| /****************************************************************************** |
| * |
| * (C)Copyright 1998,1999 SysKonnect, |
| * a business unit of Schneider & Koch & Co. Datensysteme GmbH. |
| * |
| * See the file "skfddi.c" for further information. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * The information in this file is provided "AS IS" without warranty. |
| * |
| ******************************************************************************/ |
| |
| /* |
| * FBI board dependent Driver for SMT and LLC |
| */ |
| |
| #include "h/types.h" |
| #include "h/fddi.h" |
| #include "h/smc.h" |
| #include "h/supern_2.h" |
| #include "h/skfbiinc.h" |
| #include <linux/bitrev.h> |
| |
| #ifndef lint |
| static const char ID_sccs[] = "@(#)drvfbi.c 1.63 99/02/11 (C) SK " ; |
| #endif |
| |
| /* |
| * PCM active state |
| */ |
| #define PC8_ACTIVE 8 |
| |
| #define LED_Y_ON 0x11 /* Used for ring up/down indication */ |
| #define LED_Y_OFF 0x10 |
| |
| |
| #define MS2BCLK(x) ((x)*12500L) |
| |
| /* |
| * valid configuration values are: |
| */ |
| |
| /* |
| * xPOS_ID:xxxx |
| * | \ / |
| * | \/ |
| * | --------------------- the patched POS_ID of the Adapter |
| * | xxxx = (Vendor ID low byte, |
| * | Vendor ID high byte, |
| * | Device ID low byte, |
| * | Device ID high byte) |
| * +------------------------------ the patched oem_id must be |
| * 'S' for SK or 'I' for IBM |
| * this is a short id for the driver. |
| */ |
| #ifndef MULT_OEM |
| #ifndef OEM_CONCEPT |
| const u_char oem_id[] = "xPOS_ID:xxxx" ; |
| #else /* OEM_CONCEPT */ |
| const u_char oem_id[] = OEM_ID ; |
| #endif /* OEM_CONCEPT */ |
| #define ID_BYTE0 8 |
| #define OEMID(smc,i) oem_id[ID_BYTE0 + i] |
| #else /* MULT_OEM */ |
| const struct s_oem_ids oem_ids[] = { |
| #include "oemids.h" |
| {0} |
| }; |
| #define OEMID(smc,i) smc->hw.oem_id->oi_id[i] |
| #endif /* MULT_OEM */ |
| |
| /* Prototypes of external functions */ |
| #ifdef AIX |
| extern int AIX_vpdReadByte() ; |
| #endif |
| |
| |
| /* Prototype of a local function. */ |
| static void smt_stop_watchdog(struct s_smc *smc); |
| |
| /* |
| * FDDI card reset |
| */ |
| static void card_start(struct s_smc *smc) |
| { |
| int i ; |
| #ifdef PCI |
| u_char rev_id ; |
| u_short word; |
| #endif |
| |
| smt_stop_watchdog(smc) ; |
| |
| #ifdef PCI |
| /* |
| * make sure no transfer activity is pending |
| */ |
| outpw(FM_A(FM_MDREG1),FM_MINIT) ; |
| outp(ADDR(B0_CTRL), CTRL_HPI_SET) ; |
| hwt_wait_time(smc,hwt_quick_read(smc),MS2BCLK(10)) ; |
| /* |
| * now reset everything |
| */ |
| outp(ADDR(B0_CTRL),CTRL_RST_SET) ; /* reset for all chips */ |
| i = (int) inp(ADDR(B0_CTRL)) ; /* do dummy read */ |
| SK_UNUSED(i) ; /* Make LINT happy. */ |
| outp(ADDR(B0_CTRL), CTRL_RST_CLR) ; |
| |
| /* |
| * Reset all bits in the PCI STATUS register |
