| /* |
| * linux/arch/arm/mm/fault-armv.c |
| * |
| * Copyright (C) 1995 Linus Torvalds |
| * Modifications for ARM processor (c) 1995-2002 Russell King |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| #include <linux/module.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/bitops.h> |
| #include <linux/vmalloc.h> |
| #include <linux/init.h> |
| #include <linux/pagemap.h> |
| #include <linux/gfp.h> |
| |
| #include <asm/bugs.h> |
| #include <asm/cacheflush.h> |
| #include <asm/cachetype.h> |
| #include <asm/pgtable.h> |
| #include <asm/tlbflush.h> |
| |
| #include "mm.h" |
| |
| static unsigned long shared_pte_mask = L_PTE_MT_BUFFERABLE; |
| |
| /* |
| * We take the easy way out of this problem - we make the |
| * PTE uncacheable. However, we leave the write buffer on. |
| * |
| * Note that the pte lock held when calling update_mmu_cache must also |
| * guard the pte (somewhere else in the same mm) that we modify here. |
| * Therefore those configurations which might call adjust_pte (those |
| * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock. |
| */ |
| static int do_adjust_pte(struct vm_area_struct *vma, unsigned long address, |
| unsigned long pfn, pte_t *ptep) |
| { |
| pte_t entry = *ptep; |
| int ret; |
| |
| /* |
| * If this page is present, it's actually being shared. |
| */ |
| ret = pte_present(entry); |
| |
| /* |
| * If this page isn't present, or is already setup to |
| * fault (ie, is old), we can safely ignore any issues. |
| */ |
| if (ret && (pte_val(entry) & L_PTE_MT_MASK) != shared_pte_mask) { |
| flush_cache_page(vma, address, pfn); |
| outer_flush_range((pfn << PAGE_SHIFT), |
| (pfn << PAGE_SHIFT) + PAGE_SIZE); |
| pte_val(entry) &= ~L_PTE_MT_MASK; |
| pte_val(entry) |= shared_pte_mask; |
| set_pte_at(vma->vm_mm, address, ptep, entry); |
| flush_tlb_page(vma, address); |
| } |
| |
| return ret; |
| } |
| |
| #if USE_SPLIT_PTLOCKS |
| /* |
| * If we are using split PTE locks, then we need to take the page |
| * lock here. Otherwise we are using shared mm->page_table_lock |
| * which is already locked, thus cannot take it. |
| */ |
| static inline void do_pte_lock(spinlock_t *ptl) |
| { |
| /* |
| * Use nested version here to indicate that we are already |
| * holding one similar spinlock. |
| */ |
| spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); |
| } |
| |
| static inline void do_pte_unlock(spinlock_t *ptl) |
| { |
| spin_unlock(ptl); |
| } |
| #else /* !USE_SPLIT_PTLOCKS */ |
| static inline void do_pte_lock(spinlock_t *ptl) {} |
| static inline void do_pte_unlock(spinlock_t *ptl) {} |
| #endif /* USE_SPLIT_PTLOCKS */ |
| |
| static int adjust_pte(struct vm_area_struct *vma, unsigned long address, |
| unsigned long pfn) |
| { |
| spinlock_t *ptl; |
| pgd_t *pgd; |
| pmd_t *pmd; |
| pte_t *pte; |
| int ret; |
| |
| pgd = pgd_offset(vma->vm_mm, address); |
| if (pgd_none_or_clear_bad(pgd)) |
| return 0; |
| |
| pmd = pmd_offset(pgd, address); |
| if (pmd_none_or_clear_bad(pmd)) |
| return 0; |
| |
| /* |
| * This is called while another page table is mapped, so we |
| * must use the nested version. This also means we need to |
| * open-code the spin-locking. |
| */ |
| ptl = pte_lockptr(vma->vm_mm, pmd); |
| pte = pte_offset_map_nested(pmd, address); |
| do_pte_lock(ptl); |
| |
| ret = do_adjust_pte(vma, address, pfn, pte); |
| |
| do_pte_unlock(ptl); |
| pte_unmap_nested(pte); |
| |
| return ret; |
| } |
| |
| static void |
| make_coherent(struct address_space *mapping, struct vm_area_struct *vma, |
| unsigned long addr, pte_t *ptep, unsigned long pfn) |
| { |
| struct mm_struct *mm = vma->vm_mm; |
| struct vm_area_struct *mpnt; |
| struct prio_tree_iter iter; |
