blob: b5cfa7aeb277c783a9931931e4d902e40c92bf3b [file] [log] [blame] [edit]
#ifndef __LINUX_FOTG210_H
#define __LINUX_FOTG210_H
#include <linux/usb/ehci-dbgp.h>
/* definitions used for the EHCI driver */
/*
* __hc32 and __hc16 are "Host Controller" types, they may be equivalent to
* __leXX (normally) or __beXX (given FOTG210_BIG_ENDIAN_DESC), depending on
* the host controller implementation.
*
* To facilitate the strongest possible byte-order checking from "sparse"
* and so on, we use __leXX unless that's not practical.
*/
#define __hc32 __le32
#define __hc16 __le16
/* statistics can be kept for tuning/monitoring */
struct fotg210_stats {
/* irq usage */
unsigned long normal;
unsigned long error;
unsigned long iaa;
unsigned long lost_iaa;
/* termination of urbs from core */
unsigned long complete;
unsigned long unlink;
};
/* fotg210_hcd->lock guards shared data against other CPUs:
* fotg210_hcd: async, unlink, periodic (and shadow), ...
* usb_host_endpoint: hcpriv
* fotg210_qh: qh_next, qtd_list
* fotg210_qtd: qtd_list
*
* Also, hold this lock when talking to HC registers or
* when updating hw_* fields in shared qh/qtd/... structures.
*/
#define FOTG210_MAX_ROOT_PORTS 1 /* see HCS_N_PORTS */
/*
* fotg210_rh_state values of FOTG210_RH_RUNNING or above mean that the
* controller may be doing DMA. Lower values mean there's no DMA.
*/
enum fotg210_rh_state {
FOTG210_RH_HALTED,
FOTG210_RH_SUSPENDED,
FOTG210_RH_RUNNING,
FOTG210_RH_STOPPING
};
/*
* Timer events, ordered by increasing delay length.
* Always update event_delays_ns[] and event_handlers[] (defined in
* ehci-timer.c) in parallel with this list.
*/
enum fotg210_hrtimer_event {
FOTG210_HRTIMER_POLL_ASS, /* Poll for async schedule off */
FOTG210_HRTIMER_POLL_PSS, /* Poll for periodic schedule off */
FOTG210_HRTIMER_POLL_DEAD, /* Wait for dead controller to stop */
FOTG210_HRTIMER_UNLINK_INTR, /* Wait for interrupt QH unlink */
FOTG210_HRTIMER_FREE_ITDS, /* Wait for unused iTDs and siTDs */
FOTG210_HRTIMER_ASYNC_UNLINKS, /* Unlink empty async QHs */
FOTG210_HRTIMER_IAA_WATCHDOG, /* Handle lost IAA interrupts */
FOTG210_HRTIMER_DISABLE_PERIODIC, /* Wait to disable periodic sched */
FOTG210_HRTIMER_DISABLE_ASYNC, /* Wait to disable async sched */
FOTG210_HRTIMER_IO_WATCHDOG, /* Check for missing IRQs */
FOTG210_HRTIMER_NUM_EVENTS /* Must come last */
};
#define FOTG210_HRTIMER_NO_EVENT 99
struct fotg210_hcd { /* one per controller */
/* timing support */
enum fotg210_hrtimer_event next_hrtimer_event;
unsigned enabled_hrtimer_events;
ktime_t hr_timeouts[FOTG210_HRTIMER_NUM_EVENTS];
struct hrtimer hrtimer;
int PSS_poll_count;
int ASS_poll_count;
int died_poll_count;
/* glue to PCI and HCD framework */
struct fotg210_caps __iomem *caps;
struct fotg210_regs __iomem *regs;
struct ehci_dbg_port __iomem *debug;
__u32 hcs_params; /* cached register copy */
spinlock_t lock;
enum fotg210_rh_state rh_state;
/* general schedule support */
bool scanning:1;
bool need_rescan:1;
bool intr_unlinking:1;
bool async_unlinking:1;
bool shutdown:1;
struct fotg210_qh *qh_scan_next;
/* async schedule support */
struct fotg210_qh *async;
struct fotg210_qh *dummy; /* For AMD quirk use */
