blob: f3c63dce1e30223813ce9637cc89f703e53d7a35 [file] [log] [blame]
/*
* Freescale PowerQUICC Ethernet Driver -- MIIM bus implementation
* Provides Bus interface for MIIM regs
*
* Author: Andy Fleming <afleming@freescale.com>
* Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
*
* Copyright 2002-2004, 2008-2009 Freescale Semiconductor, Inc.
*
* Based on gianfar_mii.c and ucc_geth_mii.c (Li Yang, Kim Phillips)
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
*/
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/mii.h>
#include <linux/of_address.h>
#include <linux/of_mdio.h>
#include <linux/of_device.h>
#include <asm/io.h>
#if IS_ENABLED(CONFIG_UCC_GETH)
#include <soc/fsl/qe/ucc.h>
#endif
#include "gianfar.h"
#define MIIMIND_BUSY 0x00000001
#define MIIMIND_NOTVALID 0x00000004
#define MIIMCFG_INIT_VALUE 0x00000007
#define MIIMCFG_RESET 0x80000000
#define MII_READ_COMMAND 0x00000001
struct fsl_pq_mii {
u32 miimcfg; /* MII management configuration reg */
u32 miimcom; /* MII management command reg */
u32 miimadd; /* MII management address reg */
u32 miimcon; /* MII management control reg */
u32 miimstat; /* MII management status reg */
u32 miimind; /* MII management indication reg */
};
struct fsl_pq_mdio {
u8 res1[16];
u32 ieventm; /* MDIO Interrupt event register (for etsec2)*/
u32 imaskm; /* MDIO Interrupt mask register (for etsec2)*/
u8 res2[4];
u32 emapm; /* MDIO Event mapping register (for etsec2)*/
u8 res3[1280];
struct fsl_pq_mii mii;
u8 res4[28];
u32 utbipar; /* TBI phy address reg (only on UCC) */
u8 res5[2728];
} __packed;
/* Number of microseconds to wait for an MII register to respond */
#define MII_TIMEOUT 1000
struct fsl_pq_mdio_priv {
void __iomem *map;
struct fsl_pq_mii __iomem *regs;
};
/*
* Per-device-type data. Each type of device tree node that we support gets
* one of these.
*
* @mii_offset: the offset of the MII registers within the memory map of the
* node. Some nodes define only the MII registers, and some define the whole
* MAC (which includes the MII registers).
*
* @get_tbipa: determines the address of the TBIPA register
*
* @ucc_configure: a special function for extra QE configuration
*/
struct fsl_pq_mdio_data {
unsigned int mii_offset; /* offset of the MII registers */
uint32_t __iomem * (*get_tbipa)(void __iomem *p);
void (*ucc_configure)(phys_addr_t start, phys_addr_t end);
};
/*
* Write value to the PHY at mii_id at register regnum, on the bus attached
* to the local interface, which may be different from the generic mdio bus
* (tied to a single interface), waiting until the write is done before
* returning. This is helpful in programming interfaces like the TBI which
* control interfaces like onchip SERDES and are always tied to the local
* mdio pins, which may not be the same as system mdio bus, used for
* controlling the external PHYs, for example.
*/
static int fsl_pq_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
u16 value)
{
struct fsl_pq_mdio_priv *priv = bus->priv;
struct fsl_pq_mii __iomem *regs = priv->regs;
unsigned int timeout;
/* Set the PHY address and the register address we want to write */
iowrite32be((mii_id << 8) | regnum, &regs->miimadd);
/* Write out the value we want */
iowrite32be(value, &regs->miimcon);
/* Wait for the transaction to finish */
timeout = MII_TIMEOUT;
while ((ioread32be(&regs->miimind) & MIIMIND_BUSY) && timeout) {
cpu_relax();
timeout--;
}
return timeout ? 0 : -ETIMEDOUT;
}
/*
* Read the bus for PHY at addr mii_id, register regnum, and return the value.
* Clears miimcom first.