| */ |
| outp(ADDR(B0_TST_CTRL), TST_CFG_WRITE_ON) ; /* enable for writes */ |
| word = inpw(PCI_C(PCI_STATUS)) ; |
| outpw(PCI_C(PCI_STATUS), word | PCI_ERRBITS) ; |
| outp(ADDR(B0_TST_CTRL), TST_CFG_WRITE_OFF) ; /* disable writes */ |
| |
| /* |
| * Release the reset of all the State machines |
| * Release Master_Reset |
| * Release HPI_SM_Reset |
| */ |
| outp(ADDR(B0_CTRL), CTRL_MRST_CLR|CTRL_HPI_CLR) ; |
| |
| /* |
| * determine the adapter type |
| * Note: Do it here, because some drivers may call card_start() once |
| * at very first before any other initialization functions is |
| * executed. |
| */ |
| rev_id = inp(PCI_C(PCI_REV_ID)) ; |
| if ((rev_id & 0xf0) == SK_ML_ID_1 || (rev_id & 0xf0) == SK_ML_ID_2) { |
| smc->hw.hw_is_64bit = TRUE ; |
| } else { |
| smc->hw.hw_is_64bit = FALSE ; |
| } |
| |
| /* |
| * Watermark initialization |
| */ |
| if (!smc->hw.hw_is_64bit) { |
| outpd(ADDR(B4_R1_F), RX_WATERMARK) ; |
| outpd(ADDR(B5_XA_F), TX_WATERMARK) ; |
| outpd(ADDR(B5_XS_F), TX_WATERMARK) ; |
| } |
| |
| outp(ADDR(B0_CTRL),CTRL_RST_CLR) ; /* clear the reset chips */ |
| outp(ADDR(B0_LED),LED_GA_OFF|LED_MY_ON|LED_GB_OFF) ; /* ye LED on */ |
| |
| /* init the timer value for the watch dog 2,5 minutes */ |
| outpd(ADDR(B2_WDOG_INI),0x6FC23AC0) ; |
| |
| /* initialize the ISR mask */ |
| smc->hw.is_imask = ISR_MASK ; |
| smc->hw.hw_state = STOPPED ; |
| #endif |
| GET_PAGE(0) ; /* necessary for BOOT */ |
| } |
| |
| void card_stop(struct s_smc *smc) |
| { |
| smt_stop_watchdog(smc) ; |
| smc->hw.mac_ring_is_up = 0 ; /* ring down */ |
| |
| #ifdef PCI |
| /* |
| * make sure no transfer activity is pending |
| */ |
| outpw(FM_A(FM_MDREG1),FM_MINIT) ; |
| outp(ADDR(B0_CTRL), CTRL_HPI_SET) ; |
| hwt_wait_time(smc,hwt_quick_read(smc),MS2BCLK(10)) ; |
| /* |
| * now reset everything |
| */ |
| outp(ADDR(B0_CTRL),CTRL_RST_SET) ; /* reset for all chips */ |
| outp(ADDR(B0_CTRL),CTRL_RST_CLR) ; /* reset for all chips */ |
| outp(ADDR(B0_LED),LED_GA_OFF|LED_MY_OFF|LED_GB_OFF) ; /* all LEDs off */ |
| smc->hw.hw_state = STOPPED ; |
| #endif |
| } |
| /*--------------------------- ISR handling ----------------------------------*/ |
| |
| void mac1_irq(struct s_smc *smc, u_short stu, u_short stl) |
| { |
| int restart_tx = 0 ; |
| again: |
| |
| /* |
| * parity error: note encoding error is not possible in tag mode |
| */ |
| if (stl & (FM_SPCEPDS | /* parity err. syn.q.*/ |
| FM_SPCEPDA0 | /* parity err. a.q.0 */ |
| FM_SPCEPDA1)) { /* parity err. a.q.1 */ |
| SMT_PANIC(smc,SMT_E0134, SMT_E0134_MSG) ; |
| } |
| /* |
| * buffer underrun: can only occur if a tx threshold is specified |
| */ |
| if (stl & (FM_STBURS | /* tx buffer underrun syn.q.*/ |
| FM_STBURA0 | /* tx buffer underrun a.q.0 */ |
| FM_STBURA1)) { /* tx buffer underrun a.q.2 */ |
| SMT_PANIC(smc,SMT_E0133, SMT_E0133_MSG) ; |
