blob: 60bff78e9ead8703e1e912307c504330d1a76d1f [file] [log] [blame]
/*
* sd.c Copyright (C) 1992 Drew Eckhardt
* Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
*
* Linux scsi disk driver
* Initial versions: Drew Eckhardt
* Subsequent revisions: Eric Youngdale
* Modification history:
* - Drew Eckhardt <drew@colorado.edu> original
* - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
* outstanding request, and other enhancements.
* Support loadable low-level scsi drivers.
* - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
* eight major numbers.
* - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
* - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
* sd_init and cleanups.
* - Alex Davis <letmein@erols.com> Fix problem where partition info
* not being read in sd_open. Fix problem where removable media
* could be ejected after sd_open.
* - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
* - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
* <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
* Support 32k/1M disks.
*
* Logging policy (needs CONFIG_SCSI_LOGGING defined):
* - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
* - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
* - entering sd_ioctl: SCSI_LOG_IOCTL level 1
* - entering other commands: SCSI_LOG_HLQUEUE level 3
* Note: when the logging level is set by the user, it must be greater
* than the level indicated above to trigger output.
*/
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/bio.h>
#include <linux/genhd.h>
#include <linux/hdreg.h>
#include <linux/errno.h>
#include <linux/idr.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/blkdev.h>
#include <linux/blkpg.h>
#include <linux/delay.h>
#include <linux/mutex.h>
#include <linux/string_helpers.h>
#include <linux/async.h>
#include <linux/slab.h>
#include <linux/pm_runtime.h>
#include <linux/pr.h>
#include <asm/uaccess.h>
#include <asm/unaligned.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_dbg.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_driver.h>
#include <scsi/scsi_eh.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_ioctl.h>
#include <scsi/scsicam.h>
#include "sd.h"
#include "scsi_priv.h"
#include "scsi_logging.h"
MODULE_AUTHOR("Eric Youngdale");
MODULE_DESCRIPTION("SCSI disk (sd) driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
#if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
#define SD_MINORS 16
#else
#define SD_MINORS 0
#endif
static void sd_config_discard(struct scsi_disk *, unsigned int);
static void sd_config_write_same(struct scsi_disk *);
static int sd_revalidate_disk(struct gendisk *);
static void sd_unlock_native_capacity(struct gendisk *disk);
static int sd_probe(struct device *);
static int sd_remove(struct device *);
static void sd_shutdown(struct device *);
static int sd_suspend_system(struct device *);
static int sd_suspend_runtime(struct device *);
static int sd_resume(struct device *);
static void sd_rescan(struct device *);
static int sd_init_command(struct scsi_cmnd *SCpnt);
static void sd_uninit_command(struct scsi_cmnd *SCpnt);
static int sd_done(struct scsi_cmnd *);
static int sd_eh_action(struct scsi_cmnd *, int);
static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
static void scsi_disk_release(struct device *cdev);
static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
static void sd_print_result(const struct scsi_disk *, const char *, int);
static DEFINE_SPINLOCK(sd_index_lock);
static DEFINE_IDA(sd_index_ida);
/* This semaphore is used to mediate the 0->1 reference get in the
* face of object destruction (i.e. we can't allow a get on an
* object after last put) */
static DEFINE_MUTEX(sd_ref_mutex);
static struct kmem_cache *sd_cdb_cache;
static mempool_t *sd_cdb_pool;
static const char *sd_cache_types[] = {
"write through", "none", "write back",
"write back, no read (daft)"
};
static void sd_set_flush_flag(struct scsi_disk *sdkp)
{
bool wc = false, fua = false;
if (sdkp->WCE) {
wc = true;
if (sdkp->DPOFUA)
fua = true;
}
blk_queue_write_cache(sdkp->disk->queue, wc, fua);
}
static ssize_t
cache_type_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int i, ct = -1, rcd, wce, sp;
struct scsi_disk *sdkp = to_scsi_disk(dev);
struct scsi_device *sdp = sdkp->device;
char buffer[64];
char *buffer_data;
struct scsi_mode_data data;
struct scsi_sense_hdr sshdr;
static const char temp[] = "temporary ";
int len;
if (sdp->type != TYPE_DISK)
/* no cache control on RBC devices; theoretically they
* can do it, but there's probably so many exceptions
* it's not worth the risk */
return -EINVAL;
if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
buf += sizeof(temp) - 1;
sdkp->cache_override = 1;
} else {
sdkp->cache_override = 0;
}
for (i = 0; i < ARRAY_SIZE(sd_cache_types); i++) {
len = strlen(sd_cache_types[i]);
if (strncmp(sd_cache_types[i], buf, len) == 0 &&
buf[len] == '\n') {
ct = i;
break;
}
}
if (ct < 0)
return -EINVAL;
rcd = ct & 0x01 ? 1 : 0;
wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
if (sdkp->cache_override) {
sdkp->WCE = wce;
sdkp->RCD = rcd;
sd_set_flush_flag(sdkp);
return count;
}
if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
SD_MAX_RETRIES, &data, NULL))
return -EINVAL;
len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
data.block_descriptor_length);
buffer_data = buffer + data.header_length +
data.block_descriptor_length;
buffer_data[2] &= ~0x05;
buffer_data[2] |= wce << 2 | rcd;
sp = buffer_data[0] & 0x80 ? 1 : 0;
buffer_data[0] &= ~0x80;
if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
SD_MAX_RETRIES, &data, &sshdr)) {
if (scsi_sense_valid(&sshdr))
sd_print_sense_hdr(sdkp, &sshdr);
return -EINVAL;
}
revalidate_disk(sdkp->disk);
return count;
}
static ssize_t
manage_start_stop_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct scsi_disk *sdkp = to_scsi_disk(dev);
struct scsi_device *sdp = sdkp->device;
return snprintf(buf, 20, "%u\n", sdp->manage_start_stop);
}
static ssize_t
manage_start_stop_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct scsi_disk *sdkp = to_scsi_disk(dev);
struct scsi_device *sdp = sdkp->device;
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
sdp->manage_start_stop = simple_strtoul(buf, NULL, 10);
return count;
}
static DEVICE_ATTR_RW(manage_start_stop);
static ssize_t
allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct scsi_disk *sdkp = to_scsi_disk(dev);
return snprintf(buf, 40, "%d\n", sdkp->device->allow_restart);
}
static ssize_t
allow_restart_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct scsi_disk *sdkp = to_scsi_disk(dev);
struct scsi_device *sdp = sdkp->device;
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
if (sdp->type != TYPE_DISK)
return -EINVAL;
sdp->allow_restart = simple_strtoul(buf, NULL, 10);
return count;
}
static DEVICE_ATTR_RW(allow_restart);
static ssize_t
cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct scsi_disk *sdkp = to_scsi_disk(dev);
int ct = sdkp->RCD + 2*sdkp->WCE;
return snprintf(buf, 40, "%s\n", sd_cache_types[ct]);
}
static DEVICE_ATTR_RW(cache_type);
static ssize_t
FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct scsi_disk *sdkp = to_scsi_disk(dev);
return snprintf(buf, 20, "%u\n", sdkp->DPOFUA);
}
static DEVICE_ATTR_RO(FUA);
static ssize_t
protection_type_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct scsi_disk *sdkp = to_scsi_disk(dev);
return snprintf(buf, 20, "%u\n", sdkp->protection_type);
}
static ssize_t