*
* All PHY operation done on the bus attached to the local interface, which
* may be different from the generic mdio bus. This is helpful in programming
* interfaces like the TBI which, in turn, control interfaces like on-chip
* SERDES and are always tied to the local mdio pins, which may not be the
* same as system mdio bus, used for controlling the external PHYs, for eg.
*/
static int fsl_pq_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
{
struct fsl_pq_mdio_priv *priv = bus->priv;
struct fsl_pq_mii __iomem *regs = priv->regs;
unsigned int timeout;
u16 value;
/* Set the PHY address and the register address we want to read */
iowrite32be((mii_id << 8) | regnum, &regs->miimadd);
/* Clear miimcom, and then initiate a read */
iowrite32be(0, &regs->miimcom);
iowrite32be(MII_READ_COMMAND, &regs->miimcom);
/* Wait for the transaction to finish, normally less than 100us */
timeout = MII_TIMEOUT;
while ((ioread32be(&regs->miimind) &
(MIIMIND_NOTVALID | MIIMIND_BUSY)) && timeout) {
cpu_relax();
timeout--;
}
if (!timeout)
return -ETIMEDOUT;
/* Grab the value of the register from miimstat */
value = ioread32be(&regs->miimstat);
dev_dbg(&bus->dev, "read %04x from address %x/%x\n", value, mii_id, regnum);
return value;
}
/* Reset the MIIM registers, and wait for the bus to free */
static int fsl_pq_mdio_reset(struct mii_bus *bus)
{
struct fsl_pq_mdio_priv *priv = bus->priv;
struct fsl_pq_mii __iomem *regs = priv->regs;
unsigned int timeout;
mutex_lock(&bus->mdio_lock);
/* Reset the management interface */
iowrite32be(MIIMCFG_RESET, &regs->miimcfg);
/* Setup the MII Mgmt clock speed */
iowrite32be(MIIMCFG_INIT_VALUE, &regs->miimcfg);
/* Wait until the bus is free */
timeout = MII_TIMEOUT;
while ((ioread32be(&regs->miimind) & MIIMIND_BUSY) && timeout) {
cpu_relax();
timeout--;
}
mutex_unlock(&bus->mdio_lock);
if (!timeout) {
dev_err(&bus->dev, "timeout waiting for MII bus\n");
return -EBUSY;
}
return 0;
}
#if defined(CONFIG_GIANFAR) || defined(CONFIG_GIANFAR_MODULE)
/*
* Return the TBIPA address, starting from the address
* of the mapped GFAR MDIO registers (struct gfar)
* This is mildly evil, but so is our hardware for doing this.
* Also, we have to cast back to struct gfar because of
* definition weirdness done in gianfar.h.
*/
static uint32_t __iomem *get_gfar_tbipa_from_mdio(void __iomem *p)
{
struct gfar __iomem *enet_regs = p;
return &enet_regs->tbipa;
}
/*
* Return the TBIPA address, starting from the address
* of the mapped GFAR MII registers (gfar_mii_regs[] within struct gfar)
*/
static uint32_t __iomem *get_gfar_tbipa_from_mii(void __iomem *p)
{
return get_gfar_tbipa_from_mdio(container_of(p, struct gfar, gfar_mii_regs));
}
/*
* Return the TBIPAR address for an eTSEC2 node
*/
static uint32_t __iomem *get_etsec_tbipa(void __iomem *p)
{
return p;
}
#endif
#if defined(CONFIG_UCC_GETH) || defined(CONFIG_UCC_GETH_MODULE)
/*
* Return the TBIPAR address for a QE MDIO node, starting from the address
* of the mapped MII registers (struct fsl_pq_mii)
*/
static uint32_t __iomem *get_ucc_tbipa(void __iomem *p)
{
struct fsl_pq_mdio __iomem *mdio = container_of(p, struct fsl_pq_mdio, mii);
return &mdio->utbipar;
}
/*
* Find the UCC node that controls the given MDIO node
*
* For some reason, the QE MDIO nodes are not children of the UCC devices
* that control them. Therefore, we need to scan all UCC nodes looking for
* the one that encompases the given MDIO node. We do this by comparing
* physical addresses. The 'start' and 'end' addresses of the MDIO node are
* passed, and the correct UCC node will cover the entire address range.