| } |
| |
| if ( (stu & (FM_SXMTABT | /* transmit abort */ |
| FM_STXABRS | /* syn. tx abort */ |
| FM_STXABRA0)) || /* asyn. tx abort */ |
| (stl & (FM_SQLCKS | /* lock for syn. q. */ |
| FM_SQLCKA0)) ) { /* lock for asyn. q. */ |
| formac_tx_restart(smc) ; /* init tx */ |
| restart_tx = 1 ; |
| stu = inpw(FM_A(FM_ST1U)) ; |
| stl = inpw(FM_A(FM_ST1L)) ; |
| stu &= ~ (FM_STECFRMA0 | FM_STEFRMA0 | FM_STEFRMS) ; |
| if (stu || stl) |
| goto again ; |
| } |
| |
| if (stu & (FM_STEFRMA0 | /* end of asyn tx */ |
| FM_STEFRMS)) { /* end of sync tx */ |
| restart_tx = 1 ; |
| } |
| |
| if (restart_tx) |
| llc_restart_tx(smc) ; |
| } |
| |
| /* |
| * interrupt source= plc1 |
| * this function is called in nwfbisr.asm |
| */ |
| void plc1_irq(struct s_smc *smc) |
| { |
| u_short st = inpw(PLC(PB,PL_INTR_EVENT)) ; |
| |
| plc_irq(smc,PB,st) ; |
| } |
| |
| /* |
| * interrupt source= plc2 |
| * this function is called in nwfbisr.asm |
| */ |
| void plc2_irq(struct s_smc *smc) |
| { |
| u_short st = inpw(PLC(PA,PL_INTR_EVENT)) ; |
| |
| plc_irq(smc,PA,st) ; |
| } |
| |
| |
| /* |
| * interrupt source= timer |
| */ |
| void timer_irq(struct s_smc *smc) |
| { |
| hwt_restart(smc); |
| smc->hw.t_stop = smc->hw.t_start; |
| smt_timer_done(smc) ; |
| } |
| |
| /* |
| * return S-port (PA or PB) |
| */ |
| int pcm_get_s_port(struct s_smc *smc) |
| { |
| SK_UNUSED(smc) ; |
| return(PS) ; |
| } |
| |
| /* |
| * Station Label = "FDDI-XYZ" where |
| * |
| * X = connector type |
| * Y = PMD type |
| * Z = port type |
| */ |
| #define STATION_LABEL_CONNECTOR_OFFSET 5 |
| #define STATION_LABEL_PMD_OFFSET 6 |
| #define STATION_LABEL_PORT_OFFSET 7 |
| |
| void read_address(struct s_smc *smc, u_char *mac_addr) |
| { |
| char ConnectorType ; |
| char PmdType ; |
| int i ; |
| |
| #ifdef PCI |
| for (i = 0; i < 6; i++) { /* read mac address from board */ |
| smc->hw.fddi_phys_addr.a[i] = |
| bitrev8(inp(ADDR(B2_MAC_0+i))); |
| } |
| #endif |
| |
| ConnectorType = inp(ADDR(B2_CONN_TYP)) ; |
| PmdType = inp(ADDR(B2_PMD_TYP)) ; |
| |
| smc->y[PA].pmd_type[PMD_SK_CONN] = |
| smc->y[PB].pmd_type[PMD_SK_CONN] = ConnectorType ; |
| smc->y[PA].pmd_type[PMD_SK_PMD ] = |
| smc->y[PB].pmd_type[PMD_SK_PMD ] = PmdType ; |
| |
| if (mac_addr) { |
| for (i = 0; i < 6 ;i++) { |
| smc->hw.fddi_canon_addr.a[i] = mac_addr[i] ; |
| smc->hw.fddi_home_addr.a[i] = bitrev8(mac_addr[i]); |
| } |
| return ; |
| } |
| smc->hw.fddi_home_addr = smc->hw.fddi_phys_addr ; |
| |
| for (i = 0; i < 6 ;i++) { |
| smc->hw.fddi_canon_addr.a[i] = |
| bitrev8(smc->hw.fddi_phys_addr.a[i]); |
| } |
| } |
| |
| /* |
| * FDDI card soft reset |
| */ |
| void init_board(struct s_smc *smc, u_char *mac_addr) |
| { |
| card_start(smc) ; |
| read_address(smc,mac_addr) ; |
| |
| if (!(inp(ADDR(B0_DAS)) & DAS_AVAIL)) |