protection_type_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct scsi_disk *sdkp = to_scsi_disk(dev);
unsigned int val;
int err;
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
err = kstrtouint(buf, 10, &val);
if (err)
return err;
if (val >= 0 && val <= SD_DIF_TYPE3_PROTECTION)
sdkp->protection_type = val;
return count;
}
static DEVICE_ATTR_RW(protection_type);
static ssize_t
protection_mode_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct scsi_disk *sdkp = to_scsi_disk(dev);
struct scsi_device *sdp = sdkp->device;
unsigned int dif, dix;
dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
if (!dix && scsi_host_dix_capable(sdp->host, SD_DIF_TYPE0_PROTECTION)) {
dif = 0;
dix = 1;
}
if (!dif && !dix)
return snprintf(buf, 20, "none\n");
return snprintf(buf, 20, "%s%u\n", dix ? "dix" : "dif", dif);
}
static DEVICE_ATTR_RO(protection_mode);
static ssize_t
app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct scsi_disk *sdkp = to_scsi_disk(dev);
return snprintf(buf, 20, "%u\n", sdkp->ATO);
}
static DEVICE_ATTR_RO(app_tag_own);
static ssize_t
thin_provisioning_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct scsi_disk *sdkp = to_scsi_disk(dev);
return snprintf(buf, 20, "%u\n", sdkp->lbpme);
}
static DEVICE_ATTR_RO(thin_provisioning);
static const char *lbp_mode[] = {
[SD_LBP_FULL] = "full",
[SD_LBP_UNMAP] = "unmap",
[SD_LBP_WS16] = "writesame_16",
[SD_LBP_WS10] = "writesame_10",
[SD_LBP_ZERO] = "writesame_zero",
[SD_LBP_DISABLE] = "disabled",
};
static ssize_t
provisioning_mode_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct scsi_disk *sdkp = to_scsi_disk(dev);
return snprintf(buf, 20, "%s\n", lbp_mode[sdkp->provisioning_mode]);
}
static ssize_t
provisioning_mode_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct scsi_disk *sdkp = to_scsi_disk(dev);
struct scsi_device *sdp = sdkp->device;
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
if (sdp->type != TYPE_DISK)
return -EINVAL;
if (!strncmp(buf, lbp_mode[SD_LBP_UNMAP], 20))
sd_config_discard(sdkp, SD_LBP_UNMAP);
else if (!strncmp(buf, lbp_mode[SD_LBP_WS16], 20))
sd_config_discard(sdkp, SD_LBP_WS16);
else if (!strncmp(buf, lbp_mode[SD_LBP_WS10], 20))
sd_config_discard(sdkp, SD_LBP_WS10);
else if (!strncmp(buf, lbp_mode[SD_LBP_ZERO], 20))
sd_config_discard(sdkp, SD_LBP_ZERO);
else if (!strncmp(buf, lbp_mode[SD_LBP_DISABLE], 20))
sd_config_discard(sdkp, SD_LBP_DISABLE);
else
return -EINVAL;
return count;
}
static DEVICE_ATTR_RW(provisioning_mode);
static ssize_t
max_medium_access_timeouts_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct scsi_disk *sdkp = to_scsi_disk(dev);
return snprintf(buf, 20, "%u\n", sdkp->max_medium_access_timeouts);
}
static ssize_t
max_medium_access_timeouts_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
struct scsi_disk *sdkp = to_scsi_disk(dev);
int err;
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
return err ? err : count;
}
static DEVICE_ATTR_RW(max_medium_access_timeouts);
static ssize_t
max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct scsi_disk *sdkp = to_scsi_disk(dev);
return snprintf(buf, 20, "%u\n", sdkp->max_ws_blocks);
}
static ssize_t
max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct scsi_disk *sdkp = to_scsi_disk(dev);
struct scsi_device *sdp = sdkp->device;
unsigned long max;
int err;
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
if (sdp->type != TYPE_DISK)
return -EINVAL;
err = kstrtoul(buf, 10, &max);
if (err)
return err;
if (max == 0)
sdp->no_write_same = 1;
else if (max <= SD_MAX_WS16_BLOCKS) {
sdp->no_write_same = 0;
sdkp->max_ws_blocks = max;
}
sd_config_write_same(sdkp);
return count;
}
static DEVICE_ATTR_RW(max_write_same_blocks);
static struct attribute *sd_disk_attrs[] = {
&dev_attr_cache_type.attr,
&dev_attr_FUA.attr,
&dev_attr_allow_restart.attr,
&dev_attr_manage_start_stop.attr,
&dev_attr_protection_type.attr,
&dev_attr_protection_mode.attr,
&dev_attr_app_tag_own.attr,
&dev_attr_thin_provisioning.attr,
&dev_attr_provisioning_mode.attr,
&dev_attr_max_write_same_blocks.attr,
&dev_attr_max_medium_access_timeouts.attr,
NULL,
};
ATTRIBUTE_GROUPS(sd_disk);
static struct class sd_disk_class = {
.name = "scsi_disk",
.owner = THIS_MODULE,
.dev_release = scsi_disk_release,
.dev_groups = sd_disk_groups,
};
static const struct dev_pm_ops sd_pm_ops = {
.suspend = sd_suspend_system,
.resume = sd_resume,
.poweroff = sd_suspend_system,
.restore = sd_resume,
.runtime_suspend = sd_suspend_runtime,
.runtime_resume = sd_resume,
};
static struct scsi_driver sd_template = {
.gendrv = {
.name = "sd",
.owner = THIS_MODULE,
.probe = sd_probe,
.remove = sd_remove,
.shutdown = sd_shutdown,
.pm = &sd_pm_ops,
},
.rescan = sd_rescan,
.init_command = sd_init_command,
.uninit_command = sd_uninit_command,
.done = sd_done,
.eh_action = sd_eh_action,
};
/*
* Dummy kobj_map->probe function.
* The default ->probe function will call modprobe, which is
* pointless as this module is already loaded.
*/
static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
{
return NULL;
}
/*
* Device no to disk mapping:
*
* major disc2 disc p1
* |............|.............|....|....| <- dev_t
* 31 20 19 8 7 4 3 0
*
* Inside a major, we have 16k disks, however mapped non-
* contiguously. The first 16 disks are for major0, the next
* ones with major1, ... Disk 256 is for major0 again, disk 272
* for major1, ...
* As we stay compatible with our numbering scheme, we can reuse
* the well-know SCSI majors 8, 65--71, 136--143.
*/
static int sd_major(int major_idx)
{
switch (major_idx) {
case 0:
return SCSI_DISK0_MAJOR;
case 1 ... 7:
return SCSI_DISK1_MAJOR + major_idx - 1;
case 8 ... 15:
return SCSI_DISK8_MAJOR + major_idx - 8;
default:
BUG();
return 0; /* shut up gcc */
}
}
static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
{
struct scsi_disk *sdkp = NULL;
mutex_lock(&sd_ref_mutex);
if (disk->private_data) {
sdkp = scsi_disk(disk);
if (scsi_device_get(sdkp->device) == 0)
get_device(&sdkp->dev);
else
sdkp = NULL;
}
mutex_unlock(&sd_ref_mutex);
return sdkp;
}
static void scsi_disk_put(struct scsi_disk *sdkp)
{
struct scsi_device *sdev = sdkp->device;
mutex_lock(&sd_ref_mutex);
put_device(&sdkp->dev);
scsi_device_put(sdev);
mutex_unlock(&sd_ref_mutex);
}
static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
unsigned int dix, unsigned int dif)
{
struct bio *bio = scmd->request->bio;
unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
unsigned int protect = 0;
if (dix) { /* DIX Type 0, 1, 2, 3 */
if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
}
if (dif != SD_DIF_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */
scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
scmd->prot_flags |= SCSI_PROT_REF_CHECK;
}
if (dif) { /* DIX/DIF Type 1, 2, 3 */
scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
protect = 3 << 5; /* Disable target PI checking */
else
protect = 1 << 5; /* Enable target PI checking */
}
scsi_set_prot_op(scmd, prot_op);
scsi_set_prot_type(scmd, dif);
scmd->prot_flags &= sd_prot_flag_mask(prot_op);
return protect;
}
static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
{
struct request_queue *q = sdkp->disk->queue;
unsigned int logical_block_size = sdkp->device->sector_size;
unsigned int max_blocks = 0;
q->limits.discard_zeroes_data = 0;
/*
* When LBPRZ is reported, discard alignment and granularity
* must be fixed to the logical block size. Otherwise the block
* layer will drop misaligned portions of the request which can
* lead to data corruption. If LBPRZ is not set, we honor the
* device preference.