struct fotg210_qh *async_unlink;
struct fotg210_qh *async_unlink_last;
struct fotg210_qh *async_iaa;
unsigned async_unlink_cycle;
unsigned async_count; /* async activity count */
/* periodic schedule support */
#define DEFAULT_I_TDPS 1024 /* some HCs can do less */
unsigned periodic_size;
__hc32 *periodic; /* hw periodic table */
dma_addr_t periodic_dma;
struct list_head intr_qh_list;
unsigned i_thresh; /* uframes HC might cache */
union fotg210_shadow *pshadow; /* mirror hw periodic table */
struct fotg210_qh *intr_unlink;
struct fotg210_qh *intr_unlink_last;
unsigned intr_unlink_cycle;
unsigned now_frame; /* frame from HC hardware */
unsigned next_frame; /* scan periodic, start here */
unsigned intr_count; /* intr activity count */
unsigned isoc_count; /* isoc activity count */
unsigned periodic_count; /* periodic activity count */
/* max periodic time per uframe */
unsigned uframe_periodic_max;
/* list of itds completed while now_frame was still active */
struct list_head cached_itd_list;
struct fotg210_itd *last_itd_to_free;
/* per root hub port */
unsigned long reset_done[FOTG210_MAX_ROOT_PORTS];
/* bit vectors (one bit per port)
* which ports were already suspended at the start of a bus suspend
*/
unsigned long bus_suspended;
/* which ports are edicated to the companion controller */
unsigned long companion_ports;
/* which ports are owned by the companion during a bus suspend */
unsigned long owned_ports;
/* which ports have the change-suspend feature turned on */
unsigned long port_c_suspend;
/* which ports are suspended */
unsigned long suspended_ports;
/* which ports have started to resume */
unsigned long resuming_ports;
/* per-HC memory pools (could be per-bus, but ...) */
struct dma_pool *qh_pool; /* qh per active urb */
struct dma_pool *qtd_pool; /* one or more per qh */
struct dma_pool *itd_pool; /* itd per iso urb */
unsigned random_frame;
unsigned long next_statechange;
ktime_t last_periodic_enable;
u32 command;
/* SILICON QUIRKS */
unsigned need_io_watchdog:1;
unsigned fs_i_thresh:1; /* Intel iso scheduling */
u8 sbrn; /* packed release number */
/* irq statistics */
#ifdef FOTG210_STATS
struct fotg210_stats stats;
# define COUNT(x) ((x)++)
#else
# define COUNT(x)
#endif
/* debug files */
struct dentry *debug_dir;
};
/* convert between an HCD pointer and the corresponding FOTG210_HCD */
static inline struct fotg210_hcd *hcd_to_fotg210(struct usb_hcd *hcd)
{
return (struct fotg210_hcd *)(hcd->hcd_priv);
}
static inline struct usb_hcd *fotg210_to_hcd(struct fotg210_hcd *fotg210)
{
return container_of((void *) fotg210, struct usb_hcd, hcd_priv);
}
/*-------------------------------------------------------------------------*/
/* EHCI register interface, corresponds to EHCI Revision 0.95 specification */
/* Section 2.2 Host Controller Capability Registers */
struct fotg210_caps {
/* these fields are specified as 8 and 16 bit registers,
* but some hosts can't perform 8 or 16 bit PCI accesses.
* some hosts treat caplength and hciversion as parts of a 32-bit
* register, others treat them as two separate registers, this
* affects the memory map for big endian controllers.