| smc->s.sas = SMT_SAS ; /* Single att. station */ |
| else |
| smc->s.sas = SMT_DAS ; /* Dual att. station */ |
| |
| if (!(inp(ADDR(B0_DAS)) & DAS_BYP_ST)) |
| smc->mib.fddiSMTBypassPresent = 0 ; |
| /* without opt. bypass */ |
| else |
| smc->mib.fddiSMTBypassPresent = 1 ; |
| /* with opt. bypass */ |
| } |
| |
| /* |
| * insert or deinsert optical bypass (called by ECM) |
| */ |
| void sm_pm_bypass_req(struct s_smc *smc, int mode) |
| { |
| DB_ECMN(1,"ECM : sm_pm_bypass_req(%s)\n",(mode == BP_INSERT) ? |
| "BP_INSERT" : "BP_DEINSERT",0) ; |
| |
| if (smc->s.sas != SMT_DAS) |
| return ; |
| |
| #ifdef PCI |
| switch(mode) { |
| case BP_INSERT : |
| outp(ADDR(B0_DAS),DAS_BYP_INS) ; /* insert station */ |
| break ; |
| case BP_DEINSERT : |
| outp(ADDR(B0_DAS),DAS_BYP_RMV) ; /* bypass station */ |
| break ; |
| } |
| #endif |
| } |
| |
| /* |
| * check if bypass connected |
| */ |
| int sm_pm_bypass_present(struct s_smc *smc) |
| { |
| return( (inp(ADDR(B0_DAS)) & DAS_BYP_ST) ? TRUE: FALSE) ; |
| } |
| |
| void plc_clear_irq(struct s_smc *smc, int p) |
| { |
| SK_UNUSED(p) ; |
| |
| SK_UNUSED(smc) ; |
| } |
| |
| |
| /* |
| * led_indication called by rmt_indication() and |
| * pcm_state_change() |
| * |
| * Input: |
| * smc: SMT context |
| * led_event: |
| * 0 Only switch green LEDs according to their respective PCM state |
| * LED_Y_OFF just switch yellow LED off |
| * LED_Y_ON just switch yello LED on |
| */ |
| static void led_indication(struct s_smc *smc, int led_event) |
| { |
| /* use smc->hw.mac_ring_is_up == TRUE |
| * as indication for Ring Operational |
| */ |
| u_short led_state ; |
| struct s_phy *phy ; |
| struct fddi_mib_p *mib_a ; |
| struct fddi_mib_p *mib_b ; |
| |
| phy = &smc->y[PA] ; |
| mib_a = phy->mib ; |
| phy = &smc->y[PB] ; |
| mib_b = phy->mib ; |
| |
| #ifdef PCI |
| led_state = 0 ; |
| |
| /* Ring up = yellow led OFF*/ |
| if (led_event == LED_Y_ON) { |
| led_state |= LED_MY_ON ; |
| } |
| else if (led_event == LED_Y_OFF) { |
| led_state |= LED_MY_OFF ; |
| } |
| else { /* PCM state changed */ |
| /* Link at Port A/S = green led A ON */ |
| if (mib_a->fddiPORTPCMState == PC8_ACTIVE) { |
| led_state |= LED_GA_ON ; |
| } |
| else { |
| led_state |= LED_GA_OFF ; |
| } |
| |
| /* Link at Port B = green led B ON */ |
| if (mib_b->fddiPORTPCMState == PC8_ACTIVE) { |
| led_state |= LED_GB_ON ; |
| } |
| else { |
| led_state |= LED_GB_OFF ; |
| } |
| } |
| |
| outp(ADDR(B0_LED), led_state) ; |
| #endif /* PCI */ |
| |
| } |
| |
| |
| void pcm_state_change(struct s_smc *smc, int plc, int p_state) |
| { |
| /* |
| * the current implementation of pcm_state_change() in the driver |
| * parts must be renamed to drv_pcm_state_change() which will be called |
| * now after led_indication. |
| */ |
| DRV_PCM_STATE_CHANGE(smc,plc,p_state) ; |
| |