*/
if (sdkp->lbprz) {
q->limits.discard_alignment = 0;
q->limits.discard_granularity = logical_block_size;
} else {
q->limits.discard_alignment = sdkp->unmap_alignment *
logical_block_size;
q->limits.discard_granularity =
max(sdkp->physical_block_size,
sdkp->unmap_granularity * logical_block_size);
}
sdkp->provisioning_mode = mode;
switch (mode) {
case SD_LBP_DISABLE:
blk_queue_max_discard_sectors(q, 0);
queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
return;
case SD_LBP_UNMAP:
max_blocks = min_not_zero(sdkp->max_unmap_blocks,
(u32)SD_MAX_WS16_BLOCKS);
break;
case SD_LBP_WS16:
max_blocks = min_not_zero(sdkp->max_ws_blocks,
(u32)SD_MAX_WS16_BLOCKS);
q->limits.discard_zeroes_data = sdkp->lbprz;
break;
case SD_LBP_WS10:
max_blocks = min_not_zero(sdkp->max_ws_blocks,
(u32)SD_MAX_WS10_BLOCKS);
q->limits.discard_zeroes_data = sdkp->lbprz;
break;
case SD_LBP_ZERO:
max_blocks = min_not_zero(sdkp->max_ws_blocks,
(u32)SD_MAX_WS10_BLOCKS);
q->limits.discard_zeroes_data = 1;
break;
}
blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
}
/**
* sd_setup_discard_cmnd - unmap blocks on thinly provisioned device
* @sdp: scsi device to operate one
* @rq: Request to prepare
*
* Will issue either UNMAP or WRITE SAME(16) depending on preference
* indicated by target device.
**/
static int sd_setup_discard_cmnd(struct scsi_cmnd *cmd)
{
struct request *rq = cmd->request;
struct scsi_device *sdp = cmd->device;
struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
sector_t sector = blk_rq_pos(rq);
unsigned int nr_sectors = blk_rq_sectors(rq);
unsigned int nr_bytes = blk_rq_bytes(rq);
unsigned int len;
int ret;
char *buf;
struct page *page;
sector >>= ilog2(sdp->sector_size) - 9;
nr_sectors >>= ilog2(sdp->sector_size) - 9;
page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
if (!page)
return BLKPREP_DEFER;
switch (sdkp->provisioning_mode) {
case SD_LBP_UNMAP:
buf = page_address(page);
cmd->cmd_len = 10;
cmd->cmnd[0] = UNMAP;
cmd->cmnd[8] = 24;
put_unaligned_be16(6 + 16, &buf[0]);
put_unaligned_be16(16, &buf[2]);
put_unaligned_be64(sector, &buf[8]);
put_unaligned_be32(nr_sectors, &buf[16]);
len = 24;
break;
case SD_LBP_WS16:
cmd->cmd_len = 16;
cmd->cmnd[0] = WRITE_SAME_16;
cmd->cmnd[1] = 0x8; /* UNMAP */
put_unaligned_be64(sector, &cmd->cmnd[2]);
put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
len = sdkp->device->sector_size;
break;
case SD_LBP_WS10:
case SD_LBP_ZERO:
cmd->cmd_len = 10;
cmd->cmnd[0] = WRITE_SAME;
if (sdkp->provisioning_mode == SD_LBP_WS10)
cmd->cmnd[1] = 0x8; /* UNMAP */
put_unaligned_be32(sector, &cmd->cmnd[2]);
put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
len = sdkp->device->sector_size;
break;
default:
ret = BLKPREP_INVALID;
goto out;
}
rq->completion_data = page;
rq->timeout = SD_TIMEOUT;
cmd->transfersize = len;
cmd->allowed = SD_MAX_RETRIES;
/*
* Initially __data_len is set to the amount of data that needs to be
* transferred to the target. This amount depends on whether WRITE SAME
* or UNMAP is being used. After the scatterlist has been mapped by
* scsi_init_io() we set __data_len to the size of the area to be
* discarded on disk. This allows us to report completion on the full
* amount of blocks described by the request.
*/
blk_add_request_payload(rq, page, 0, len);
ret = scsi_init_io(cmd);
rq->__data_len = nr_bytes;
out:
if (ret != BLKPREP_OK)
__free_page(page);
return ret;
}
static void sd_config_write_same(struct scsi_disk *sdkp)
{
struct request_queue *q = sdkp->disk->queue;
unsigned int logical_block_size = sdkp->device->sector_size;
if (sdkp->device->no_write_same) {
sdkp->max_ws_blocks = 0;
goto out;
}
/* Some devices can not handle block counts above 0xffff despite
* supporting WRITE SAME(16). Consequently we default to 64k
* blocks per I/O unless the device explicitly advertises a
* bigger limit.
*/
if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
(u32)SD_MAX_WS16_BLOCKS);
else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
(u32)SD_MAX_WS10_BLOCKS);
else {
sdkp->device->no_write_same = 1;
sdkp->max_ws_blocks = 0;
}
out:
blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
(logical_block_size >> 9));
}
/**
* sd_setup_write_same_cmnd - write the same data to multiple blocks
* @cmd: command to prepare
*
* Will issue either WRITE SAME(10) or WRITE SAME(16) depending on
* preference indicated by target device.
**/
static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
{
struct request *rq = cmd->request;
struct scsi_device *sdp = cmd->device;
struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
struct bio *bio = rq->bio;
sector_t sector = blk_rq_pos(rq);
unsigned int nr_sectors = blk_rq_sectors(rq);
unsigned int nr_bytes = blk_rq_bytes(rq);
int ret;
if (sdkp->device->no_write_same)
return BLKPREP_INVALID;
BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
sector >>= ilog2(sdp->sector_size) - 9;
nr_sectors >>= ilog2(sdp->sector_size) - 9;
rq->timeout = SD_WRITE_SAME_TIMEOUT;
if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) {
cmd->cmd_len = 16;
cmd->cmnd[0] = WRITE_SAME_16;
put_unaligned_be64(sector, &cmd->cmnd[2]);
put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
} else {
cmd->cmd_len = 10;
cmd->cmnd[0] = WRITE_SAME;
put_unaligned_be32(sector, &cmd->cmnd[2]);
put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
}
cmd->transfersize = sdp->sector_size;
cmd->allowed = SD_MAX_RETRIES;
/*
* For WRITE_SAME the data transferred in the DATA IN buffer is
* different from the amount of data actually written to the target.
*
* We set up __data_len to the amount of data transferred from the
* DATA IN buffer so that blk_rq_map_sg set up the proper S/G list
* to transfer a single sector of data first, but then reset it to
* the amount of data to be written right after so that the I/O path
* knows how much to actually write.