*/
u32 hc_capbase;
#define HC_LENGTH(fotg210, p) (0x00ff&((p) >> /* bits 7:0 / offset 00h */ \
(fotg210_big_endian_capbase(fotg210) ? 24 : 0)))
#define HC_VERSION(fotg210, p) (0xffff&((p) >> /* bits 31:16 / offset 02h */ \
(fotg210_big_endian_capbase(fotg210) ? 0 : 16)))
u32 hcs_params; /* HCSPARAMS - offset 0x4 */
#define HCS_N_PORTS(p) (((p)>>0)&0xf) /* bits 3:0, ports on HC */
u32 hcc_params; /* HCCPARAMS - offset 0x8 */
#define HCC_CANPARK(p) ((p)&(1 << 2)) /* true: can park on async qh */
#define HCC_PGM_FRAMELISTLEN(p) ((p)&(1 << 1)) /* true: periodic_size changes*/
u8 portroute[8]; /* nibbles for routing - offset 0xC */
};
/* Section 2.3 Host Controller Operational Registers */
struct fotg210_regs {
/* USBCMD: offset 0x00 */
u32 command;
/* EHCI 1.1 addendum */
/* 23:16 is r/w intr rate, in microframes; default "8" == 1/msec */
#define CMD_PARK (1<<11) /* enable "park" on async qh */
#define CMD_PARK_CNT(c) (((c)>>8)&3) /* how many transfers to park for */
#define CMD_IAAD (1<<6) /* "doorbell" interrupt async advance */
#define CMD_ASE (1<<5) /* async schedule enable */
#define CMD_PSE (1<<4) /* periodic schedule enable */
/* 3:2 is periodic frame list size */
#define CMD_RESET (1<<1) /* reset HC not bus */
#define CMD_RUN (1<<0) /* start/stop HC */
/* USBSTS: offset 0x04 */
u32 status;
#define STS_ASS (1<<15) /* Async Schedule Status */
#define STS_PSS (1<<14) /* Periodic Schedule Status */
#define STS_RECL (1<<13) /* Reclamation */
#define STS_HALT (1<<12) /* Not running (any reason) */
/* some bits reserved */
/* these STS_* flags are also intr_enable bits (USBINTR) */
#define STS_IAA (1<<5) /* Interrupted on async advance */
#define STS_FATAL (1<<4) /* such as some PCI access errors */
#define STS_FLR (1<<3) /* frame list rolled over */
#define STS_PCD (1<<2) /* port change detect */
#define STS_ERR (1<<1) /* "error" completion (overflow, ...) */
#define STS_INT (1<<0) /* "normal" completion (short, ...) */
/* USBINTR: offset 0x08 */
u32 intr_enable;
/* FRINDEX: offset 0x0C */
u32 frame_index; /* current microframe number */
/* CTRLDSSEGMENT: offset 0x10 */
u32 segment; /* address bits 63:32 if needed */
/* PERIODICLISTBASE: offset 0x14 */
u32 frame_list; /* points to periodic list */
/* ASYNCLISTADDR: offset 0x18 */
u32 async_next; /* address of next async queue head */
u32 reserved1;
/* PORTSC: offset 0x20 */
u32 port_status;
/* 31:23 reserved */
#define PORT_USB11(x) (((x)&(3<<10)) == (1<<10)) /* USB 1.1 device */
#define PORT_RESET (1<<8) /* reset port */
#define PORT_SUSPEND (1<<7) /* suspend port */
#define PORT_RESUME (1<<6) /* resume it */
#define PORT_PEC (1<<3) /* port enable change */
#define PORT_PE (1<<2) /* port enable */
#define PORT_CSC (1<<1) /* connect status change */
#define PORT_CONNECT (1<<0) /* device connected */
#define PORT_RWC_BITS (PORT_CSC | PORT_PEC)
u32 reserved2[19];
/* OTGCSR: offet 0x70 */
u32 otgcsr;
#define OTGCSR_HOST_SPD_TYP (3 << 22)
#define OTGCSR_A_BUS_DROP (1 << 5)
#define OTGCSR_A_BUS_REQ (1 << 4)
/* OTGISR: offset 0x74 */
u32 otgisr;
#define OTGISR_OVC (1 << 10)
u32 reserved3[15];
/* GMIR: offset 0xB4 */
u32 gmir;
#define GMIR_INT_POLARITY (1 << 3) /*Active High*/
#define GMIR_MHC_INT (1 << 2)
#define GMIR_MOTG_INT (1 << 1)
#define GMIR_MDEV_INT (1 << 0)
};
/*-------------------------------------------------------------------------*/
#define QTD_NEXT(fotg210, dma) cpu_to_hc32(fotg210, (u32)dma)
/*
* EHCI Specification 0.95 Section 3.5
* QTD: describe data transfer components (buffer, direction, ...)