*
* This assumes that there is only one QE MDIO node in the entire device tree.
*/
static void ucc_configure(phys_addr_t start, phys_addr_t end)
{
static bool found_mii_master;
struct device_node *np = NULL;
if (found_mii_master)
return;
for_each_compatible_node(np, NULL, "ucc_geth") {
struct resource res;
const uint32_t *iprop;
uint32_t id;
int ret;
ret = of_address_to_resource(np, 0, &res);
if (ret < 0) {
pr_debug("fsl-pq-mdio: no address range in node %s\n",
np->full_name);
continue;
}
/* if our mdio regs fall within this UCC regs range */
if ((start < res.start) || (end > res.end))
continue;
iprop = of_get_property(np, "cell-index", NULL);
if (!iprop) {
iprop = of_get_property(np, "device-id", NULL);
if (!iprop) {
pr_debug("fsl-pq-mdio: no UCC ID in node %s\n",
np->full_name);
continue;
}
}
id = be32_to_cpup(iprop);
/*
* cell-index and device-id for QE nodes are
* numbered from 1, not 0.
*/
if (ucc_set_qe_mux_mii_mng(id - 1) < 0) {
pr_debug("fsl-pq-mdio: invalid UCC ID in node %s\n",
np->full_name);
continue;
}
pr_debug("fsl-pq-mdio: setting node UCC%u to MII master\n", id);
found_mii_master = true;
}
}
#endif
static const struct of_device_id fsl_pq_mdio_match[] = {
#if defined(CONFIG_GIANFAR) || defined(CONFIG_GIANFAR_MODULE)
{
.compatible = "fsl,gianfar-tbi",
.data = &(struct fsl_pq_mdio_data) {
.mii_offset = 0,
.get_tbipa = get_gfar_tbipa_from_mii,
},
},
{
.compatible = "fsl,gianfar-mdio",
.data = &(struct fsl_pq_mdio_data) {
.mii_offset = 0,
.get_tbipa = get_gfar_tbipa_from_mii,
},
},
{
.type = "mdio",
.compatible = "gianfar",
.data = &(struct fsl_pq_mdio_data) {
.mii_offset = offsetof(struct fsl_pq_mdio, mii),
.get_tbipa = get_gfar_tbipa_from_mdio,
},
},
{
.compatible = "fsl,etsec2-tbi",
.data = &(struct fsl_pq_mdio_data) {
.mii_offset = offsetof(struct fsl_pq_mdio, mii),
.get_tbipa = get_etsec_tbipa,
},
},
{
.compatible = "fsl,etsec2-mdio",
.data = &(struct fsl_pq_mdio_data) {
.mii_offset = offsetof(struct fsl_pq_mdio, mii),
.get_tbipa = get_etsec_tbipa,
},
},
#endif
#if defined(CONFIG_UCC_GETH) || defined(CONFIG_UCC_GETH_MODULE)
{
.compatible = "fsl,ucc-mdio",
.data = &(struct fsl_pq_mdio_data) {
.mii_offset = 0,
.get_tbipa = get_ucc_tbipa,
.ucc_configure = ucc_configure,
},
},
{
/* Legacy UCC MDIO node */
.type = "mdio",
.compatible = "ucc_geth_phy",
.data = &(struct fsl_pq_mdio_data) {
.mii_offset = 0,
.get_tbipa = get_ucc_tbipa,
.ucc_configure = ucc_configure,
},
},
#endif
/* No Kconfig option for Fman support yet */
{
.compatible = "fsl,fman-mdio",
.data = &(struct fsl_pq_mdio_data) {
.mii_offset = 0,
/* Fman TBI operations are handled elsewhere */
},
},
{},
};
MODULE_DEVICE_TABLE(of, fsl_pq_mdio_match);
static int fsl_pq_mdio_probe(struct platform_device *pdev)
{
const struct of_device_id *id =
of_match_device(fsl_pq_mdio_match, &pdev->dev);
const struct fsl_pq_mdio_data *data = id->data;
struct device_node *np = pdev->dev.of_node;