*/
rq->__data_len = sdp->sector_size;
ret = scsi_init_io(cmd);
rq->__data_len = nr_bytes;
return ret;
}
static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
{
struct request *rq = cmd->request;
/* flush requests don't perform I/O, zero the S/G table */
memset(&cmd->sdb, 0, sizeof(cmd->sdb));
cmd->cmnd[0] = SYNCHRONIZE_CACHE;
cmd->cmd_len = 10;
cmd->transfersize = 0;
cmd->allowed = SD_MAX_RETRIES;
rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
return BLKPREP_OK;
}
static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt)
{
struct request *rq = SCpnt->request;
struct scsi_device *sdp = SCpnt->device;
struct gendisk *disk = rq->rq_disk;
struct scsi_disk *sdkp;
sector_t block = blk_rq_pos(rq);
sector_t threshold;
unsigned int this_count = blk_rq_sectors(rq);
unsigned int dif, dix;
int ret;
unsigned char protect;
ret = scsi_init_io(SCpnt);
if (ret != BLKPREP_OK)
goto out;
SCpnt = rq->special;
sdkp = scsi_disk(disk);
/* from here on until we're complete, any goto out
* is used for a killable error condition */
ret = BLKPREP_KILL;
SCSI_LOG_HLQUEUE(1,
scmd_printk(KERN_INFO, SCpnt,
"%s: block=%llu, count=%d\n",
__func__, (unsigned long long)block, this_count));
if (!sdp || !scsi_device_online(sdp) ||
block + blk_rq_sectors(rq) > get_capacity(disk)) {
SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
"Finishing %u sectors\n",
blk_rq_sectors(rq)));
SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
"Retry with 0x%p\n", SCpnt));
goto out;
}
if (sdp->changed) {
/*
* quietly refuse to do anything to a changed disc until
* the changed bit has been reset
*/
/* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */
goto out;
}
/*
* Some SD card readers can't handle multi-sector accesses which touch
* the last one or two hardware sectors. Split accesses as needed.
*/
threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS *
(sdp->sector_size / 512);
if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) {
if (block < threshold) {
/* Access up to the threshold but not beyond */
this_count = threshold - block;
} else {
/* Access only a single hardware sector */
this_count = sdp->sector_size / 512;
}
}
SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n",
(unsigned long long)block));
/*
* If we have a 1K hardware sectorsize, prevent access to single
* 512 byte sectors. In theory we could handle this - in fact
* the scsi cdrom driver must be able to handle this because
* we typically use 1K blocksizes, and cdroms typically have
* 2K hardware sectorsizes. Of course, things are simpler
* with the cdrom, since it is read-only. For performance
* reasons, the filesystems should be able to handle this
* and not force the scsi disk driver to use bounce buffers
* for this.
*/
if (sdp->sector_size == 1024) {
if ((block & 1) || (blk_rq_sectors(rq) & 1)) {
scmd_printk(KERN_ERR, SCpnt,
"Bad block number requested\n");
goto out;
} else {
block = block >> 1;
this_count = this_count >> 1;
}
}
if (sdp->sector_size == 2048) {
if ((block & 3) || (blk_rq_sectors(rq) & 3)) {
scmd_printk(KERN_ERR, SCpnt,
"Bad block number requested\n");
goto out;
} else {
block = block >> 2;
this_count = this_count >> 2;
}
}
if (sdp->sector_size == 4096) {
if ((block & 7) || (blk_rq_sectors(rq) & 7)) {
scmd_printk(KERN_ERR, SCpnt,
"Bad block number requested\n");
goto out;
} else {
block = block >> 3;
this_count = this_count >> 3;
}
}
if (rq_data_dir(rq) == WRITE) {
SCpnt->cmnd[0] = WRITE_6;
if (blk_integrity_rq(rq))
sd_dif_prepare(SCpnt);
} else if (rq_data_dir(rq) == READ) {
SCpnt->cmnd[0] = READ_6;
} else {
scmd_printk(KERN_ERR, SCpnt, "Unknown command %llx\n", (unsigned long long) rq->cmd_flags);
goto out;
}
SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
"%s %d/%u 512 byte blocks.\n",
(rq_data_dir(rq) == WRITE) ?
"writing" : "reading", this_count,
blk_rq_sectors(rq)));
dix = scsi_prot_sg_count(SCpnt);
dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type);
if (dif || dix)
protect = sd_setup_protect_cmnd(SCpnt, dix, dif);
else
protect = 0;
if (protect && sdkp->protection_type == SD_DIF_TYPE2_PROTECTION) {
SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
if (unlikely(SCpnt->cmnd == NULL)) {
ret = BLKPREP_DEFER;
goto out;
}
SCpnt->cmd_len = SD_EXT_CDB_SIZE;
memset(SCpnt->cmnd, 0, SCpnt->cmd_len);
SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD;
SCpnt->cmnd[7] = 0x18;
SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32;
SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
/* LBA */
SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff;
SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff;
SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff;
SCpnt->cmnd[19] = (unsigned char) block & 0xff;
/* Expected Indirect LBA */
SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff;
SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff;
SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff;
SCpnt->cmnd[23] = (unsigned char) block & 0xff;
/* Transfer length */
SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff;
SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff;
SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff;
SCpnt->cmnd[31] = (unsigned char) this_count & 0xff;
} else if (sdp->use_16_for_rw || (this_count > 0xffff)) {
SCpnt->cmnd[0] += READ_16 - READ_6;
SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff;
SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff;
SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff;
SCpnt->cmnd[9] = (unsigned char) block & 0xff;
SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff;
SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff;
SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff;
SCpnt->cmnd[13] = (unsigned char) this_count & 0xff;
SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0;
} else if ((this_count > 0xff) || (block > 0x1fffff) ||
scsi_device_protection(SCpnt->device) ||
SCpnt->device->use_10_for_rw) {
SCpnt->cmnd[0] += READ_10 - READ_6;
SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff;
SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff;
SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff;
SCpnt->cmnd[5] = (unsigned char) block & 0xff;
SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0;
SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff;
SCpnt->cmnd[8] = (unsigned char) this_count & 0xff;
} else {
if (unlikely(rq->cmd_flags & REQ_FUA)) {
/*
* This happens only if this drive failed
* 10byte rw command with ILLEGAL_REQUEST
* during operation and thus turned off
* use_10_for_rw.
*/
scmd_printk(KERN_ERR, SCpnt,
"FUA write on READ/WRITE(6) drive\n");
goto out;
}
SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f);
SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff);
SCpnt->cmnd[3] = (unsigned char) block & 0xff;
SCpnt->cmnd[4] = (unsigned char) this_count;
SCpnt->cmnd[5] = 0;
}
SCpnt->sdb.length = this_count * sdp->sector_size;
/*
* We shouldn't disconnect in the middle of a sector, so with a dumb
* host adapter, it's safe to assume that we can at least transfer
* this many bytes between each connect / disconnect.
*/
SCpnt->transfersize = sdp->sector_size;
SCpnt->underflow = this_count << 9;
SCpnt->allowed = SD_MAX_RETRIES;
/*
* This indicates that the command is ready from our end to be
* queued.
*/
ret = BLKPREP_OK;
out:
return ret;
}
static int sd_init_command(struct scsi_cmnd *cmd)
{
struct request *rq = cmd->request;
if (rq->cmd_flags & REQ_DISCARD)
return sd_setup_discard_cmnd(cmd);
else if (rq->cmd_flags & REQ_WRITE_SAME)
return sd_setup_write_same_cmnd(cmd);
else if (rq->cmd_flags & REQ_FLUSH)
return sd_setup_flush_cmnd(cmd);
else
return sd_setup_read_write_cmnd(cmd);
}
static void sd_uninit_command(struct scsi_cmnd *SCpnt)
{
struct request *rq = SCpnt->request;
if (rq->cmd_flags & REQ_DISCARD)
__free_page(rq->completion_data);
if (SCpnt->cmnd != rq->cmd) {
mempool_free(SCpnt->cmnd, sd_cdb_pool);
SCpnt->cmnd = NULL;
SCpnt->cmd_len = 0;
}
}
/**
* sd_open - open a scsi disk device
* @inode: only i_rdev member may be used
* @filp: only f_mode and f_flags may be used
*
* Returns 0 if successful. Returns a negated errno value in case
* of error.
