdev, (i * sizeof(u32)) / 4);
ql_get_xgmac_regs(qdev, &mpi_coredump->xgmac2[0], 0);
ql_get_xgmac_regs(qdev, &mpi_coredump->xgmac1[0], 1);
} else {
/* Even means our function is NIC 1 */
for (i = 0; i < NIC_REGS_DUMP_WORD_COUNT; i++)
mpi_coredump->nic_regs[i] =
ql_read32(qdev, i * sizeof(u32));
for (i = 0; i < NIC_REGS_DUMP_WORD_COUNT; i++)
mpi_coredump->nic2_regs[i] =
ql_read_other_func_reg(qdev, (i * sizeof(u32)) / 4);
ql_get_xgmac_regs(qdev, &mpi_coredump->xgmac1[0], 0);
ql_get_xgmac_regs(qdev, &mpi_coredump->xgmac2[0], 1);
}
/* Rev C. Step 20a */
ql_build_coredump_seg_header(&mpi_coredump->xaui_an_hdr,
XAUI_AN_SEG_NUM,
sizeof(struct mpi_coredump_segment_header) +
sizeof(mpi_coredump->serdes_xaui_an),
"XAUI AN Registers");
/* Rev C. Step 20b */
ql_build_coredump_seg_header(&mpi_coredump->xaui_hss_pcs_hdr,
XAUI_HSS_PCS_SEG_NUM,
sizeof(struct mpi_coredump_segment_header) +
sizeof(mpi_coredump->serdes_xaui_hss_pcs),
"XAUI HSS PCS Registers");
ql_build_coredump_seg_header(&mpi_coredump->xfi_an_hdr, XFI_AN_SEG_NUM,
sizeof(struct mpi_coredump_segment_header) +
sizeof(mpi_coredump->serdes_xfi_an),
"XFI AN Registers");
ql_build_coredump_seg_header(&mpi_coredump->xfi_train_hdr,
XFI_TRAIN_SEG_NUM,
sizeof(struct mpi_coredump_segment_header) +
sizeof(mpi_coredump->serdes_xfi_train),
"XFI TRAIN Registers");
ql_build_coredump_seg_header(&mpi_coredump->xfi_hss_pcs_hdr,
XFI_HSS_PCS_SEG_NUM,
sizeof(struct mpi_coredump_segment_header) +
sizeof(mpi_coredump->serdes_xfi_hss_pcs),
"XFI HSS PCS Registers");
ql_build_coredump_seg_header(&mpi_coredump->xfi_hss_tx_hdr,
XFI_HSS_TX_SEG_NUM,
sizeof(struct mpi_coredump_segment_header) +
sizeof(mpi_coredump->serdes_xfi_hss_tx),
"XFI HSS TX Registers");
ql_build_coredump_seg_header(&mpi_coredump->xfi_hss_rx_hdr,
XFI_HSS_RX_SEG_NUM,
sizeof(struct mpi_coredump_segment_header) +
sizeof(mpi_coredump->serdes_xfi_hss_rx),
"XFI HSS RX Registers");
ql_build_coredump_seg_header(&mpi_coredump->xfi_hss_pll_hdr,
XFI_HSS_PLL_SEG_NUM,
sizeof(struct mpi_coredump_segment_header) +
sizeof(mpi_coredump->serdes_xfi_hss_pll),
"XFI HSS PLL Registers");
ql_build_coredump_seg_header(&mpi_coredump->xaui2_an_hdr,
XAUI2_AN_SEG_NUM,
sizeof(struct mpi_coredump_segment_header) +
sizeof(mpi_coredump->serdes2_xaui_an),
"XAUI2 AN Registers");
ql_build_coredump_seg_header(&mpi_coredump->xaui2_hss_pcs_hdr,
XAUI2_HSS_PCS_SEG_NUM,
sizeof(struct mpi_coredump_segment_header) +
sizeof(mpi_coredump->serdes2_xaui_hss_pcs),
"XAUI2 HSS PCS Registers");
ql_build_coredump_seg_header(&mpi_coredump->xfi2_an_hdr,
XFI2_AN_SEG_NUM,
sizeof(struct mpi_coredump_segment_header) +
sizeof(mpi_coredump->serdes2_xfi_an),
"XFI2 AN Registers");
ql_build_coredump_seg_header(&mpi_coredump->xfi2_train_hdr,
XFI2_TRAIN_SEG_NUM,
sizeof(struct mpi_coredump_segment_header) +
sizeof(mpi_coredump->serdes2_xfi_train),
"XFI2 TRAIN Registers");
ql_build_coredump_seg_header(&mpi_coredump->xfi2_hss_pcs_hdr,
XFI2_HSS_PCS_SEG_NUM,
sizeof(struct mpi_coredump_segment_header) +
sizeof(mpi_coredump->serdes2_xfi_hss_pcs),
"XFI2 HSS PCS Registers");
ql_build_coredump_seg_header(&mpi_coredump->xfi2_hss_tx_hdr,
XFI2_HSS_TX_SEG_NUM,
sizeof(struct mpi_coredump_segment_header) +
sizeof(mpi_coredump->serdes2_xfi_hss_tx),
"XFI2 HSS TX Registers");
ql_build_coredump_seg_header(&mpi_coredump->xfi2_hss_rx_hdr,
XFI2_HSS_RX_SEG_NUM,
sizeof(struct mpi_coredump_segment_header) +
sizeof(mpi_coredump->serdes2_xfi_hss_rx),
"XFI2 HSS RX Registers");
ql_build_coredump_seg_header(&mpi_coredump->xfi2_hss_pll_hdr,
XFI2_HSS_PLL_SEG_NUM,
sizeof(struct mpi_coredump_segment_header) +
sizeof(mpi_coredump->serdes2_xfi_hss_pll),
"XFI2 HSS PLL Registers");
status = ql_get_serdes_regs(qdev, mpi_coredump);
if (status) {
netif_err(qdev, drv, qdev->ndev,
"Failed Dump of Serdes Registers. Status = 0x%.08x\n",
status);
goto err;
}
ql_build_coredump_seg_header(&mpi_coredump->core_regs_seg_hdr,
CORE_SEG_NUM,
sizeof(mpi_coredump->core_regs_seg_hdr) +
sizeof(mpi_coredump->mpi_core_regs) +
sizeof(mpi_coredump->mpi_core_sh_regs),
"Core Registers");
/* Get the MPI Core Registers */
status = ql_get_mpi_regs(qdev, &mpi_coredump->mpi_core_regs[0],
MPI_CORE_REGS_ADDR, MPI_CORE_REGS_CNT);
if (status)
goto err;
/* Get the 16 MPI shadow registers */
status = ql_get_mpi_shadow_regs(qdev,
&mpi_coredump->mpi_core_sh_regs[0]);
if (status)
goto err;
/* Get the Test Logic Registers */
ql_build_coredump_seg_header(&mpi_coredump->test_logic_regs_seg_hdr,
TEST_LOGIC_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->test_logic_regs),
"Test Logic Regs");
status = ql_get_mpi_regs(qdev, &mpi_coredump->test_logic_regs[0],
TEST_REGS_ADDR, TEST_REGS_CNT);
if (status)
goto err;
/* Get the RMII Registers */
ql_build_coredump_seg_header(&mpi_coredump->rmii_regs_seg_hdr,
RMII_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->rmii_regs),
"RMII Registers");
status = ql_get_mpi_regs(qdev, &mpi_coredump->rmii_regs[0],
RMII_REGS_ADDR, RMII_REGS_CNT);
if (status)
goto err;
/* Get the FCMAC1 Registers */
ql_build_coredump_seg_header(&mpi_coredump->fcmac1_regs_seg_hdr,
FCMAC1_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->fcmac1_regs),
"FCMAC1 Registers");
status = ql_get_mpi_regs(qdev, &mpi_coredump->fcmac1_regs[0],
FCMAC1_REGS_ADDR, FCMAC_REGS_CNT);
if (status)
goto err;
/* Get the FCMAC2 Registers */
ql_build_coredump_seg_header(&mpi_coredump->fcmac2_regs_seg_hdr,
FCMAC2_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->fcmac2_regs),
"FCMAC2 Registers");
status = ql_get_mpi_regs(qdev, &mpi_coredump->fcmac2_regs[0],
FCMAC2_REGS_ADDR, FCMAC_REGS_CNT);
if (status)
goto err;
/* Get the FC1 MBX Registers */
ql_build_coredump_seg_header(&mpi_coredump->fc1_mbx_regs_seg_hdr,
FC1_MBOX_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->fc1_mbx_regs),
"FC1 MBox Regs");
status = ql_get_mpi_regs(qdev, &mpi_coredump->fc1_mbx_regs[0],