* See Fig 3-6 "Queue Element Transfer Descriptor Block Diagram".
*
* These are associated only with "QH" (Queue Head) structures,
* used with control, bulk, and interrupt transfers.
*/
struct fotg210_qtd {
/* first part defined by EHCI spec */
__hc32 hw_next; /* see EHCI 3.5.1 */
__hc32 hw_alt_next; /* see EHCI 3.5.2 */
__hc32 hw_token; /* see EHCI 3.5.3 */
#define QTD_TOGGLE (1 << 31) /* data toggle */
#define QTD_LENGTH(tok) (((tok)>>16) & 0x7fff)
#define QTD_IOC (1 << 15) /* interrupt on complete */
#define QTD_CERR(tok) (((tok)>>10) & 0x3)
#define QTD_PID(tok) (((tok)>>8) & 0x3)
#define QTD_STS_ACTIVE (1 << 7) /* HC may execute this */
#define QTD_STS_HALT (1 << 6) /* halted on error */
#define QTD_STS_DBE (1 << 5) /* data buffer error (in HC) */
#define QTD_STS_BABBLE (1 << 4) /* device was babbling (qtd halted) */
#define QTD_STS_XACT (1 << 3) /* device gave illegal response */
#define QTD_STS_MMF (1 << 2) /* incomplete split transaction */
#define QTD_STS_STS (1 << 1) /* split transaction state */
#define QTD_STS_PING (1 << 0) /* issue PING? */
#define ACTIVE_BIT(fotg210) cpu_to_hc32(fotg210, QTD_STS_ACTIVE)
#define HALT_BIT(fotg210) cpu_to_hc32(fotg210, QTD_STS_HALT)
#define STATUS_BIT(fotg210) cpu_to_hc32(fotg210, QTD_STS_STS)
__hc32 hw_buf[5]; /* see EHCI 3.5.4 */
__hc32 hw_buf_hi[5]; /* Appendix B */
/* the rest is HCD-private */
dma_addr_t qtd_dma; /* qtd address */
struct list_head qtd_list; /* sw qtd list */
struct urb *urb; /* qtd's urb */
size_t length; /* length of buffer */
} __aligned(32);
/* mask NakCnt+T in qh->hw_alt_next */
#define QTD_MASK(fotg210) cpu_to_hc32(fotg210, ~0x1f)
#define IS_SHORT_READ(token) (QTD_LENGTH(token) != 0 && QTD_PID(token) == 1)
/*-------------------------------------------------------------------------*/
/* type tag from {qh,itd,fstn}->hw_next */
#define Q_NEXT_TYPE(fotg210, dma) ((dma) & cpu_to_hc32(fotg210, 3 << 1))
/*
* Now the following defines are not converted using the
* cpu_to_le32() macro anymore, since we have to support
* "dynamic" switching between be and le support, so that the driver
* can be used on one system with SoC EHCI controller using big-endian
* descriptors as well as a normal little-endian PCI EHCI controller.