*
* Note: This can be called from a user context (e.g. fsck(1) )
* or from within the kernel (e.g. as a result of a mount(1) ).
* In the latter case @inode and @filp carry an abridged amount
* of information as noted above.
*
* Locking: called with bdev->bd_mutex held.
**/
static int sd_open(struct block_device *bdev, fmode_t mode)
{
struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
struct scsi_device *sdev;
int retval;
if (!sdkp)
return -ENXIO;
SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
sdev = sdkp->device;
/*
* If the device is in error recovery, wait until it is done.
* If the device is offline, then disallow any access to it.
*/
retval = -ENXIO;
if (!scsi_block_when_processing_errors(sdev))
goto error_out;
if (sdev->removable || sdkp->write_prot)
check_disk_change(bdev);
/*
* If the drive is empty, just let the open fail.
*/
retval = -ENOMEDIUM;
if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
goto error_out;
/*
* If the device has the write protect tab set, have the open fail
* if the user expects to be able to write to the thing.
*/
retval = -EROFS;
if (sdkp->write_prot && (mode & FMODE_WRITE))
goto error_out;
/*
* It is possible that the disk changing stuff resulted in
* the device being taken offline. If this is the case,
* report this to the user, and don't pretend that the
* open actually succeeded.
*/
retval = -ENXIO;
if (!scsi_device_online(sdev))
goto error_out;
if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
if (scsi_block_when_processing_errors(sdev))
scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
}
return 0;
error_out:
scsi_disk_put(sdkp);
return retval;
}
/**
* sd_release - invoked when the (last) close(2) is called on this
* scsi disk.
* @inode: only i_rdev member may be used
* @filp: only f_mode and f_flags may be used
*
* Returns 0.
*
* Note: may block (uninterruptible) if error recovery is underway
* on this disk.
*
* Locking: called with bdev->bd_mutex held.
**/
static void sd_release(struct gendisk *disk, fmode_t mode)
{
struct scsi_disk *sdkp = scsi_disk(disk);
struct scsi_device *sdev = sdkp->device;
SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
if (scsi_block_when_processing_errors(sdev))
scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
}
/*
* XXX and what if there are packets in flight and this close()
* XXX is followed by a "rmmod sd_mod"?
*/
scsi_disk_put(sdkp);
}
static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
struct scsi_device *sdp = sdkp->device;
struct Scsi_Host *host = sdp->host;
sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
int diskinfo[4];
/* default to most commonly used values */
diskinfo[0] = 0x40; /* 1 << 6 */
diskinfo[1] = 0x20; /* 1 << 5 */
diskinfo[2] = capacity >> 11;
/* override with calculated, extended default, or driver values */
if (host->hostt->bios_param)
host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
else
scsicam_bios_param(bdev, capacity, diskinfo);
geo->heads = diskinfo[0];
geo->sectors = diskinfo[1];
geo->cylinders = diskinfo[2];
return 0;
}
/**
* sd_ioctl - process an ioctl
* @inode: only i_rdev/i_bdev members may be used
* @filp: only f_mode and f_flags may be used
* @cmd: ioctl command number
* @arg: this is third argument given to ioctl(2) system call.
* Often contains a pointer.
*
* Returns 0 if successful (some ioctls return positive numbers on
* success as well). Returns a negated errno value in case of error.
*
* Note: most ioctls are forward onto the block subsystem or further
* down in the scsi subsystem.
**/
static int sd_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg)
{
struct gendisk *disk = bdev->bd_disk;
struct scsi_disk *sdkp = scsi_disk(disk);
struct scsi_device *sdp = sdkp->device;
void __user *p = (void __user *)arg;
int error;
SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
"cmd=0x%x\n", disk->disk_name, cmd));
error = scsi_verify_blk_ioctl(bdev, cmd);
if (error < 0)
return error;
/*
* If we are in the middle of error recovery, don't let anyone
* else try and use this device. Also, if error recovery fails, it
* may try and take the device offline, in which case all further
* access to the device is prohibited.
*/
error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
(mode & FMODE_NDELAY) != 0);
if (error)
goto out;
/*
* Send SCSI addressing ioctls directly to mid level, send other
* ioctls to block level and then onto mid level if they can't be
* resolved.
*/
switch (cmd) {
case SCSI_IOCTL_GET_IDLUN:
case SCSI_IOCTL_GET_BUS_NUMBER:
error = scsi_ioctl(sdp, cmd, p);
break;
default:
error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
if (error != -ENOTTY)
break;
error = scsi_ioctl(sdp, cmd, p);
break;
}
out:
return error;
}
static void set_media_not_present(struct scsi_disk *sdkp)
{
if (sdkp->media_present)
sdkp->device->changed = 1;
if (sdkp->device->removable) {
sdkp->media_present = 0;
sdkp->capacity = 0;
}
}
static int media_not_present(struct scsi_disk *sdkp,
struct scsi_sense_hdr *sshdr)
{
if (!scsi_sense_valid(sshdr))
return 0;
/* not invoked for commands that could return deferred errors */
switch (sshdr->sense_key) {
case UNIT_ATTENTION:
case NOT_READY:
/* medium not present */
if (sshdr->asc == 0x3A) {
set_media_not_present(sdkp);
return 1;
}
}
return 0;
}
/**
* sd_check_events - check media events
* @disk: kernel device descriptor
* @clearing: disk events currently being cleared
*
* Returns mask of DISK_EVENT_*.
*
* Note: this function is invoked from the block subsystem.
**/
static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
{
struct scsi_disk *sdkp = scsi_disk_get(disk);
struct scsi_device *sdp;
struct scsi_sense_hdr *sshdr = NULL;
int retval;
if (!sdkp)
return 0;
sdp = sdkp->device;
SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
/*
* If the device is offline, don't send any commands - just pretend as
* if the command failed. If the device ever comes back online, we
* can deal with it then. It is only because of unrecoverable errors
* that we would ever take a device offline in the first place.
*/
if (!scsi_device_online(sdp)) {
set_media_not_present(sdkp);
goto out;
}
/*
* Using TEST_UNIT_READY enables differentiation between drive with
* no cartridge loaded - NOT READY, drive with changed cartridge -
* UNIT ATTENTION, or with same cartridge - GOOD STATUS.
*
* Drives that auto spin down. eg iomega jaz 1G, will be started
* by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
* sd_revalidate() is called.
*/
retval = -ENODEV;
if (scsi_block_when_processing_errors(sdp)) {
sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
sshdr);
}
/* failed to execute TUR, assume media not present */
if (host_byte(retval)) {
set_media_not_present(sdkp);
goto out;
}
if (media_not_present(sdkp, sshdr))
goto out;
/*
* For removable scsi disk we have to recognise the presence
* of a disk in the drive.
*/
if (!sdkp->media_present)
sdp->changed = 1;
sdkp->media_present = 1;
out:
/*
* sdp->changed is set under the following conditions:
*
* Medium present state has changed in either direction.
* Device has indicated UNIT_ATTENTION.
*/
kfree(sshdr);
retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
sdp->changed = 0;
scsi_disk_put(sdkp);
return retval;
}
static int sd_sync_cache(struct scsi_disk *sdkp)
{
int retries, res;
struct scsi_device *sdp = sdkp->device;
const int timeout = sdp->request_queue->rq_timeout
* SD_FLUSH_TIMEOUT_MULTIPLIER;
struct scsi_sense_hdr sshdr;
if (!scsi_device_online(sdp))
return -ENODEV;
for (retries = 3; retries > 0; --retries) {
unsigned char cmd[10] = { 0 };
cmd[0] = SYNCHRONIZE_CACHE;
/*
* Leave the rest of the command zero to indicate
* flush everything.