FC1_MBX_REGS_ADDR, FC_MBX_REGS_CNT);
if (status)
goto err;
/* Get the IDE Registers */
ql_build_coredump_seg_header(&mpi_coredump->ide_regs_seg_hdr,
IDE_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->ide_regs),
"IDE Registers");
status = ql_get_mpi_regs(qdev, &mpi_coredump->ide_regs[0],
IDE_REGS_ADDR, IDE_REGS_CNT);
if (status)
goto err;
/* Get the NIC1 MBX Registers */
ql_build_coredump_seg_header(&mpi_coredump->nic1_mbx_regs_seg_hdr,
NIC1_MBOX_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->nic1_mbx_regs),
"NIC1 MBox Regs");
status = ql_get_mpi_regs(qdev, &mpi_coredump->nic1_mbx_regs[0],
NIC1_MBX_REGS_ADDR, NIC_MBX_REGS_CNT);
if (status)
goto err;
/* Get the SMBus Registers */
ql_build_coredump_seg_header(&mpi_coredump->smbus_regs_seg_hdr,
SMBUS_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->smbus_regs),
"SMBus Registers");
status = ql_get_mpi_regs(qdev, &mpi_coredump->smbus_regs[0],
SMBUS_REGS_ADDR, SMBUS_REGS_CNT);
if (status)
goto err;
/* Get the FC2 MBX Registers */
ql_build_coredump_seg_header(&mpi_coredump->fc2_mbx_regs_seg_hdr,
FC2_MBOX_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->fc2_mbx_regs),
"FC2 MBox Regs");
status = ql_get_mpi_regs(qdev, &mpi_coredump->fc2_mbx_regs[0],
FC2_MBX_REGS_ADDR, FC_MBX_REGS_CNT);
if (status)
goto err;
/* Get the NIC2 MBX Registers */
ql_build_coredump_seg_header(&mpi_coredump->nic2_mbx_regs_seg_hdr,
NIC2_MBOX_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->nic2_mbx_regs),
"NIC2 MBox Regs");
status = ql_get_mpi_regs(qdev, &mpi_coredump->nic2_mbx_regs[0],
NIC2_MBX_REGS_ADDR, NIC_MBX_REGS_CNT);
if (status)
goto err;
/* Get the I2C Registers */
ql_build_coredump_seg_header(&mpi_coredump->i2c_regs_seg_hdr,
I2C_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->i2c_regs),
"I2C Registers");
status = ql_get_mpi_regs(qdev, &mpi_coredump->i2c_regs[0],
I2C_REGS_ADDR, I2C_REGS_CNT);
if (status)
goto err;
/* Get the MEMC Registers */
ql_build_coredump_seg_header(&mpi_coredump->memc_regs_seg_hdr,
MEMC_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->memc_regs),
"MEMC Registers");
status = ql_get_mpi_regs(qdev, &mpi_coredump->memc_regs[0],
MEMC_REGS_ADDR, MEMC_REGS_CNT);
if (status)
goto err;
/* Get the PBus Registers */
ql_build_coredump_seg_header(&mpi_coredump->pbus_regs_seg_hdr,
PBUS_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->pbus_regs),
"PBUS Registers");
status = ql_get_mpi_regs(qdev, &mpi_coredump->pbus_regs[0],
PBUS_REGS_ADDR, PBUS_REGS_CNT);
if (status)
goto err;
/* Get the MDE Registers */
ql_build_coredump_seg_header(&mpi_coredump->mde_regs_seg_hdr,
MDE_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->mde_regs),
"MDE Registers");
status = ql_get_mpi_regs(qdev, &mpi_coredump->mde_regs[0],
MDE_REGS_ADDR, MDE_REGS_CNT);
if (status)
goto err;
ql_build_coredump_seg_header(&mpi_coredump->misc_nic_seg_hdr,
MISC_NIC_INFO_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->misc_nic_info),
"MISC NIC INFO");
mpi_coredump->misc_nic_info.rx_ring_count = qdev->rx_ring_count;
mpi_coredump->misc_nic_info.tx_ring_count = qdev->tx_ring_count;
mpi_coredump->misc_nic_info.intr_count = qdev->intr_count;
mpi_coredump->misc_nic_info.function = qdev->func;
/* Segment 31 */
/* Get indexed register values. */
ql_build_coredump_seg_header(&mpi_coredump->intr_states_seg_hdr,
INTR_STATES_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->intr_states),
"INTR States");
ql_get_intr_states(qdev, &mpi_coredump->intr_states[0]);
ql_build_coredump_seg_header(&mpi_coredump->cam_entries_seg_hdr,
CAM_ENTRIES_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->cam_entries),
"CAM Entries");
status = ql_get_cam_entries(qdev, &mpi_coredump->cam_entries[0]);
if (status)
goto err;
ql_build_coredump_seg_header(&mpi_coredump->nic_routing_words_seg_hdr,
ROUTING_WORDS_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->nic_routing_words),
"Routing Words");
status = ql_get_routing_entries(qdev,
&mpi_coredump->nic_routing_words[0]);
if (status)
goto err;
/* Segment 34 (Rev C. step 23) */
ql_build_coredump_seg_header(&mpi_coredump->ets_seg_hdr,
ETS_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->ets),
"ETS Registers");
status = ql_get_ets_regs(qdev, &mpi_coredump->ets[0]);
if (status)
goto err;
ql_build_coredump_seg_header(&mpi_coredump->probe_dump_seg_hdr,
PROBE_DUMP_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->probe_dump),
"Probe Dump");
ql_get_probe_dump(qdev, &mpi_coredump->probe_dump[0]);
ql_build_coredump_seg_header(&mpi_coredump->routing_reg_seg_hdr,
ROUTING_INDEX_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->routing_regs),
"Routing Regs");
status = ql_get_routing_index_registers(qdev,
&mpi_coredump->routing_regs[0]);
if (status)
goto err;
ql_build_coredump_seg_header(&mpi_coredump->mac_prot_reg_seg_hdr,
MAC_PROTOCOL_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->mac_prot_regs),
"MAC Prot Regs");
ql_get_mac_protocol_registers(qdev, &mpi_coredump->mac_prot_regs[0]);
/* Get the semaphore registers for all 5 functions */
ql_build_coredump_seg_header(&mpi_coredump->sem_regs_seg_hdr,
SEM_REGS_SEG_NUM,
sizeof(struct mpi_coredump_segment_header) +
sizeof(mpi_coredump->sem_regs), "Sem Registers");
ql_get_sem_registers(qdev, &mpi_coredump->sem_regs[0]);
/* Prevent the mpi restarting while we dump the memory.*/
ql_write_mpi_reg(qdev, MPI_TEST_FUNC_RST_STS, MPI_TEST_FUNC_RST_FRC);
/* clear the pause */
status = ql_unpause_mpi_risc(qdev);
if (status) {
netif_err(qdev, drv, qdev->ndev,
"Failed RISC unpause. Status = 0x%.08x\n", status);
goto err;
}
/* Reset the RISC so we can dump RAM */
status = ql_hard_reset_mpi_risc(qdev);
if (status) {
netif_err(qdev, drv, qdev->ndev,
"Failed RISC reset. Status = 0x%.08x\n", status);
goto err;
}
ql_build_coredump_seg_header(&mpi_coredump->code_ram_seg_hdr,
WCS_RAM_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->code_ram),