*/
/* values for that type tag */
#define Q_TYPE_ITD (0 << 1)
#define Q_TYPE_QH (1 << 1)
#define Q_TYPE_SITD (2 << 1)
#define Q_TYPE_FSTN (3 << 1)
/* next async queue entry, or pointer to interrupt/periodic QH */
#define QH_NEXT(fotg210, dma) \
(cpu_to_hc32(fotg210, (((u32)dma)&~0x01f)|Q_TYPE_QH))
/* for periodic/async schedules and qtd lists, mark end of list */
#define FOTG210_LIST_END(fotg210) \
cpu_to_hc32(fotg210, 1) /* "null pointer" to hw */
/*
* Entries in periodic shadow table are pointers to one of four kinds
* of data structure. That's dictated by the hardware; a type tag is
* encoded in the low bits of the hardware's periodic schedule. Use
* Q_NEXT_TYPE to get the tag.
*
* For entries in the async schedule, the type tag always says "qh".
*/
union fotg210_shadow {
struct fotg210_qh *qh; /* Q_TYPE_QH */
struct fotg210_itd *itd; /* Q_TYPE_ITD */
struct fotg210_fstn *fstn; /* Q_TYPE_FSTN */
__hc32 *hw_next; /* (all types) */
void *ptr;
};
/*-------------------------------------------------------------------------*/
/*
* EHCI Specification 0.95 Section 3.6
* QH: describes control/bulk/interrupt endpoints
* See Fig 3-7 "Queue Head Structure Layout".
*
* These appear in both the async and (for interrupt) periodic schedules.
*/
/* first part defined by EHCI spec */
struct fotg210_qh_hw {
__hc32 hw_next; /* see EHCI 3.6.1 */
__hc32 hw_info1; /* see EHCI 3.6.2 */
#define QH_CONTROL_EP (1 << 27) /* FS/LS control endpoint */
#define QH_HEAD (1 << 15) /* Head of async reclamation list */
#define QH_TOGGLE_CTL (1 << 14) /* Data toggle control */
#define QH_HIGH_SPEED (2 << 12) /* Endpoint speed */
#define QH_LOW_SPEED (1 << 12)
#define QH_FULL_SPEED (0 << 12)
#define QH_INACTIVATE (1 << 7) /* Inactivate on next transaction */
__hc32 hw_info2; /* see EHCI 3.6.2 */
#define QH_SMASK 0x000000ff
#define QH_CMASK 0x0000ff00
#define QH_HUBADDR 0x007f0000
#define QH_HUBPORT 0x3f800000
#define QH_MULT 0xc0000000
__hc32 hw_current; /* qtd list - see EHCI 3.6.4 */
/* qtd overlay (hardware parts of a struct fotg210_qtd) */
__hc32 hw_qtd_next;
__hc32 hw_alt_next;
__hc32 hw_token;
__hc32 hw_buf[5];
__hc32 hw_buf_hi[5];
} __aligned(32);
struct fotg210_qh {
struct fotg210_qh_hw *hw; /* Must come first */
/* the rest is HCD-private */
dma_addr_t qh_dma; /* address of qh */
union fotg210_shadow qh_next; /* ptr to qh; or periodic */
struct list_head qtd_list; /* sw qtd list */
struct list_head intr_node; /* list of intr QHs */
struct fotg210_qtd *dummy;
struct fotg210_qh *unlink_next; /* next on unlink list */
unsigned unlink_cycle;
u8 needs_rescan; /* Dequeue during giveback */
u8 qh_state;
#define QH_STATE_LINKED 1 /* HC sees this */
#define QH_STATE_UNLINK 2 /* HC may still see this */
#define QH_STATE_IDLE 3 /* HC doesn't see this */
#define QH_STATE_UNLINK_WAIT 4 /* LINKED and on unlink q */
#define QH_STATE_COMPLETING 5 /* don't touch token.HALT */
u8 xacterrs; /* XactErr retry counter */
#define QH_XACTERR_MAX 32 /* XactErr retry limit */
/* periodic schedule info */
u8 usecs; /* intr bandwidth */
u8 gap_uf; /* uframes split/csplit gap */
u8 c_usecs; /* ... split completion bw */
u16 tt_usecs; /* tt downstream bandwidth */
unsigned short period; /* polling interval */
unsigned short start; /* where polling starts */
#define NO_FRAME ((unsigned short)~0) /* pick new start */
struct usb_device *dev; /* access to TT */
unsigned is_out:1; /* bulk or intr OUT */
unsigned clearing_tt:1; /* Clear-TT-Buf in progress */
};
/*-------------------------------------------------------------------------*/
/* description of one iso transaction (up to 3 KB data if highspeed) */
struct fotg210_iso_packet {
/* These will be copied to iTD when scheduling */
u64 bufp; /* itd->hw_bufp{,_hi}[pg] |= */
__hc32 transaction; /* itd->hw_transaction[i] |= */
u8 cross; /* buf crosses pages */
/* for full speed OUT splits */
u32 buf1;
};
/* temporary schedule data for packets from iso urbs (both speeds)
* each packet is one logical usb transaction to the device (not TT),
* beginning at stream->next_uframe
*/
struct fotg210_iso_sched {
struct list_head td_list;
unsigned span;
struct fotg210_iso_packet packet[0];
};
/*
* fotg210_iso_stream - groups all (s)itds for this endpoint.