*/
res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0,
&sshdr, timeout, SD_MAX_RETRIES,
NULL, REQ_PM);
if (res == 0)
break;
}
if (res) {
sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
if (driver_byte(res) & DRIVER_SENSE)
sd_print_sense_hdr(sdkp, &sshdr);
/* we need to evaluate the error return */
if (scsi_sense_valid(&sshdr) &&
(sshdr.asc == 0x3a || /* medium not present */
sshdr.asc == 0x20)) /* invalid command */
/* this is no error here */
return 0;
switch (host_byte(res)) {
/* ignore errors due to racing a disconnection */
case DID_BAD_TARGET:
case DID_NO_CONNECT:
return 0;
/* signal the upper layer it might try again */
case DID_BUS_BUSY:
case DID_IMM_RETRY:
case DID_REQUEUE:
case DID_SOFT_ERROR:
return -EBUSY;
default:
return -EIO;
}
}
return 0;
}
static void sd_rescan(struct device *dev)
{
struct scsi_disk *sdkp = dev_get_drvdata(dev);
revalidate_disk(sdkp->disk);
}
#ifdef CONFIG_COMPAT
/*
* This gets directly called from VFS. When the ioctl
* is not recognized we go back to the other translation paths.
*/
static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg)
{
struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
int error;
error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
(mode & FMODE_NDELAY) != 0);
if (error)
return error;
/*
* Let the static ioctl translation table take care of it.
*/
if (!sdev->host->hostt->compat_ioctl)
return -ENOIOCTLCMD;
return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
}
#endif
static char sd_pr_type(enum pr_type type)
{
switch (type) {
case PR_WRITE_EXCLUSIVE:
return 0x01;
case PR_EXCLUSIVE_ACCESS:
return 0x03;
case PR_WRITE_EXCLUSIVE_REG_ONLY:
return 0x05;
case PR_EXCLUSIVE_ACCESS_REG_ONLY:
return 0x06;
case PR_WRITE_EXCLUSIVE_ALL_REGS:
return 0x07;
case PR_EXCLUSIVE_ACCESS_ALL_REGS:
return 0x08;
default:
return 0;
}
};
static int sd_pr_command(struct block_device *bdev, u8 sa,
u64 key, u64 sa_key, u8 type, u8 flags)
{
struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
struct scsi_sense_hdr sshdr;
int result;
u8 cmd[16] = { 0, };
u8 data[24] = { 0, };
cmd[0] = PERSISTENT_RESERVE_OUT;
cmd[1] = sa;
cmd[2] = type;
put_unaligned_be32(sizeof(data), &cmd[5]);
put_unaligned_be64(key, &data[0]);
put_unaligned_be64(sa_key, &data[8]);
data[20] = flags;
result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
&sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
if ((driver_byte(result) & DRIVER_SENSE) &&
(scsi_sense_valid(&sshdr))) {
sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
scsi_print_sense_hdr(sdev, NULL, &sshdr);
}
return result;
}
static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
u32 flags)
{
if (flags & ~PR_FL_IGNORE_KEY)
return -EOPNOTSUPP;
return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
old_key, new_key, 0,
(1 << 0) /* APTPL */ |
(1 << 2) /* ALL_TG_PT */);
}
static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
u32 flags)
{
if (flags)
return -EOPNOTSUPP;
return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
}
static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
{
return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
}
static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
enum pr_type type, bool abort)
{
return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
sd_pr_type(type), 0);
}
static int sd_pr_clear(struct block_device *bdev, u64 key)
{
return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
}
static const struct pr_ops sd_pr_ops = {
.pr_register = sd_pr_register,
.pr_reserve = sd_pr_reserve,
.pr_release = sd_pr_release,
.pr_preempt = sd_pr_preempt,
.pr_clear = sd_pr_clear,
};
static const struct block_device_operations sd_fops = {
.owner = THIS_MODULE,
.open = sd_open,
.release = sd_release,
.ioctl = sd_ioctl,
.getgeo = sd_getgeo,
#ifdef CONFIG_COMPAT
.compat_ioctl = sd_compat_ioctl,
#endif
.check_events = sd_check_events,
.revalidate_disk = sd_revalidate_disk,
.unlock_native_capacity = sd_unlock_native_capacity,
.pr_ops = &sd_pr_ops,
};
/**
* sd_eh_action - error handling callback
* @scmd: sd-issued command that has failed
* @eh_disp: The recovery disposition suggested by the midlayer
*
* This function is called by the SCSI midlayer upon completion of an
* error test command (currently TEST UNIT READY). The result of sending
* the eh command is passed in eh_disp. We're looking for devices that
* fail medium access commands but are OK with non access commands like
* test unit ready (so wrongly see the device as having a successful
* recovery)
**/
static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
{
struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
if (!scsi_device_online(scmd->device) ||
!scsi_medium_access_command(scmd) ||
host_byte(scmd->result) != DID_TIME_OUT ||
eh_disp != SUCCESS)
return eh_disp;
/*
* The device has timed out executing a medium access command.
* However, the TEST UNIT READY command sent during error
* handling completed successfully. Either the device is in the
* process of recovering or has it suffered an internal failure
* that prevents access to the storage medium.
*/
sdkp->medium_access_timed_out++;
/*
* If the device keeps failing read/write commands but TEST UNIT
* READY always completes successfully we assume that medium
* access is no longer possible and take the device offline.
*/
if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
scmd_printk(KERN_ERR, scmd,
"Medium access timeout failure. Offlining disk!\n");
scsi_device_set_state(scmd->device, SDEV_OFFLINE);
return FAILED;
}
return eh_disp;
}
static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
{
u64 start_lba = blk_rq_pos(scmd->request);
u64 end_lba = blk_rq_pos(scmd->request) + (scsi_bufflen(scmd) / 512);
u64 factor = scmd->device->sector_size / 512;
u64 bad_lba;
int info_valid;
/*
* resid is optional but mostly filled in. When it's unused,
* its value is zero, so we assume the whole buffer transferred
*/
unsigned int transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
unsigned int good_bytes;
if (scmd->request->cmd_type != REQ_TYPE_FS)
return 0;
info_valid = scsi_get_sense_info_fld(scmd->sense_buffer,
SCSI_SENSE_BUFFERSIZE,
&bad_lba);
if (!info_valid)
return 0;
if (scsi_bufflen(scmd) <= scmd->device->sector_size)
return 0;
/* be careful ... don't want any overflows */
do_div(start_lba, factor);
do_div(end_lba, factor);
/* The bad lba was reported incorrectly, we have no idea where
* the error is.
*/
if (bad_lba < start_lba || bad_lba >= end_lba)
return 0;
/* This computation should always be done in terms of
* the resolution of the device's medium.
*/
good_bytes = (bad_lba - start_lba) * scmd->device->sector_size;
return min(good_bytes, transferred);
}
/**
* sd_done - bottom half handler: called when the lower level
* driver has completed (successfully or otherwise) a scsi command.
* @SCpnt: mid-level's per command structure.
*
* Note: potentially run from within an ISR. Must not block.
**/
static int sd_done(struct scsi_cmnd *SCpnt)
{
int result = SCpnt->result;
unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
struct scsi_sense_hdr sshdr;
struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
struct request *req = SCpnt->request;
int sense_valid = 0;
int sense_deferred = 0;
unsigned char op = SCpnt->cmnd[0];
unsigned char unmap = SCpnt->cmnd[1] & 8;
if (req->cmd_flags & REQ_DISCARD || req->cmd_flags & REQ_WRITE_SAME) {
if (!result) {
good_bytes = blk_rq_bytes(req);
scsi_set_resid(SCpnt, 0);
} else {
good_bytes = 0;
scsi_set_resid(SCpnt, blk_rq_bytes(req));
}
}
if (result) {
sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
if (sense_valid)
sense_deferred = scsi_sense_is_deferred(&sshdr);
}
sdkp->medium_access_timed_out = 0;
if (driver_byte(result) != DRIVER_SENSE &&
(!sense_valid || sense_deferred))
goto out;
switch (sshdr.sense_key) {
case HARDWARE_ERROR:
case MEDIUM_ERROR:
good_bytes = sd_completed_bytes(SCpnt);
break;
case RECOVERED_ERROR:
good_bytes = scsi_bufflen(SCpnt);
break;
case NO_SENSE:
/* This indicates a false check condition, so ignore it. An
* unknown amount of data was transferred so treat it as an
* error.