"WCS RAM");
status = ql_dump_risc_ram_area(qdev, &mpi_coredump->code_ram[0],
CODE_RAM_ADDR, CODE_RAM_CNT);
if (status) {
netif_err(qdev, drv, qdev->ndev,
"Failed Dump of CODE RAM. Status = 0x%.08x\n",
status);
goto err;
}
/* Insert the segment header */
ql_build_coredump_seg_header(&mpi_coredump->memc_ram_seg_hdr,
MEMC_RAM_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->memc_ram),
"MEMC RAM");
status = ql_dump_risc_ram_area(qdev, &mpi_coredump->memc_ram[0],
MEMC_RAM_ADDR, MEMC_RAM_CNT);
if (status) {
netif_err(qdev, drv, qdev->ndev,
"Failed Dump of MEMC RAM. Status = 0x%.08x\n",
status);
goto err;
}
err:
ql_sem_unlock(qdev, SEM_PROC_REG_MASK); /* does flush too */
return status;
}
static void ql_get_core_dump(struct ql_adapter *qdev)
{
if (!ql_own_firmware(qdev)) {
netif_err(qdev, drv, qdev->ndev, "Don't own firmware!\n");
return;
}
if (!netif_running(qdev->ndev)) {
netif_err(qdev, ifup, qdev->ndev,
"Force Coredump can only be done from interface that is up.\n");
return;
}
if (ql_mb_sys_err(qdev)) {
netif_err(qdev, ifup, qdev->ndev,
"Fail force coredump with ql_mb_sys_err().\n");
return;
}
}
void ql_gen_reg_dump(struct ql_adapter *qdev,
struct ql_reg_dump *mpi_coredump)
{
int i, status;
memset(&(mpi_coredump->mpi_global_header), 0,
sizeof(struct mpi_coredump_global_header));
mpi_coredump->mpi_global_header.cookie = MPI_COREDUMP_COOKIE;
mpi_coredump->mpi_global_header.headerSize =
sizeof(struct mpi_coredump_global_header);
mpi_coredump->mpi_global_header.imageSize =
sizeof(struct ql_reg_dump);
memcpy(mpi_coredump->mpi_global_header.idString, "MPI Coredump",
sizeof(mpi_coredump->mpi_global_header.idString));
/* segment 16 */
ql_build_coredump_seg_header(&mpi_coredump->misc_nic_seg_hdr,
MISC_NIC_INFO_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->misc_nic_info),
"MISC NIC INFO");
mpi_coredump->misc_nic_info.rx_ring_count = qdev->rx_ring_count;
mpi_coredump->misc_nic_info.tx_ring_count = qdev->tx_ring_count;
mpi_coredump->misc_nic_info.intr_count = qdev->intr_count;
mpi_coredump->misc_nic_info.function = qdev->func;
/* Segment 16, Rev C. Step 18 */
ql_build_coredump_seg_header(&mpi_coredump->nic_regs_seg_hdr,
NIC1_CONTROL_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->nic_regs),
"NIC Registers");
/* Get generic reg dump */
for (i = 0; i < 64; i++)
mpi_coredump->nic_regs[i] = ql_read32(qdev, i * sizeof(u32));
/* Segment 31 */
/* Get indexed register values. */
ql_build_coredump_seg_header(&mpi_coredump->intr_states_seg_hdr,
INTR_STATES_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->intr_states),
"INTR States");
ql_get_intr_states(qdev, &mpi_coredump->intr_states[0]);
ql_build_coredump_seg_header(&mpi_coredump->cam_entries_seg_hdr,
CAM_ENTRIES_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->cam_entries),
"CAM Entries");
status = ql_get_cam_entries(qdev, &mpi_coredump->cam_entries[0]);
if (status)
return;
ql_build_coredump_seg_header(&mpi_coredump->nic_routing_words_seg_hdr,
ROUTING_WORDS_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->nic_routing_words),
"Routing Words");
status = ql_get_routing_entries(qdev,
&mpi_coredump->nic_routing_words[0]);
if (status)
return;
/* Segment 34 (Rev C. step 23) */
ql_build_coredump_seg_header(&mpi_coredump->ets_seg_hdr,
ETS_SEG_NUM,
sizeof(struct mpi_coredump_segment_header)
+ sizeof(mpi_coredump->ets),
"ETS Registers");
status = ql_get_ets_regs(qdev, &mpi_coredump->ets[0]);
if (status)
return;
if (test_bit(QL_FRC_COREDUMP, &qdev->flags))
ql_get_core_dump(qdev);
}
/* Coredump to messages log file using separate worker thread */
void ql_mpi_core_to_log(struct work_struct *work)
{
struct ql_adapter *qdev =
container_of(work, struct ql_adapter, mpi_core_to_log.work);
u32 *tmp, count;
int i;
count = sizeof(struct ql_mpi_coredump) / sizeof(u32);
tmp = (u32 *)qdev->mpi_coredump;
netif_printk(qdev, drv, KERN_DEBUG, qdev->ndev,
"Core is dumping to log file!\n");
for (i = 0; i < count; i += 8) {
printk(KERN_ERR "%.08x: %.08x %.08x %.08x %.08x %.08x "
"%.08x %.08x %.08x\n", i,
tmp[i + 0],
tmp[i + 1],
tmp[i + 2],
tmp[i + 3],
tmp[i + 4],
tmp[i + 5],
tmp[i + 6],
tmp[i + 7]);
msleep(5);
}
}
#ifdef QL_REG_DUMP
static void ql_dump_intr_states(struct ql_adapter *qdev)
{
int i;
u32 value;
for (i = 0; i < qdev->intr_count; i++) {
ql_write32(qdev, INTR_EN, qdev->intr_context[i].intr_read_mask);
value = ql_read32(qdev, INTR_EN);
printk(KERN_ERR PFX
"%s: Interrupt %d is %s.\n",
qdev->ndev->name, i,
(value & INTR_EN_EN ? "enabled" : "disabled"));
}
}
void ql_dump_xgmac_control_regs(struct ql_adapter *qdev)
{
u32 data;
if (ql_sem_spinlock(qdev, qdev->xg_sem_mask)) {
printk(KERN_ERR "%s: Couldn't get xgmac sem.\n", __func__);
return;
}
ql_read_xgmac_reg(qdev, PAUSE_SRC_LO, &data);
printk(KERN_ERR PFX "%s: PAUSE_SRC_LO = 0x%.08x.\n", qdev->ndev->name,
data);
ql_read_xgmac_reg(qdev, PAUSE_SRC_HI, &data);
printk(KERN_ERR PFX "%s: PAUSE_SRC_HI = 0x%.08x.\n", qdev->ndev->name,
data);
ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
printk(KERN_ERR PFX "%s: GLOBAL_CFG = 0x%.08x.\n", qdev->ndev->name,
data);
ql_read_xgmac_reg(qdev, TX_CFG, &data);
printk(KERN_ERR PFX "%s: TX_CFG = 0x%.08x.\n", qdev->ndev->name, data);
ql_read_xgmac_reg(qdev, RX_CFG, &data);
printk(KERN_ERR PFX "%s: RX_CFG = 0x%.08x.\n", qdev->ndev->name, data);
ql_read_xgmac_reg(qdev, FLOW_CTL, &data);
printk(KERN_ERR PFX "%s: FLOW_CTL = 0x%.08x.\n", qdev->ndev->name,
data);
ql_read_xgmac_reg(qdev, PAUSE_OPCODE, &data);
printk(KERN_ERR PFX "%s: PAUSE_OPCODE = 0x%.08x.\n", qdev->ndev->name,
data);
ql_read_xgmac_reg(qdev, PAUSE_TIMER, &data);
printk(KERN_ERR PFX "%s: PAUSE_TIMER = 0x%.08x.\n", qdev->ndev->name,
data);
ql_read_xgmac_reg(qdev, PAUSE_FRM_DEST_LO, &data);
printk(KERN_ERR PFX "%s: PAUSE_FRM_DEST_LO = 0x%.08x.\n",
qdev->ndev->name, data);
ql_read_xgmac_reg(qdev, PAUSE_FRM_DEST_HI, &data);