* acts like a qh would, if EHCI had them for ISO.
*/
struct fotg210_iso_stream {
/* first field matches fotg210_hq, but is NULL */
struct fotg210_qh_hw *hw;
u8 bEndpointAddress;
u8 highspeed;
struct list_head td_list; /* queued itds */
struct list_head free_list; /* list of unused itds */
struct usb_device *udev;
struct usb_host_endpoint *ep;
/* output of (re)scheduling */
int next_uframe;
__hc32 splits;
/* the rest is derived from the endpoint descriptor,
* trusting urb->interval == f(epdesc->bInterval) and
* including the extra info for hw_bufp[0..2]
*/
u8 usecs, c_usecs;
u16 interval;
u16 tt_usecs;
u16 maxp;
u16 raw_mask;
unsigned bandwidth;
/* This is used to initialize iTD's hw_bufp fields */
__hc32 buf0;
__hc32 buf1;
__hc32 buf2;
/* this is used to initialize sITD's tt info */
__hc32 address;
};
/*-------------------------------------------------------------------------*/
/*
* EHCI Specification 0.95 Section 3.3
* Fig 3-4 "Isochronous Transaction Descriptor (iTD)"
*
* Schedule records for high speed iso xfers
*/
struct fotg210_itd {
/* first part defined by EHCI spec */
__hc32 hw_next; /* see EHCI 3.3.1 */
__hc32 hw_transaction[8]; /* see EHCI 3.3.2 */
#define FOTG210_ISOC_ACTIVE (1<<31) /* activate transfer this slot */
#define FOTG210_ISOC_BUF_ERR (1<<30) /* Data buffer error */
#define FOTG210_ISOC_BABBLE (1<<29) /* babble detected */
#define FOTG210_ISOC_XACTERR (1<<28) /* XactErr - transaction error */
#define FOTG210_ITD_LENGTH(tok) (((tok)>>16) & 0x0fff)
#define FOTG210_ITD_IOC (1 << 15) /* interrupt on complete */
#define ITD_ACTIVE(fotg210) cpu_to_hc32(fotg210, FOTG210_ISOC_ACTIVE)
__hc32 hw_bufp[7]; /* see EHCI 3.3.3 */
__hc32 hw_bufp_hi[7]; /* Appendix B */
/* the rest is HCD-private */
dma_addr_t itd_dma; /* for this itd */
union fotg210_shadow itd_next; /* ptr to periodic q entry */
struct urb *urb;
struct fotg210_iso_stream *stream; /* endpoint's queue */
struct list_head itd_list; /* list of stream's itds */
/* any/all hw_transactions here may be used by that urb */
unsigned frame; /* where scheduled */
unsigned pg;
unsigned index[8]; /* in urb->iso_frame_desc */
} __aligned(32);
/*-------------------------------------------------------------------------*/
/*
* EHCI Specification 0.96 Section 3.7
* Periodic Frame Span Traversal Node (FSTN)
*
* Manages split interrupt transactions (using TT) that span frame boundaries
* into uframes 0/1; see 4.12.2.2. In those uframes, a "save place" FSTN
* makes the HC jump (back) to a QH to scan for fs/ls QH completions until
* it hits a "restore" FSTN; then it returns to finish other uframe 0/1 work.