*/
SCpnt->result = 0;
memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
break;
case ABORTED_COMMAND:
if (sshdr.asc == 0x10) /* DIF: Target detected corruption */
good_bytes = sd_completed_bytes(SCpnt);
break;
case ILLEGAL_REQUEST:
if (sshdr.asc == 0x10) /* DIX: Host detected corruption */
good_bytes = sd_completed_bytes(SCpnt);
/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
switch (op) {
case UNMAP:
sd_config_discard(sdkp, SD_LBP_DISABLE);
break;
case WRITE_SAME_16:
case WRITE_SAME:
if (unmap)
sd_config_discard(sdkp, SD_LBP_DISABLE);
else {
sdkp->device->no_write_same = 1;
sd_config_write_same(sdkp);
good_bytes = 0;
req->__data_len = blk_rq_bytes(req);
req->cmd_flags |= REQ_QUIET;
}
}
}
break;
default:
break;
}
out:
SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
"sd_done: completed %d of %d bytes\n",
good_bytes, scsi_bufflen(SCpnt)));
if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt))
sd_dif_complete(SCpnt, good_bytes);
return good_bytes;
}
/*
* spinup disk - called only in sd_revalidate_disk()
*/
static void
sd_spinup_disk(struct scsi_disk *sdkp)
{
unsigned char cmd[10];
unsigned long spintime_expire = 0;
int retries, spintime;
unsigned int the_result;
struct scsi_sense_hdr sshdr;
int sense_valid = 0;
spintime = 0;
/* Spin up drives, as required. Only do this at boot time */
/* Spinup needs to be done for module loads too. */
do {
retries = 0;
do {
cmd[0] = TEST_UNIT_READY;
memset((void *) &cmd[1], 0, 9);
the_result = scsi_execute_req(sdkp->device, cmd,
DMA_NONE, NULL, 0,
&sshdr, SD_TIMEOUT,
SD_MAX_RETRIES, NULL);
/*
* If the drive has indicated to us that it
* doesn't have any media in it, don't bother
* with any more polling.
*/
if (media_not_present(sdkp, &sshdr))
return;
if (the_result)
sense_valid = scsi_sense_valid(&sshdr);
retries++;
} while (retries < 3 &&
(!scsi_status_is_good(the_result) ||
((driver_byte(the_result) & DRIVER_SENSE) &&
sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
if ((driver_byte(the_result) & DRIVER_SENSE) == 0) {
/* no sense, TUR either succeeded or failed
* with a status error */
if(!spintime && !scsi_status_is_good(the_result)) {
sd_print_result(sdkp, "Test Unit Ready failed",
the_result);
}
break;
}
/*
* The device does not want the automatic start to be issued.
*/
if (sdkp->device->no_start_on_add)
break;
if (sense_valid && sshdr.sense_key == NOT_READY) {
if (sshdr.asc == 4 && sshdr.ascq == 3)
break; /* manual intervention required */
if (sshdr.asc == 4 && sshdr.ascq == 0xb)
break; /* standby */
if (sshdr.asc == 4 && sshdr.ascq == 0xc)
break; /* unavailable */
/*
* Issue command to spin up drive when not ready
*/
if (!spintime) {
sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
cmd[0] = START_STOP;
cmd[1] = 1; /* Return immediately */
memset((void *) &cmd[2], 0, 8);
cmd[4] = 1; /* Start spin cycle */
if (sdkp->device->start_stop_pwr_cond)
cmd[4] |= 1 << 4;
scsi_execute_req(sdkp->device, cmd, DMA_NONE,
NULL, 0, &sshdr,
SD_TIMEOUT, SD_MAX_RETRIES,
NULL);
spintime_expire = jiffies + 100 * HZ;
spintime = 1;
}
/* Wait 1 second for next try */
msleep(1000);
printk(".");
/*
* Wait for USB flash devices with slow firmware.
* Yes, this sense key/ASC combination shouldn't
* occur here. It's characteristic of these devices.
*/
} else if (sense_valid &&
sshdr.sense_key == UNIT_ATTENTION &&
sshdr.asc == 0x28) {
if (!spintime) {
spintime_expire = jiffies + 5 * HZ;
spintime = 1;
}
/* Wait 1 second for next try */
msleep(1000);
} else {
/* we don't understand the sense code, so it's
* probably pointless to loop */
if(!spintime) {
sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
sd_print_sense_hdr(sdkp, &sshdr);
}
break;
}
} while (spintime && time_before_eq(jiffies, spintime_expire));
if (spintime) {
if (scsi_status_is_good(the_result))
printk("ready\n");
else
printk("not responding...\n");
}
}
/*
* Determine whether disk supports Data Integrity Field.
*/
static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
{
struct scsi_device *sdp = sdkp->device;
u8 type;
int ret = 0;
if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
return ret;
type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
if (type > SD_DIF_TYPE3_PROTECTION)
ret = -ENODEV;
else if (scsi_host_dif_capable(sdp->host, type))
ret = 1;
if (sdkp->first_scan || type != sdkp->protection_type)
switch (ret) {
case -ENODEV:
sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
" protection type %u. Disabling disk!\n",
type);
break;
case 1:
sd_printk(KERN_NOTICE, sdkp,
"Enabling DIF Type %u protection\n", type);
break;
case 0:
sd_printk(KERN_NOTICE, sdkp,
"Disabling DIF Type %u protection\n", type);
break;
}
sdkp->protection_type = type;
return ret;
}
static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
struct scsi_sense_hdr *sshdr, int sense_valid,
int the_result)
{
if (driver_byte(the_result) & DRIVER_SENSE)
sd_print_sense_hdr(sdkp, sshdr);
else
sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
/*
* Set dirty bit for removable devices if not ready -
* sometimes drives will not report this properly.
*/
if (sdp->removable &&
sense_valid && sshdr->sense_key == NOT_READY)
set_media_not_present(sdkp);
/*
* We used to set media_present to 0 here to indicate no media
* in the drive, but some drives fail read capacity even with
* media present, so we can't do that.
