blob: b30e81ad5307e851c50d58386bb17eb68d2072c9 [file] [log] [blame]
How to use packet injection with mac80211
mac80211 now allows arbitrary packets to be injected down any Monitor Mode
interface from userland. The packet you inject needs to be composed in the
following format:
[ radiotap header ]
[ ieee80211 header ]
[ payload ]
The radiotap format is discussed in
Despite many radiotap parameters being currently defined, most only make sense
to appear on received packets. The following information is parsed from the
radiotap headers and used to control injection:
IEEE80211_RADIOTAP_F_FCS: FCS will be removed and recalculated
IEEE80211_RADIOTAP_F_WEP: frame will be encrypted if key available
IEEE80211_RADIOTAP_F_FRAG: frame will be fragmented if longer than the
current fragmentation threshold.
The injection code can also skip all other currently defined radiotap fields
facilitating replay of captured radiotap headers directly.
Here is an example valid radiotap header defining some parameters
0x00, 0x00, // <-- radiotap version
0x0b, 0x00, // <- radiotap header length
0x04, 0x0c, 0x00, 0x00, // <-- bitmap
0x6c, // <-- rate
0x0c, //<-- tx power
0x01 //<-- antenna
The ieee80211 header follows immediately afterwards, looking for example like
0x08, 0x01, 0x00, 0x00,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x13, 0x22, 0x33, 0x44, 0x55, 0x66,
0x13, 0x22, 0x33, 0x44, 0x55, 0x66,
0x10, 0x86
Then lastly there is the payload.
After composing the packet contents, it is sent by send()-ing it to a logical
mac80211 interface that is in Monitor mode. Libpcap can also be used,
(which is easier than doing the work to bind the socket to the right
interface), along the following lines:
ppcap = pcap_open_live(szInterfaceName, 800, 1, 20, szErrbuf);
r = pcap_inject(ppcap, u8aSendBuffer, nLength);
You can also find a link to a complete inject application here:
Andy Green <>