struct resource res;
struct device_node *tbi;
struct fsl_pq_mdio_priv *priv;
struct mii_bus *new_bus;
int err;
dev_dbg(&pdev->dev, "found %s compatible node\n", id->compatible);
new_bus = mdiobus_alloc_size(sizeof(*priv));
if (!new_bus)
return -ENOMEM;
priv = new_bus->priv;
new_bus->name = "Freescale PowerQUICC MII Bus",
new_bus->read = &fsl_pq_mdio_read;
new_bus->write = &fsl_pq_mdio_write;
new_bus->reset = &fsl_pq_mdio_reset;
err = of_address_to_resource(np, 0, &res);
if (err < 0) {
dev_err(&pdev->dev, "could not obtain address information\n");
goto error;
}
snprintf(new_bus->id, MII_BUS_ID_SIZE, "%s@%llx", np->name,
(unsigned long long)res.start);
priv->map = of_iomap(np, 0);
if (!priv->map) {
err = -ENOMEM;
goto error;
}
/*
* Some device tree nodes represent only the MII registers, and
* others represent the MAC and MII registers. The 'mii_offset' field
* contains the offset of the MII registers inside the mapped register
* space.
*/
if (data->mii_offset > resource_size(&res)) {
dev_err(&pdev->dev, "invalid register map\n");
err = -EINVAL;
goto error;
}
priv->regs = priv->map + data->mii_offset;
new_bus->parent = &pdev->dev;
platform_set_drvdata(pdev, new_bus);
if (data->get_tbipa) {
for_each_child_of_node(np, tbi) {
if (strcmp(tbi->type, "tbi-phy") == 0) {
dev_dbg(&pdev->dev, "found TBI PHY node %s\n",
strrchr(tbi->full_name, '/') + 1);
break;
}
}
if (tbi) {
const u32 *prop = of_get_property(tbi, "reg", NULL);
uint32_t __iomem *tbipa;
if (!prop) {
dev_err(&pdev->dev,
"missing 'reg' property in node %s\n",
tbi->full_name);
err = -EBUSY;
goto error;
}
tbipa = data->get_tbipa(priv->map);
/*
* Add consistency check to make sure TBI is contained
* within the mapped range (not because we would get a
* segfault, rather to catch bugs in computing TBI
* address). Print error message but continue anyway.
*/
if ((void *)tbipa > priv->map + resource_size(&res) - 4)
dev_err(&pdev->dev, "invalid register map (should be at least 0x%04zx to contain TBI address)\n",
((void *)tbipa - priv->map) + 4);
iowrite32be(be32_to_cpup(prop), tbipa);
}
}
if (data->ucc_configure)
data->ucc_configure(res.start, res.end);
err = of_mdiobus_register(new_bus, np);
if (err) {
dev_err(&pdev->dev, "cannot register %s as MDIO bus\n",
new_bus->name);
goto error;
}
return 0;
error:
if (priv->map)
iounmap(priv->map);
kfree(new_bus);
return err;
}
static int fsl_pq_mdio_remove(struct platform_device *pdev)
{
struct device *device = &pdev->dev;
struct mii_bus *bus = dev_get_drvdata(device);
struct fsl_pq_mdio_priv *priv = bus->priv;
mdiobus_unregister(bus);
iounmap(priv->map);
mdiobus_free(bus);
return 0;
}
static struct platform_driver fsl_pq_mdio_driver = {
.driver = {
.name = "fsl-pq_mdio",
.of_match_table = fsl_pq_mdio_match,
},
.probe = fsl_pq_mdio_probe,
.remove = fsl_pq_mdio_remove,
};
module_platform_driver(fsl_pq_mdio_driver);
MODULE_LICENSE("GPL");