printk(KERN_ERR PFX "%s: PAUSE_FRM_DEST_HI = 0x%.08x.\n",
qdev->ndev->name, data);
ql_read_xgmac_reg(qdev, MAC_TX_PARAMS, &data);
printk(KERN_ERR PFX "%s: MAC_TX_PARAMS = 0x%.08x.\n", qdev->ndev->name,
data);
ql_read_xgmac_reg(qdev, MAC_RX_PARAMS, &data);
printk(KERN_ERR PFX "%s: MAC_RX_PARAMS = 0x%.08x.\n", qdev->ndev->name,
data);
ql_read_xgmac_reg(qdev, MAC_SYS_INT, &data);
printk(KERN_ERR PFX "%s: MAC_SYS_INT = 0x%.08x.\n", qdev->ndev->name,
data);
ql_read_xgmac_reg(qdev, MAC_SYS_INT_MASK, &data);
printk(KERN_ERR PFX "%s: MAC_SYS_INT_MASK = 0x%.08x.\n",
qdev->ndev->name, data);
ql_read_xgmac_reg(qdev, MAC_MGMT_INT, &data);
printk(KERN_ERR PFX "%s: MAC_MGMT_INT = 0x%.08x.\n", qdev->ndev->name,
data);
ql_read_xgmac_reg(qdev, MAC_MGMT_IN_MASK, &data);
printk(KERN_ERR PFX "%s: MAC_MGMT_IN_MASK = 0x%.08x.\n",
qdev->ndev->name, data);
ql_read_xgmac_reg(qdev, EXT_ARB_MODE, &data);
printk(KERN_ERR PFX "%s: EXT_ARB_MODE = 0x%.08x.\n", qdev->ndev->name,
data);
ql_sem_unlock(qdev, qdev->xg_sem_mask);
}
static void ql_dump_ets_regs(struct ql_adapter *qdev)
{
}
static void ql_dump_cam_entries(struct ql_adapter *qdev)
{
int i;
u32 value[3];
i = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
if (i)
return;
for (i = 0; i < 4; i++) {
if (ql_get_mac_addr_reg(qdev, MAC_ADDR_TYPE_CAM_MAC, i, value)) {
printk(KERN_ERR PFX
"%s: Failed read of mac index register.\n",
__func__);
return;
} else {
if (value[0])
printk(KERN_ERR PFX
"%s: CAM index %d CAM Lookup Lower = 0x%.08x:%.08x, Output = 0x%.08x.\n",
qdev->ndev->name, i, value[1], value[0],
value[2]);
}
}
for (i = 0; i < 32; i++) {
if (ql_get_mac_addr_reg
(qdev, MAC_ADDR_TYPE_MULTI_MAC, i, value)) {
printk(KERN_ERR PFX
"%s: Failed read of mac index register.\n",
__func__);
return;
} else {
if (value[0])
printk(KERN_ERR PFX
"%s: MCAST index %d CAM Lookup Lower = 0x%.08x:%.08x.\n",
qdev->ndev->name, i, value[1], value[0]);
}
}
ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
}
void ql_dump_routing_entries(struct ql_adapter *qdev)
{
int i;
u32 value;
i = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
if (i)
return;
for (i = 0; i < 16; i++) {
value = 0;
if (ql_get_routing_reg(qdev, i, &value)) {
printk(KERN_ERR PFX
"%s: Failed read of routing index register.\n",
__func__);
return;
} else {
if (value)
printk(KERN_ERR PFX
"%s: Routing Mask %d = 0x%.08x.\n",
qdev->ndev->name, i, value);
}
}
ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
}
void ql_dump_regs(struct ql_adapter *qdev)
{
printk(KERN_ERR PFX "reg dump for function #%d.\n", qdev->func);
printk(KERN_ERR PFX "SYS = 0x%x.\n",
ql_read32(qdev, SYS));
printk(KERN_ERR PFX "RST_FO = 0x%x.\n",
ql_read32(qdev, RST_FO));
printk(KERN_ERR PFX "FSC = 0x%x.\n",
ql_read32(qdev, FSC));
printk(KERN_ERR PFX "CSR = 0x%x.\n",
ql_read32(qdev, CSR));
printk(KERN_ERR PFX "ICB_RID = 0x%x.\n",
ql_read32(qdev, ICB_RID));
printk(KERN_ERR PFX "ICB_L = 0x%x.\n",
ql_read32(qdev, ICB_L));
printk(KERN_ERR PFX "ICB_H = 0x%x.\n",
ql_read32(qdev, ICB_H));
printk(KERN_ERR PFX "CFG = 0x%x.\n",
ql_read32(qdev, CFG));
printk(KERN_ERR PFX "BIOS_ADDR = 0x%x.\n",
ql_read32(qdev, BIOS_ADDR));
printk(KERN_ERR PFX "STS = 0x%x.\n",
ql_read32(qdev, STS));
printk(KERN_ERR PFX "INTR_EN = 0x%x.\n",
ql_read32(qdev, INTR_EN));
printk(KERN_ERR PFX "INTR_MASK = 0x%x.\n",
ql_read32(qdev, INTR_MASK));
printk(KERN_ERR PFX "ISR1 = 0x%x.\n",
ql_read32(qdev, ISR1));
printk(KERN_ERR PFX "ISR2 = 0x%x.\n",
ql_read32(qdev, ISR2));
printk(KERN_ERR PFX "ISR3 = 0x%x.\n",
ql_read32(qdev, ISR3));
printk(KERN_ERR PFX "ISR4 = 0x%x.\n",
ql_read32(qdev, ISR4));
printk(KERN_ERR PFX "REV_ID = 0x%x.\n",
ql_read32(qdev, REV_ID));
printk(KERN_ERR PFX "FRC_ECC_ERR = 0x%x.\n",
ql_read32(qdev, FRC_ECC_ERR));
printk(KERN_ERR PFX "ERR_STS = 0x%x.\n",
ql_read32(qdev, ERR_STS));
printk(KERN_ERR PFX "RAM_DBG_ADDR = 0x%x.\n",
ql_read32(qdev, RAM_DBG_ADDR));
printk(KERN_ERR PFX "RAM_DBG_DATA = 0x%x.\n",
ql_read32(qdev, RAM_DBG_DATA));
printk(KERN_ERR PFX "ECC_ERR_CNT = 0x%x.\n",
ql_read32(qdev, ECC_ERR_CNT));
printk(KERN_ERR PFX "SEM = 0x%x.\n",
ql_read32(qdev, SEM));
printk(KERN_ERR PFX "GPIO_1 = 0x%x.\n",
ql_read32(qdev, GPIO_1));
printk(KERN_ERR PFX "GPIO_2 = 0x%x.\n",
ql_read32(qdev, GPIO_2));
printk(KERN_ERR PFX "GPIO_3 = 0x%x.\n",
ql_read32(qdev, GPIO_3));
printk(KERN_ERR PFX "XGMAC_ADDR = 0x%x.\n",
ql_read32(qdev, XGMAC_ADDR));
printk(KERN_ERR PFX "XGMAC_DATA = 0x%x.\n",
ql_read32(qdev, XGMAC_DATA));
printk(KERN_ERR PFX "NIC_ETS = 0x%x.\n",
ql_read32(qdev, NIC_ETS));
printk(KERN_ERR PFX "CNA_ETS = 0x%x.\n",
ql_read32(qdev, CNA_ETS));
printk(KERN_ERR PFX "FLASH_ADDR = 0x%x.\n",
ql_read32(qdev, FLASH_ADDR));
printk(KERN_ERR PFX "FLASH_DATA = 0x%x.\n",
ql_read32(qdev, FLASH_DATA));
printk(KERN_ERR PFX "CQ_STOP = 0x%x.\n",
ql_read32(qdev, CQ_STOP));
printk(KERN_ERR PFX "PAGE_TBL_RID = 0x%x.\n",
ql_read32(qdev, PAGE_TBL_RID));
printk(KERN_ERR PFX "WQ_PAGE_TBL_LO = 0x%x.\n",
ql_read32(qdev, WQ_PAGE_TBL_LO));
printk(KERN_ERR PFX "WQ_PAGE_TBL_HI = 0x%x.\n",
ql_read32(qdev, WQ_PAGE_TBL_HI));
printk(KERN_ERR PFX "CQ_PAGE_TBL_LO = 0x%x.\n",
ql_read32(qdev, CQ_PAGE_TBL_LO));
printk(KERN_ERR PFX "CQ_PAGE_TBL_HI = 0x%x.\n",
ql_read32(qdev, CQ_PAGE_TBL_HI));
printk(KERN_ERR PFX "COS_DFLT_CQ1 = 0x%x.\n",
ql_read32(qdev, COS_DFLT_CQ1));
printk(KERN_ERR PFX "COS_DFLT_CQ2 = 0x%x.\n",
ql_read32(qdev, COS_DFLT_CQ2));
printk(KERN_ERR PFX "SPLT_HDR = 0x%x.\n",
ql_read32(qdev, SPLT_HDR));
printk(KERN_ERR PFX "FC_PAUSE_THRES = 0x%x.\n",
ql_read32(qdev, FC_PAUSE_THRES));
printk(KERN_ERR PFX "NIC_PAUSE_THRES = 0x%x.\n",
ql_read32(qdev, NIC_PAUSE_THRES));
printk(KERN_ERR PFX "FC_ETHERTYPE = 0x%x.\n",
ql_read32(qdev, FC_ETHERTYPE));
printk(KERN_ERR PFX "FC_RCV_CFG = 0x%x.\n",
ql_read32(qdev, FC_RCV_CFG));
printk(KERN_ERR PFX "NIC_RCV_CFG = 0x%x.\n",
ql_read32(qdev, NIC_RCV_CFG));
printk(KERN_ERR PFX "FC_COS_TAGS = 0x%x.\n",