| unsigned long offset; |
| pgoff_t pgoff; |
| int aliases = 0; |
| |
| pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT); |
| |
| /* |
| * If we have any shared mappings that are in the same mm |
| * space, then we need to handle them specially to maintain |
| * cache coherency. |
| */ |
| flush_dcache_mmap_lock(mapping); |
| vma_prio_tree_foreach(mpnt, &iter, &mapping->i_mmap, pgoff, pgoff) { |
| /* |
| * If this VMA is not in our MM, we can ignore it. |
| * Note that we intentionally mask out the VMA |
| * that we are fixing up. |
| */ |
| if (mpnt->vm_mm != mm || mpnt == vma) |
| continue; |
| if (!(mpnt->vm_flags & VM_MAYSHARE)) |
| continue; |
| offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT; |
| aliases += adjust_pte(mpnt, mpnt->vm_start + offset, pfn); |
| } |
| flush_dcache_mmap_unlock(mapping); |
| if (aliases) |
| do_adjust_pte(vma, addr, pfn, ptep); |
| } |
| |
| /* |
| * Take care of architecture specific things when placing a new PTE into |
| * a page table, or changing an existing PTE. Basically, there are two |
| * things that we need to take care of: |
| * |
| * 1. If PG_dcache_dirty is set for the page, we need to ensure |
| * that any cache entries for the kernels virtual memory |
| * range are written back to the page. |
| * 2. If we have multiple shared mappings of the same space in |
| * an object, we need to deal with the cache aliasing issues. |
| * |
| * Note that the pte lock will be held. |
| */ |
| void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr, |
| pte_t *ptep) |
| { |
| unsigned long pfn = pte_pfn(*ptep); |
| struct address_space *mapping; |
| struct page *page; |
| |
| if (!pfn_valid(pfn)) |
| return; |
| |
| /* |
| * The zero page is never written to, so never has any dirty |
| * cache lines, and therefore never needs to be flushed. |
| */ |
| page = pfn_to_page(pfn); |
| if (page == ZERO_PAGE(0)) |
| return; |
| |
| mapping = page_mapping(page); |
| #ifndef CONFIG_SMP |
| if (test_and_clear_bit(PG_dcache_dirty, &page->flags)) |
| __flush_dcache_page(mapping, page); |
| #endif |
| if (mapping) { |
| if (cache_is_vivt()) |
| make_coherent(mapping, vma, addr, ptep, pfn); |
| else if (vma->vm_flags & VM_EXEC) |
| __flush_icache_all(); |
| } |
| } |
| |
| /* |
| * Check whether the write buffer has physical address aliasing |
| * issues. If it has, we need to avoid them for the case where |
| * we have several shared mappings of the same object in user |
| * space. |
| */ |
| static int __init check_writebuffer(unsigned long *p1, unsigned long *p2) |
| { |
| register unsigned long zero = 0, one = 1, val; |
| |
| local_irq_disable(); |
| mb(); |
| *p1 = one; |
| mb(); |
| *p2 = zero; |
| mb(); |
| val = *p1; |
| mb(); |
| local_irq_enable(); |
| return val != zero; |
| } |
| |
| void __init check_writebuffer_bugs(void) |
| { |
| struct page *page; |
| const char *reason; |
| unsigned long v = 1; |
| |
| printk(KERN_INFO "CPU: Testing write buffer coherency: "); |
| |
| page = alloc_page(GFP_KERNEL); |
| if (page) { |
| unsigned long *p1, *p2; |
| pgprot_t prot = __pgprot_modify(PAGE_KERNEL, |
| L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE); |
| |
| p1 = vmap(&page, 1, VM_IOREMAP, prot); |
| p2 = vmap(&page, 1, VM_IOREMAP, prot); |
| |
| if (p1 && p2) { |
| v = check_writebuffer(p1, p2); |
| reason = "enabling work-around"; |
| } else { |
| reason = "unable to map memory\n"; |
| } |
| |
| vunmap(p1); |
| vunmap(p2); |
| put_page(page); |
| } else { |
| reason = "unable to grab page\n"; |
| } |
| |
| if (v) { |
| printk("failed, %s\n", reason); |
| shared_pte_mask = L_PTE_MT_UNCACHED; |
| } else { |
| printk("ok\n"); |
| } |
| } |