| led_indication(smc,0) ; |
| } |
| |
| |
| void rmt_indication(struct s_smc *smc, int i) |
| { |
| /* Call a driver special function if defined */ |
| DRV_RMT_INDICATION(smc,i) ; |
| |
| led_indication(smc, i ? LED_Y_OFF : LED_Y_ON) ; |
| } |
| |
| |
| /* |
| * llc_recover_tx called by init_tx (fplus.c) |
| */ |
| void llc_recover_tx(struct s_smc *smc) |
| { |
| #ifdef LOAD_GEN |
| extern int load_gen_flag ; |
| |
| load_gen_flag = 0 ; |
| #endif |
| #ifndef SYNC |
| smc->hw.n_a_send= 0 ; |
| #else |
| SK_UNUSED(smc) ; |
| #endif |
| } |
| |
| #ifdef MULT_OEM |
| static int is_equal_num(char comp1[], char comp2[], int num) |
| { |
| int i ; |
| |
| for (i = 0 ; i < num ; i++) { |
| if (comp1[i] != comp2[i]) |
| return (0) ; |
| } |
| return (1) ; |
| } /* is_equal_num */ |
| |
| |
| /* |
| * set the OEM ID defaults, and test the contents of the OEM data base |
| * The default OEM is the first ACTIVE entry in the OEM data base |
| * |
| * returns: 0 success |
| * 1 error in data base |
| * 2 data base empty |
| * 3 no active entry |
| */ |
| int set_oi_id_def(struct s_smc *smc) |
| { |
| int sel_id ; |
| int i ; |
| int act_entries ; |
| |
| i = 0 ; |
| sel_id = -1 ; |
| act_entries = FALSE ; |
| smc->hw.oem_id = 0 ; |
| smc->hw.oem_min_status = OI_STAT_ACTIVE ; |
| |
| /* check OEM data base */ |
| while (oem_ids[i].oi_status) { |
| switch (oem_ids[i].oi_status) { |
| case OI_STAT_ACTIVE: |
| act_entries = TRUE ; /* we have active IDs */ |
| if (sel_id == -1) |
| sel_id = i ; /* save the first active ID */ |
| case OI_STAT_VALID: |
| case OI_STAT_PRESENT: |
| i++ ; |
| break ; /* entry ok */ |
| default: |
| return (1) ; /* invalid oi_status */ |
| } |
| } |
| |
| if (i == 0) |
| return (2) ; |
| if (!act_entries) |
| return (3) ; |
| |
| /* ok, we have a valid OEM data base with an active entry */ |
| smc->hw.oem_id = (struct s_oem_ids *) &oem_ids[sel_id] ; |
| return (0) ; |
| } |
| #endif /* MULT_OEM */ |
| |
| void driver_get_bia(struct s_smc *smc, struct fddi_addr *bia_addr) |
| { |
| int i ; |
| |
| for (i = 0 ; i < 6 ; i++) |
| bia_addr->a[i] = bitrev8(smc->hw.fddi_phys_addr.a[i]); |
| } |
| |
| void smt_start_watchdog(struct s_smc *smc) |
| { |
| SK_UNUSED(smc) ; /* Make LINT happy. */ |
| |
| #ifndef DEBUG |
| |
| #ifdef PCI |
| if (smc->hw.wdog_used) { |
| outpw(ADDR(B2_WDOG_CRTL),TIM_START) ; /* Start timer. */ |
| } |
| #endif |
| |
| #endif /* DEBUG */ |
| } |
| |
| static void smt_stop_watchdog(struct s_smc *smc) |
| { |
| SK_UNUSED(smc) ; /* Make LINT happy. */ |
| #ifndef DEBUG |
| |
| #ifdef PCI |
| if (smc->hw.wdog_used) { |
| outpw(ADDR(B2_WDOG_CRTL),TIM_STOP) ; /* Stop timer. */ |
| } |
| #endif |
| |
| #endif /* DEBUG */ |
| } |
| |
| #ifdef PCI |
| |
| void mac_do_pci_fix(struct s_smc *smc) |
| { |
| SK_UNUSED(smc) ; |
| } |
| #endif /* PCI */ |
| |