ql_read32(qdev, FC_COS_TAGS));
printk(KERN_ERR PFX "NIC_COS_TAGS = 0x%x.\n",
ql_read32(qdev, NIC_COS_TAGS));
printk(KERN_ERR PFX "MGMT_RCV_CFG = 0x%x.\n",
ql_read32(qdev, MGMT_RCV_CFG));
printk(KERN_ERR PFX "XG_SERDES_ADDR = 0x%x.\n",
ql_read32(qdev, XG_SERDES_ADDR));
printk(KERN_ERR PFX "XG_SERDES_DATA = 0x%x.\n",
ql_read32(qdev, XG_SERDES_DATA));
printk(KERN_ERR PFX "PRB_MX_ADDR = 0x%x.\n",
ql_read32(qdev, PRB_MX_ADDR));
printk(KERN_ERR PFX "PRB_MX_DATA = 0x%x.\n",
ql_read32(qdev, PRB_MX_DATA));
ql_dump_intr_states(qdev);
ql_dump_xgmac_control_regs(qdev);
ql_dump_ets_regs(qdev);
ql_dump_cam_entries(qdev);
ql_dump_routing_entries(qdev);
}
#endif
#ifdef QL_STAT_DUMP
void ql_dump_stat(struct ql_adapter *qdev)
{
printk(KERN_ERR "%s: Enter.\n", __func__);
printk(KERN_ERR "tx_pkts = %ld\n",
(unsigned long)qdev->nic_stats.tx_pkts);
printk(KERN_ERR "tx_bytes = %ld\n",
(unsigned long)qdev->nic_stats.tx_bytes);
printk(KERN_ERR "tx_mcast_pkts = %ld.\n",
(unsigned long)qdev->nic_stats.tx_mcast_pkts);
printk(KERN_ERR "tx_bcast_pkts = %ld.\n",
(unsigned long)qdev->nic_stats.tx_bcast_pkts);
printk(KERN_ERR "tx_ucast_pkts = %ld.\n",
(unsigned long)qdev->nic_stats.tx_ucast_pkts);
printk(KERN_ERR "tx_ctl_pkts = %ld.\n",
(unsigned long)qdev->nic_stats.tx_ctl_pkts);
printk(KERN_ERR "tx_pause_pkts = %ld.\n",
(unsigned long)qdev->nic_stats.tx_pause_pkts);
printk(KERN_ERR "tx_64_pkt = %ld.\n",
(unsigned long)qdev->nic_stats.tx_64_pkt);
printk(KERN_ERR "tx_65_to_127_pkt = %ld.\n",
(unsigned long)qdev->nic_stats.tx_65_to_127_pkt);
printk(KERN_ERR "tx_128_to_255_pkt = %ld.\n",
(unsigned long)qdev->nic_stats.tx_128_to_255_pkt);
printk(KERN_ERR "tx_256_511_pkt = %ld.\n",
(unsigned long)qdev->nic_stats.tx_256_511_pkt);
printk(KERN_ERR "tx_512_to_1023_pkt = %ld.\n",
(unsigned long)qdev->nic_stats.tx_512_to_1023_pkt);
printk(KERN_ERR "tx_1024_to_1518_pkt = %ld.\n",
(unsigned long)qdev->nic_stats.tx_1024_to_1518_pkt);
printk(KERN_ERR "tx_1519_to_max_pkt = %ld.\n",
(unsigned long)qdev->nic_stats.tx_1519_to_max_pkt);
printk(KERN_ERR "tx_undersize_pkt = %ld.\n",
(unsigned long)qdev->nic_stats.tx_undersize_pkt);
printk(KERN_ERR "tx_oversize_pkt = %ld.\n",
(unsigned long)qdev->nic_stats.tx_oversize_pkt);
printk(KERN_ERR "rx_bytes = %ld.\n",
(unsigned long)qdev->nic_stats.rx_bytes);
printk(KERN_ERR "rx_bytes_ok = %ld.\n",
(unsigned long)qdev->nic_stats.rx_bytes_ok);
printk(KERN_ERR "rx_pkts = %ld.\n",
(unsigned long)qdev->nic_stats.rx_pkts);
printk(KERN_ERR "rx_pkts_ok = %ld.\n",
(unsigned long)qdev->nic_stats.rx_pkts_ok);
printk(KERN_ERR "rx_bcast_pkts = %ld.\n",
(unsigned long)qdev->nic_stats.rx_bcast_pkts);
printk(KERN_ERR "rx_mcast_pkts = %ld.\n",
(unsigned long)qdev->nic_stats.rx_mcast_pkts);
printk(KERN_ERR "rx_ucast_pkts = %ld.\n",
(unsigned long)qdev->nic_stats.rx_ucast_pkts);
printk(KERN_ERR "rx_undersize_pkts = %ld.\n",
(unsigned long)qdev->nic_stats.rx_undersize_pkts);
printk(KERN_ERR "rx_oversize_pkts = %ld.\n",
(unsigned long)qdev->nic_stats.rx_oversize_pkts);
printk(KERN_ERR "rx_jabber_pkts = %ld.\n",
(unsigned long)qdev->nic_stats.rx_jabber_pkts);
printk(KERN_ERR "rx_undersize_fcerr_pkts = %ld.\n",
(unsigned long)qdev->nic_stats.rx_undersize_fcerr_pkts);
printk(KERN_ERR "rx_drop_events = %ld.\n",
(unsigned long)qdev->nic_stats.rx_drop_events);
printk(KERN_ERR "rx_fcerr_pkts = %ld.\n",
(unsigned long)qdev->nic_stats.rx_fcerr_pkts);
printk(KERN_ERR "rx_align_err = %ld.\n",
(unsigned long)qdev->nic_stats.rx_align_err);
printk(KERN_ERR "rx_symbol_err = %ld.\n",
(unsigned long)qdev->nic_stats.rx_symbol_err);
printk(KERN_ERR "rx_mac_err = %ld.\n",
(unsigned long)qdev->nic_stats.rx_mac_err);
printk(KERN_ERR "rx_ctl_pkts = %ld.\n",
(unsigned long)qdev->nic_stats.rx_ctl_pkts);
printk(KERN_ERR "rx_pause_pkts = %ld.\n",
(unsigned long)qdev->nic_stats.rx_pause_pkts);
printk(KERN_ERR "rx_64_pkts = %ld.\n",
(unsigned long)qdev->nic_stats.rx_64_pkts);
printk(KERN_ERR "rx_65_to_127_pkts = %ld.\n",
(unsigned long)qdev->nic_stats.rx_65_to_127_pkts);
printk(KERN_ERR "rx_128_255_pkts = %ld.\n",
(unsigned long)qdev->nic_stats.rx_128_255_pkts);
printk(KERN_ERR "rx_256_511_pkts = %ld.\n",
(unsigned long)qdev->nic_stats.rx_256_511_pkts);
printk(KERN_ERR "rx_512_to_1023_pkts = %ld.\n",
(unsigned long)qdev->nic_stats.rx_512_to_1023_pkts);
printk(KERN_ERR "rx_1024_to_1518_pkts = %ld.\n",
(unsigned long)qdev->nic_stats.rx_1024_to_1518_pkts);
printk(KERN_ERR "rx_1519_to_max_pkts = %ld.\n",
(unsigned long)qdev->nic_stats.rx_1519_to_max_pkts);
printk(KERN_ERR "rx_len_err_pkts = %ld.\n",
(unsigned long)qdev->nic_stats.rx_len_err_pkts);
};
#endif
#ifdef QL_DEV_DUMP
void ql_dump_qdev(struct ql_adapter *qdev)
{
int i;
printk(KERN_ERR PFX "qdev->flags = %lx.\n",
qdev->flags);
printk(KERN_ERR PFX "qdev->vlgrp = %p.\n",
qdev->vlgrp);
printk(KERN_ERR PFX "qdev->pdev = %p.\n",
qdev->pdev);
printk(KERN_ERR PFX "qdev->ndev = %p.\n",
qdev->ndev);
printk(KERN_ERR PFX "qdev->chip_rev_id = %d.\n",
qdev->chip_rev_id);
printk(KERN_ERR PFX "qdev->reg_base = %p.\n",
qdev->reg_base);
printk(KERN_ERR PFX "qdev->doorbell_area = %p.\n",
qdev->doorbell_area);
printk(KERN_ERR PFX "qdev->doorbell_area_size = %d.\n",
qdev->doorbell_area_size);
printk(KERN_ERR PFX "msg_enable = %x.\n",
qdev->msg_enable);
printk(KERN_ERR PFX "qdev->rx_ring_shadow_reg_area = %p.\n",
qdev->rx_ring_shadow_reg_area);
printk(KERN_ERR PFX "qdev->rx_ring_shadow_reg_dma = %llx.\n",
(unsigned long long) qdev->rx_ring_shadow_reg_dma);
printk(KERN_ERR PFX "qdev->tx_ring_shadow_reg_area = %p.\n",
qdev->tx_ring_shadow_reg_area);
printk(KERN_ERR PFX "qdev->tx_ring_shadow_reg_dma = %llx.\n",
(unsigned long long) qdev->tx_ring_shadow_reg_dma);
printk(KERN_ERR PFX "qdev->intr_count = %d.\n",
qdev->intr_count);
if (qdev->msi_x_entry)
for (i = 0; i < qdev->intr_count; i++) {
printk(KERN_ERR PFX
"msi_x_entry.[%d]vector = %d.\n", i,