*/
struct fotg210_fstn {
__hc32 hw_next; /* any periodic q entry */
__hc32 hw_prev; /* qh or FOTG210_LIST_END */
/* the rest is HCD-private */
dma_addr_t fstn_dma;
union fotg210_shadow fstn_next; /* ptr to periodic q entry */
} __aligned(32);
/*-------------------------------------------------------------------------*/
/* Prepare the PORTSC wakeup flags during controller suspend/resume */
#define fotg210_prepare_ports_for_controller_suspend(fotg210, do_wakeup) \
fotg210_adjust_port_wakeup_flags(fotg210, true, do_wakeup)
#define fotg210_prepare_ports_for_controller_resume(fotg210) \
fotg210_adjust_port_wakeup_flags(fotg210, false, false)
/*-------------------------------------------------------------------------*/
/*
* Some EHCI controllers have a Transaction Translator built into the
* root hub. This is a non-standard feature. Each controller will need
* to add code to the following inline functions, and call them as
* needed (mostly in root hub code).
*/
static inline unsigned int
fotg210_get_speed(struct fotg210_hcd *fotg210, unsigned int portsc)
{
return (readl(&fotg210->regs->otgcsr)
& OTGCSR_HOST_SPD_TYP) >> 22;
}
/* Returns the speed of a device attached to a port on the root hub. */
static inline unsigned int
fotg210_port_speed(struct fotg210_hcd *fotg210, unsigned int portsc)
{
switch (fotg210_get_speed(fotg210, portsc)) {
case 0:
return 0;
case 1:
return USB_PORT_STAT_LOW_SPEED;
case 2:
default:
return USB_PORT_STAT_HIGH_SPEED;
}
}
/*-------------------------------------------------------------------------*/
#define fotg210_has_fsl_portno_bug(e) (0)
/*
* While most USB host controllers implement their registers in
* little-endian format, a minority (celleb companion chip) implement
* them in big endian format.
*
* This attempts to support either format at compile time without a
* runtime penalty, or both formats with the additional overhead
* of checking a flag bit.
*
*/
#define fotg210_big_endian_mmio(e) 0
#define fotg210_big_endian_capbase(e) 0
static inline unsigned int fotg210_readl(const struct fotg210_hcd *fotg210,
__u32 __iomem *regs)
{
return readl(regs);
}
static inline void fotg210_writel(const struct fotg210_hcd *fotg210,
const unsigned int val, __u32 __iomem *regs)
{
writel(val, regs);
}
/* cpu to fotg210 */
static inline __hc32 cpu_to_hc32(const struct fotg210_hcd *fotg210, const u32 x)
{
return cpu_to_le32(x);
}
/* fotg210 to cpu */
static inline u32 hc32_to_cpu(const struct fotg210_hcd *fotg210, const __hc32 x)
{
return le32_to_cpu(x);
}
static inline u32 hc32_to_cpup(const struct fotg210_hcd *fotg210,
const __hc32 *x)
{
return le32_to_cpup(x);
}
/*-------------------------------------------------------------------------*/
static inline unsigned fotg210_read_frame_index(struct fotg210_hcd *fotg210)
{
return fotg210_readl(fotg210, &fotg210->regs->frame_index);
}
#define fotg210_itdlen(urb, desc, t) ({ \
usb_pipein((urb)->pipe) ? \
(desc)->length - FOTG210_ITD_LENGTH(t) : \
FOTG210_ITD_LENGTH(t); \
})
/*-------------------------------------------------------------------------*/
#endif /* __LINUX_FOTG210_H */