qdev->msi_x_entry[i].vector);
printk(KERN_ERR PFX
"msi_x_entry.[%d]entry = %d.\n", i,
qdev->msi_x_entry[i].entry);
}
for (i = 0; i < qdev->intr_count; i++) {
printk(KERN_ERR PFX
"intr_context[%d].qdev = %p.\n", i,
qdev->intr_context[i].qdev);
printk(KERN_ERR PFX
"intr_context[%d].intr = %d.\n", i,
qdev->intr_context[i].intr);
printk(KERN_ERR PFX
"intr_context[%d].hooked = %d.\n", i,
qdev->intr_context[i].hooked);
printk(KERN_ERR PFX
"intr_context[%d].intr_en_mask = 0x%08x.\n", i,
qdev->intr_context[i].intr_en_mask);
printk(KERN_ERR PFX
"intr_context[%d].intr_dis_mask = 0x%08x.\n", i,
qdev->intr_context[i].intr_dis_mask);
printk(KERN_ERR PFX
"intr_context[%d].intr_read_mask = 0x%08x.\n", i,
qdev->intr_context[i].intr_read_mask);
}
printk(KERN_ERR PFX "qdev->tx_ring_count = %d.\n", qdev->tx_ring_count);
printk(KERN_ERR PFX "qdev->rx_ring_count = %d.\n", qdev->rx_ring_count);
printk(KERN_ERR PFX "qdev->ring_mem_size = %d.\n", qdev->ring_mem_size);
printk(KERN_ERR PFX "qdev->ring_mem = %p.\n", qdev->ring_mem);
printk(KERN_ERR PFX "qdev->intr_count = %d.\n", qdev->intr_count);
printk(KERN_ERR PFX "qdev->tx_ring = %p.\n",
qdev->tx_ring);
printk(KERN_ERR PFX "qdev->rss_ring_count = %d.\n",
qdev->rss_ring_count);
printk(KERN_ERR PFX "qdev->rx_ring = %p.\n", qdev->rx_ring);
printk(KERN_ERR PFX "qdev->default_rx_queue = %d.\n",
qdev->default_rx_queue);
printk(KERN_ERR PFX "qdev->xg_sem_mask = 0x%08x.\n",
qdev->xg_sem_mask);
printk(KERN_ERR PFX "qdev->port_link_up = 0x%08x.\n",
qdev->port_link_up);
printk(KERN_ERR PFX "qdev->port_init = 0x%08x.\n",
qdev->port_init);
}
#endif
#ifdef QL_CB_DUMP
void ql_dump_wqicb(struct wqicb *wqicb)
{
printk(KERN_ERR PFX "Dumping wqicb stuff...\n");
printk(KERN_ERR PFX "wqicb->len = 0x%x.\n", le16_to_cpu(wqicb->len));
printk(KERN_ERR PFX "wqicb->flags = %x.\n", le16_to_cpu(wqicb->flags));
printk(KERN_ERR PFX "wqicb->cq_id_rss = %d.\n",
le16_to_cpu(wqicb->cq_id_rss));
printk(KERN_ERR PFX "wqicb->rid = 0x%x.\n", le16_to_cpu(wqicb->rid));
printk(KERN_ERR PFX "wqicb->wq_addr = 0x%llx.\n",
(unsigned long long) le64_to_cpu(wqicb->addr));
printk(KERN_ERR PFX "wqicb->wq_cnsmr_idx_addr = 0x%llx.\n",
(unsigned long long) le64_to_cpu(wqicb->cnsmr_idx_addr));
}
void ql_dump_tx_ring(struct tx_ring *tx_ring)
{
if (tx_ring == NULL)
return;
printk(KERN_ERR PFX
"===================== Dumping tx_ring %d ===============.\n",
tx_ring->wq_id);
printk(KERN_ERR PFX "tx_ring->base = %p.\n", tx_ring->wq_base);
printk(KERN_ERR PFX "tx_ring->base_dma = 0x%llx.\n",
(unsigned long long) tx_ring->wq_base_dma);
printk(KERN_ERR PFX
"tx_ring->cnsmr_idx_sh_reg, addr = 0x%p, value = %d.\n",
tx_ring->cnsmr_idx_sh_reg,
tx_ring->cnsmr_idx_sh_reg
? ql_read_sh_reg(tx_ring->cnsmr_idx_sh_reg) : 0);
printk(KERN_ERR PFX "tx_ring->size = %d.\n", tx_ring->wq_size);
printk(KERN_ERR PFX "tx_ring->len = %d.\n", tx_ring->wq_len);
printk(KERN_ERR PFX "tx_ring->prod_idx_db_reg = %p.\n",
tx_ring->prod_idx_db_reg);
printk(KERN_ERR PFX "tx_ring->valid_db_reg = %p.\n",
tx_ring->valid_db_reg);
printk(KERN_ERR PFX "tx_ring->prod_idx = %d.\n", tx_ring->prod_idx);
printk(KERN_ERR PFX "tx_ring->cq_id = %d.\n", tx_ring->cq_id);
printk(KERN_ERR PFX "tx_ring->wq_id = %d.\n", tx_ring->wq_id);
printk(KERN_ERR PFX "tx_ring->q = %p.\n", tx_ring->q);
printk(KERN_ERR PFX "tx_ring->tx_count = %d.\n",
atomic_read(&tx_ring->tx_count));
}
void ql_dump_ricb(struct ricb *ricb)
{
int i;
printk(KERN_ERR PFX
"===================== Dumping ricb ===============.\n");
printk(KERN_ERR PFX "Dumping ricb stuff...\n");
printk(KERN_ERR PFX "ricb->base_cq = %d.\n", ricb->base_cq & 0x1f);
printk(KERN_ERR PFX "ricb->flags = %s%s%s%s%s%s%s%s%s.\n",
ricb->base_cq & RSS_L4K ? "RSS_L4K " : "",
ricb->flags & RSS_L6K ? "RSS_L6K " : "",
ricb->flags & RSS_LI ? "RSS_LI " : "",
ricb->flags & RSS_LB ? "RSS_LB " : "",
ricb->flags & RSS_LM ? "RSS_LM " : "",
ricb->flags & RSS_RI4 ? "RSS_RI4 " : "",
ricb->flags & RSS_RT4 ? "RSS_RT4 " : "",
ricb->flags & RSS_RI6 ? "RSS_RI6 " : "",
ricb->flags & RSS_RT6 ? "RSS_RT6 " : "");
printk(KERN_ERR PFX "ricb->mask = 0x%.04x.\n", le16_to_cpu(ricb->mask));
for (i = 0; i < 16; i++)
printk(KERN_ERR PFX "ricb->hash_cq_id[%d] = 0x%.08x.\n", i,
le32_to_cpu(ricb->hash_cq_id[i]));
for (i = 0; i < 10; i++)
printk(KERN_ERR PFX "ricb->ipv6_hash_key[%d] = 0x%.08x.\n", i,
le32_to_cpu(ricb->ipv6_hash_key[i]));
for (i = 0; i < 4; i++)
printk(KERN_ERR PFX "ricb->ipv4_hash_key[%d] = 0x%.08x.\n", i,
le32_to_cpu(ricb->ipv4_hash_key[i]));
}
void ql_dump_cqicb(struct cqicb *cqicb)
{
printk(KERN_ERR PFX "Dumping cqicb stuff...\n");
printk(KERN_ERR PFX "cqicb->msix_vect = %d.\n", cqicb->msix_vect);
printk(KERN_ERR PFX "cqicb->flags = %x.\n", cqicb->flags);
printk(KERN_ERR PFX "cqicb->len = %d.\n", le16_to_cpu(cqicb->len));
printk(KERN_ERR PFX "cqicb->addr = 0x%llx.\n",
(unsigned long long) le64_to_cpu(cqicb->addr));
printk(KERN_ERR PFX "cqicb->prod_idx_addr = 0x%llx.\n",
(unsigned long long) le64_to_cpu(cqicb->prod_idx_addr));
printk(KERN_ERR PFX "cqicb->pkt_delay = 0x%.04x.\n",
le16_to_cpu(cqicb->pkt_delay));
printk(KERN_ERR PFX "cqicb->irq_delay = 0x%.04x.\n",
le16_to_cpu(cqicb->irq_delay));
printk(KERN_ERR PFX "cqicb->lbq_addr = 0x%llx.\n",
(unsigned long long) le64_to_cpu(cqicb->lbq_addr));
printk(KERN_ERR PFX "cqicb->lbq_buf_size = 0x%.04x.\n",
le16_to_cpu(cqicb->lbq_buf_size));
printk(KERN_ERR PFX "cqicb->lbq_len = 0x%.04x.\n",
le16_to_cpu(cqicb->lbq_len));
printk(KERN_ERR PFX "cqicb->sbq_addr = 0x%llx.\n",
(unsigned long long) le64_to_cpu(cqicb->sbq_addr));
printk(KERN_ERR PFX "cqicb->sbq_buf_size = 0x%.04x.\n",
le16_to_cpu(cqicb->sbq_buf_size));
printk(KERN_ERR PFX "cqicb->sbq_len = 0x%.04x.\n",
le16_to_cpu(cqicb->sbq_len));
}
void ql_dump_rx_ring(struct rx_ring *rx_ring)
{
if (rx_ring == NULL)
return;
printk(KERN_ERR PFX
"===================== Dumping rx_ring %d ===============.\n",
rx_ring->cq_id);
printk(KERN_ERR PFX "Dumping rx_ring %d, type = %s%s%s.\n",
rx_ring->cq_id, rx_ring->type == DEFAULT_Q ? "DEFAULT" : "",
rx_ring->type == TX_Q ? "OUTBOUND COMPLETIONS" : "",
rx_ring->type == RX_Q ? "INBOUND_COMPLETIONS" : "");
printk(KERN_ERR PFX "rx_ring->cqicb = %p.\n", &rx_ring->cqicb);
printk(KERN_ERR PFX "rx_ring->cq_base = %p.\n", rx_ring->cq_base);
printk(KERN_ERR PFX "rx_ring->cq_base_dma = %llx.\n",
(unsigned long long) rx_ring->cq_base_dma);
printk(KERN_ERR PFX "rx_ring->cq_size = %d.\n", rx_ring->cq_size);
printk(KERN_ERR PFX "rx_ring->cq_len = %d.\n", rx_ring->cq_len);
printk(KERN_ERR PFX
"rx_ring->prod_idx_sh_reg, addr = 0x%p, value = %d.\n",
rx_ring->prod_idx_sh_reg,
rx_ring->prod_idx_sh_reg
? ql_read_sh_reg(rx_ring->prod_idx_sh_reg) : 0);
printk(KERN_ERR PFX "rx_ring->prod_idx_sh_reg_dma = %llx.\n",
(unsigned long long) rx_ring->prod_idx_sh_reg_dma);
printk(KERN_ERR PFX "rx_ring->cnsmr_idx_db_reg = %p.\n",
rx_ring->cnsmr_idx_db_reg);
printk(KERN_ERR PFX "rx_ring->cnsmr_idx = %d.\n", rx_ring->cnsmr_idx);
printk(KERN_ERR PFX "rx_ring->curr_entry = %p.\n", rx_ring->curr_entry);
printk(KERN_ERR PFX "rx_ring->valid_db_reg = %p.\n",
rx_ring->valid_db_reg);
printk(KERN_ERR PFX "rx_ring->lbq_base = %p.\n", rx_ring->lbq_base);
printk(KERN_ERR PFX "rx_ring->lbq_base_dma = %llx.\n",
(unsigned long long) rx_ring->lbq_base_dma);
printk(KERN_ERR PFX "rx_ring->lbq_base_indirect = %p.\n",
rx_ring->lbq_base_indirect);
printk(KERN_ERR PFX "rx_ring->lbq_base_indirect_dma = %llx.\n",
(unsigned long long) rx_ring->lbq_base_indirect_dma);
printk(KERN_ERR PFX "rx_ring->lbq = %p.\n", rx_ring->lbq);
printk(KERN_ERR PFX "rx_ring->lbq_len = %d.\n", rx_ring->lbq_len);
printk(KERN_ERR PFX "rx_ring->lbq_size = %d.\n", rx_ring->lbq_size);
printk(KERN_ERR PFX "rx_ring->lbq_prod_idx_db_reg = %p.\n",
rx_ring->lbq_prod_idx_db_reg);
printk(KERN_ERR PFX "rx_ring->lbq_prod_idx = %d.\n",
rx_ring->lbq_prod_idx);
printk(KERN_ERR PFX "rx_ring->lbq_curr_idx = %d.\n",
rx_ring->lbq_curr_idx);
printk(KERN_ERR PFX "rx_ring->lbq_clean_idx = %d.\n",
rx_ring->lbq_clean_idx);
printk(KERN_ERR PFX "rx_ring->lbq_free_cnt = %d.\n",
rx_ring->lbq_free_cnt);
printk(KERN_ERR PFX "rx_ring->lbq_buf_size = %d.\n",
rx_ring->lbq_buf_size);
printk(KERN_ERR PFX "rx_ring->sbq_base = %p.\n", rx_ring->sbq_base);
printk(KERN_ERR PFX "rx_ring->sbq_base_dma = %llx.\n",
(unsigned long long) rx_ring->sbq_base_dma);
printk(KERN_ERR PFX "rx_ring->sbq_base_indirect = %p.\n",
rx_ring->sbq_base_indirect);
printk(KERN_ERR PFX "rx_ring->sbq_base_indirect_dma = %llx.\n",
(unsigned long long) rx_ring->sbq_base_indirect_dma);
printk(KERN_ERR PFX "rx_ring->sbq = %p.\n", rx_ring->sbq);
printk(KERN_ERR PFX "rx_ring->sbq_len = %d.\n", rx_ring->sbq_len);
printk(KERN_ERR PFX "rx_ring->sbq_size = %d.\n", rx_ring->sbq_size);
printk(KERN_ERR PFX "rx_ring->sbq_prod_idx_db_reg addr = %p.\n",
rx_ring->sbq_prod_idx_db_reg);
printk(KERN_ERR PFX "rx_ring->sbq_prod_idx = %d.\n",
rx_ring->sbq_prod_idx);
printk(KERN_ERR PFX "rx_ring->sbq_curr_idx = %d.\n",
rx_ring->sbq_curr_idx);
printk(KERN_ERR PFX "rx_ring->sbq_clean_idx = %d.\n",
rx_ring->sbq_clean_idx);
printk(KERN_ERR PFX "rx_ring->sbq_free_cnt = %d.\n",
rx_ring->sbq_free_cnt);
printk(KERN_ERR PFX "rx_ring->sbq_buf_size = %d.\n",
rx_ring->sbq_buf_size);
printk(KERN_ERR PFX "rx_ring->cq_id = %d.\n", rx_ring->cq_id);
printk(KERN_ERR PFX "rx_ring->irq = %d.\n", rx_ring->irq);
printk(KERN_ERR PFX "rx_ring->cpu = %d.\n", rx_ring->cpu);
printk(KERN_ERR PFX "rx_ring->qdev = %p.\n", rx_ring->qdev);
}
void ql_dump_hw_cb(struct ql_adapter *qdev, int size, u32 bit, u16 q_id)
{
void *ptr;
printk(KERN_ERR PFX "%s: Enter.\n", __func__);
ptr = kmalloc(size, GFP_ATOMIC);
if (ptr == NULL) {
printk(KERN_ERR PFX "%s: Couldn't allocate a buffer.\n",
__func__);
return;
}
if (ql_write_cfg(qdev, ptr, size, bit, q_id)) {
printk(KERN_ERR "%s: Failed to upload control block!\n",
__func__);
goto fail_it;
}
switch (bit) {
case CFG_DRQ:
ql_dump_wqicb((struct wqicb *)ptr);
break;
case CFG_DCQ:
ql_dump_cqicb((struct cqicb *)ptr);
break;
case CFG_DR:
ql_dump_ricb((struct ricb *)ptr);
break;
default:
printk(KERN_ERR PFX "%s: Invalid bit value = %x.\n",
__func__, bit);
break;
}
fail_it:
kfree(ptr);
}
#endif
#ifdef QL_OB_DUMP
void ql_dump_tx_desc(struct tx_buf_desc *tbd)
{
printk(KERN_ERR PFX "tbd->addr = 0x%llx\n",
le64_to_cpu((u64) tbd->addr));
printk(KERN_ERR PFX "tbd->len = %d\n",
le32_to_cpu(tbd->len & TX_DESC_LEN_MASK));
printk(KERN_ERR PFX "tbd->flags = %s %s\n",
tbd->len & TX_DESC_C ? "C" : ".",
tbd->len & TX_DESC_E ? "E" : ".");
tbd++;
printk(KERN_ERR PFX "tbd->addr = 0x%llx\n",
le64_to_cpu((u64) tbd->addr));
printk(KERN_ERR PFX "tbd->len = %d\n",
le32_to_cpu(tbd->len & TX_DESC_LEN_MASK));
printk(KERN_ERR PFX "tbd->flags = %s %s\n",
tbd->len & TX_DESC_C ? "C" : ".",
tbd->len & TX_DESC_E ? "E" : ".");
tbd++;
printk(KERN_ERR PFX "tbd->addr = 0x%llx\n",
le64_to_cpu((u64) tbd->addr));
printk(KERN_ERR PFX "tbd->len = %d\n",
le32_to_cpu(tbd->len & TX_DESC_LEN_MASK));
printk(KERN_ERR PFX "tbd->flags = %s %s\n",
tbd->len & TX_DESC_C ? "C" : ".",
tbd->len & TX_DESC_E ? "E" : ".");
}
void ql_dump_ob_mac_iocb(struct ob_mac_iocb_req *ob_mac_iocb)
{
struct ob_mac_tso_iocb_req *ob_mac_tso_iocb =
(struct ob_mac_tso_iocb_req *)ob_mac_iocb;
struct tx_buf_desc *tbd;
u16 frame_len;
printk(KERN_ERR PFX "%s\n", __func__);
printk(KERN_ERR PFX "opcode = %s\n",
(ob_mac_iocb->opcode == OPCODE_OB_MAC_IOCB) ? "MAC" : "TSO");
printk(KERN_ERR PFX "flags1 = %s %s %s %s %s\n",
ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_OI ? "OI" : "",
ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_I ? "I" : "",
ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_D ? "D" : "",
ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_IP4 ? "IP4" : "",
ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_IP6 ? "IP6" : "");
printk(KERN_ERR PFX "flags2 = %s %s %s\n",
ob_mac_tso_iocb->flags2 & OB_MAC_TSO_IOCB_LSO ? "LSO" : "",
ob_mac_tso_iocb->flags2 & OB_MAC_TSO_IOCB_UC ? "UC" : "",
ob_mac_tso_iocb->flags2 & OB_MAC_TSO_IOCB_TC ? "TC" : "");
printk(KERN_ERR PFX "flags3 = %s %s %s\n",
ob_mac_tso_iocb->flags3 & OB_MAC_TSO_IOCB_IC ? "IC" : "",
ob_mac_tso_iocb->flags3 & OB_MAC_TSO_IOCB_DFP ? "DFP" : "",
ob_mac_tso_iocb->flags3 & OB_MAC_TSO_IOCB_V ? "V" : "");
printk(KERN_ERR PFX "tid = %x\n", ob_mac_iocb->tid);
printk(KERN_ERR PFX "txq_idx = %d\n", ob_mac_iocb->txq_idx);
printk(KERN_ERR PFX "vlan_tci = %x\n", ob_mac_tso_iocb->vlan_tci);
if (ob_mac_iocb->opcode == OPCODE_OB_MAC_TSO_IOCB) {
printk(KERN_ERR PFX "frame_len = %d\n",
le32_to_cpu(ob_mac_tso_iocb->frame_len));
printk(KERN_ERR PFX "mss = %d\n",
le16_to_cpu(ob_mac_tso_iocb->mss));
printk(KERN_ERR PFX "prot_hdr_len = %d\n",
le16_to_cpu(ob_mac_tso_iocb->total_hdrs_len));
printk(KERN_ERR PFX "hdr_offset = 0x%.04x\n",
le16_to_cpu(ob_mac_tso_iocb->net_trans_offset));
frame_len = le32_to_cpu(ob_mac_tso_iocb->frame_len);
} else {
printk(KERN_ERR PFX "frame_len = %d\n",
le16_to_cpu(ob_mac_iocb->frame_len));
frame_len = le16_to_cpu(ob_mac_iocb->frame_len);
}
tbd = &ob_mac_iocb->tbd[0];
ql_dump_tx_desc(tbd);
}
void ql_dump_ob_mac_rsp(struct ob_mac_iocb_rsp *ob_mac_rsp)
{
printk(KERN_ERR PFX "%s\n", __func__);
printk(KERN_ERR PFX "opcode = %d\n", ob_mac_rsp->opcode);
printk(KERN_ERR PFX "flags = %s %s %s %s %s %s %s\n",
ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_OI ? "OI" : ".",
ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_I ? "I" : ".",
ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_E ? "E" : ".",
ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_S ? "S" : ".",
ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_L ? "L" : ".",
ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_P ? "P" : ".",
ob_mac_rsp->flags2 & OB_MAC_IOCB_RSP_B ? "B" : ".");
printk(KERN_ERR PFX "tid = %x\n", ob_mac_rsp->tid);
}
#endif
#ifdef QL_IB_DUMP
void ql_dump_ib_mac_rsp(struct ib_mac_iocb_rsp *ib_mac_rsp)
{
printk(KERN_ERR PFX "%s\n", __func__);
printk(KERN_ERR PFX "opcode = 0x%x\n", ib_mac_rsp->opcode);
printk(KERN_ERR PFX "flags1 = %s%s%s%s%s%s\n",
ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_OI ? "OI " : "",
ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_I ? "I " : "",
ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_TE ? "TE " : "",
ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU ? "NU " : "",
ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_IE ? "IE " : "",
ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_B ? "B " : "");
if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK)
printk(KERN_ERR PFX "%s%s%s Multicast.\n",
(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
printk(KERN_ERR PFX "flags2 = %s%s%s%s%s\n",
(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) ? "P " : "",
(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ? "V " : "",
(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) ? "U " : "",
(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) ? "T " : "",
(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_FO) ? "FO " : "");
if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK)
printk(KERN_ERR PFX "%s%s%s%s%s error.\n",
(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
IB_MAC_IOCB_RSP_ERR_OVERSIZE ? "oversize" : "",
(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
IB_MAC_IOCB_RSP_ERR_UNDERSIZE ? "undersize" : "",
(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
IB_MAC_IOCB_RSP_ERR_PREAMBLE ? "preamble" : "",
(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
IB_MAC_IOCB_RSP_ERR_FRAME_LEN ? "frame length" : "",
(ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
IB_MAC_IOCB_RSP_ERR_CRC ? "CRC" : "");
printk(KERN_ERR PFX "flags3 = %s%s.\n",
ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS ? "DS " : "",
ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL ? "DL " : "");
if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK)
printk(KERN_ERR PFX "RSS flags = %s%s%s%s.\n",
((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) ==
IB_MAC_IOCB_RSP_M_IPV4) ? "IPv4 RSS" : "",
((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) ==
IB_MAC_IOCB_RSP_M_IPV6) ? "IPv6 RSS " : "",
((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) ==
IB_MAC_IOCB_RSP_M_TCP_V4) ? "TCP/IPv4 RSS" : "",
((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) ==
IB_MAC_IOCB_RSP_M_TCP_V6) ? "TCP/IPv6 RSS" : "");
printk(KERN_ERR PFX "data_len = %d\n",
le32_to_cpu(ib_mac_rsp->data_len));
printk(KERN_ERR PFX "data_addr = 0x%llx\n",
(unsigned long long) le64_to_cpu(ib_mac_rsp->data_addr));
if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK)
printk(KERN_ERR PFX "rss = %x\n",
le32_to_cpu(ib_mac_rsp->rss));
if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)
printk(KERN_ERR PFX "vlan_id = %x\n",
le16_to_cpu(ib_mac_rsp->vlan_id));
printk(KERN_ERR PFX "flags4 = %s%s%s.\n",
ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV ? "HV " : "",
ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS ? "HS " : "",
ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HL ? "HL " : "");
if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
printk(KERN_ERR PFX "hdr length = %d.\n",
le32_to_cpu(ib_mac_rsp->hdr_len));
printk(KERN_ERR PFX "hdr addr = 0x%llx.\n",
(unsigned long long) le64_to_cpu(ib_mac_rsp->hdr_addr));
}
}
#endif
#ifdef QL_ALL_DUMP
void ql_dump_all(struct ql_adapter *qdev)
{
int i;
QL_DUMP_REGS(qdev);
QL_DUMP_QDEV(qdev);
for (i = 0; i < qdev->tx_ring_count; i++) {
QL_DUMP_TX_RING(&qdev->tx_ring[i]);
QL_DUMP_WQICB((struct wqicb *)&qdev->tx_ring[i]);
}
for (i = 0; i < qdev->rx_ring_count; i++) {
QL_DUMP_RX_RING(&qdev->rx_ring[i]);
QL_DUMP_CQICB((struct cqicb *)&qdev->rx_ring[i]);
}
}
#endif