*/
sdkp->capacity = 0; /* unknown mapped to zero - as usual */
}
#define RC16_LEN 32
#if RC16_LEN > SD_BUF_SIZE
#error RC16_LEN must not be more than SD_BUF_SIZE
#endif
#define READ_CAPACITY_RETRIES_ON_RESET 10
static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
unsigned char *buffer)
{
unsigned char cmd[16];
struct scsi_sense_hdr sshdr;
int sense_valid = 0;
int the_result;
int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
unsigned int alignment;
unsigned long long lba;
unsigned sector_size;
if (sdp->no_read_capacity_16)
return -EINVAL;
do {
memset(cmd, 0, 16);
cmd[0] = SERVICE_ACTION_IN_16;
cmd[1] = SAI_READ_CAPACITY_16;
cmd[13] = RC16_LEN;
memset(buffer, 0, RC16_LEN);
the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
buffer, RC16_LEN, &sshdr,
SD_TIMEOUT, SD_MAX_RETRIES, NULL);
if (media_not_present(sdkp, &sshdr))
return -ENODEV;
if (the_result) {
sense_valid = scsi_sense_valid(&sshdr);
if (sense_valid &&
sshdr.sense_key == ILLEGAL_REQUEST &&
(sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
sshdr.ascq == 0x00)
/* Invalid Command Operation Code or
* Invalid Field in CDB, just retry
* silently with RC10 */
return -EINVAL;
if (sense_valid &&
sshdr.sense_key == UNIT_ATTENTION &&
sshdr.asc == 0x29 && sshdr.ascq == 0x00)
/* Device reset might occur several times,
* give it one more chance */
if (--reset_retries > 0)
continue;
}
retries--;
} while (the_result && retries);
if (the_result) {
sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
return -EINVAL;
}
sector_size = get_unaligned_be32(&buffer[8]);
lba = get_unaligned_be64(&buffer[0]);
if (sd_read_protection_type(sdkp, buffer) < 0) {
sdkp->capacity = 0;
return -ENODEV;
}
if ((sizeof(sdkp->capacity) == 4) && (lba >= 0xffffffffULL)) {
sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
"kernel compiled with support for large block "
"devices.\n");
sdkp->capacity = 0;
return -EOVERFLOW;
}
/* Logical blocks per physical block exponent */
sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
/* Lowest aligned logical block */
alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
blk_queue_alignment_offset(sdp->request_queue, alignment);
if (alignment && sdkp->first_scan)
sd_printk(KERN_NOTICE, sdkp,
"physical block alignment offset: %u\n", alignment);
if (buffer[14] & 0x80) { /* LBPME */
sdkp->lbpme = 1;
if (buffer[14] & 0x40) /* LBPRZ */
sdkp->lbprz = 1;
sd_config_discard(sdkp, SD_LBP_WS16);
}
sdkp->capacity = lba + 1;
return sector_size;
}
static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
unsigned char *buffer)
{
unsigned char cmd[16];
struct scsi_sense_hdr sshdr;
int sense_valid = 0;
int the_result;
int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
sector_t lba;
unsigned sector_size;
do {
cmd[0] = READ_CAPACITY;
memset(&cmd[1], 0, 9);
memset(buffer, 0, 8);
the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
buffer, 8, &sshdr,
SD_TIMEOUT, SD_MAX_RETRIES, NULL);
if (media_not_present(sdkp, &sshdr))
return -ENODEV;
if (the_result) {
sense_valid = scsi_sense_valid(&sshdr);
if (sense_valid &&
sshdr.sense_key == UNIT_ATTENTION &&
sshdr.asc == 0x29 && sshdr.ascq == 0x00)
/* Device reset might occur several times,
* give it one more chance */
if (--reset_retries > 0)
continue;
}
retries--;
} while (the_result && retries);
if (the_result) {
sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
return -EINVAL;
}
sector_size = get_unaligned_be32(&buffer[4]);
lba = get_unaligned_be32(&buffer[0]);
if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
/* Some buggy (usb cardreader) devices return an lba of
0xffffffff when the want to report a size of 0 (with
which they really mean no media is present) */
sdkp->capacity = 0;
sdkp->physical_block_size = sector_size;
return sector_size;
}
if ((sizeof(sdkp->capacity) == 4) && (lba == 0xffffffff)) {
sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
"kernel compiled with support for large block "
"devices.\n");
sdkp->capacity = 0;
return -EOVERFLOW;
}
sdkp->capacity = lba + 1;
sdkp->physical_block_size = sector_size;
return sector_size;
}
static int sd_try_rc16_first(struct scsi_device *sdp)
{
if (sdp->host->max_cmd_len < 16)
return 0;
if (sdp->try_rc_10_first)
return 0;
if (sdp->scsi_level > SCSI_SPC_2)
return 1;
if (scsi_device_protection(sdp))
return 1;
return 0;
}
/*
* read disk capacity
*/
static void
sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
{
int sector_size;
struct scsi_device *sdp = sdkp->device;
sector_t old_capacity = sdkp->capacity;
if (sd_try_rc16_first(sdp)) {
sector_size = read_capacity_16(sdkp, sdp, buffer);
if (sector_size == -EOVERFLOW)
goto got_data;
if (sector_size == -ENODEV)
return;
if (sector_size < 0)
sector_size = read_capacity_10(sdkp, sdp, buffer);
if (sector_size < 0)
return;
} else {
sector_size = read_capacity_10(sdkp, sdp, buffer);
if (sector_size == -EOVERFLOW)
goto got_data;
if (sector_size < 0)
return;
if ((sizeof(sdkp->capacity) > 4) &&
(sdkp->capacity > 0xffffffffULL)) {
int old_sector_size = sector_size;
sd_printk(KERN_NOTICE, sdkp, "Very big device. "
"Trying to use READ CAPACITY(16).\n");
sector_size = read_capacity_16(sdkp, sdp, buffer);
if (sector_size < 0) {
sd_printk(KERN_NOTICE, sdkp,
"Using 0xffffffff as device size\n");
sdkp->capacity = 1 + (sector_t) 0xffffffff;
sector_size = old_sector_size;
goto got_data;
}
}
}
/* Some devices are known to return the total number of blocks,
* not the highest block number. Some devices have versions
* which do this and others which do not. Some devices we might
* suspect of doing this but we don't know for certain.
*
* If we know the reported capacity is wrong, decrement it. If
* we can only guess, then assume the number of blocks is even
* (usually true but not always) and err on the side of lowering
* the capacity.
*/
if (sdp->fix_capacity ||
(sdp->guess_capacity && (sdkp->capacity & 0x01))) {
sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
"from its reported value: %llu\n",
(unsigned long long) sdkp->capacity);
--sdkp->capacity;
}
got_data:
if (sector_size == 0) {
sector_size = 512;
sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
"assuming 512.\n");
}
if (sector_size != 512 &&
sector_size != 1024 &&
sector_size != 2048 &&
sector_size != 4096) {
sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
sector_size);
/*
* The user might want to re-format the drive with
* a supported sectorsize. Once this happens, it
* would be relatively trivial to set the thing up.
* For this reason, we leave the thing in the table.
*/
sdkp->capacity = 0;
/*
* set a bogus sector size so the normal read/write
* logic in the block layer will eventually refuse any
* request on this device without tripping over power
* of two sector size assumptions
*/
sector_size = 512;
}
blk_queue_logical_block_size(sdp->request_queue, sector_size);
{
char cap_str_2[10], cap_str_10[10];
string_get_size(sdkp->capacity, sector_size,
STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
string_get_size(sdkp->capacity, sector_size,
STRING_UNITS_10, cap_str_10,
sizeof(cap_str_10));
if (sdkp->first_scan || old_capacity != sdkp->capacity) {
sd_printk(KERN_NOTICE, sdkp,
"%llu %d-byte logical blocks: (%s/%s)\n",
(unsigned long long)sdkp->capacity,
sector_size, cap_str_10, cap_str_2);
if (sdkp->physical_block_size != sector_size)
sd_printk(KERN_NOTICE, sdkp,
"%u-byte physical blocks\n",
sdkp->physical_block_size);
}
}
if (sdkp->capacity > 0xffffffff)
sdp->use_16_for_rw = 1;
blk_queue_physical_block_size(sdp->request_queue,
sdkp->physical_block_size);
sdkp->device->sector_size = sector_size;
}
/* called with buffer of length 512 */
static inline int
sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
unsigned char *buffer, int len, struct scsi_mode_data *data,
struct scsi_sense_hdr *sshdr)
{
return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
SD_TIMEOUT, SD_MAX_RETRIES, data,
sshdr);
}
/*
* read write protect setting, if possible - called only in sd_revalidate_disk()
* called with buffer of length SD_BUF_SIZE
*/
static void
sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
{
int res;
struct scsi_device *sdp = sdkp->device;
struct scsi_mode_data data;
int old_wp = sdkp->write_prot;
set_disk_ro(sdkp->disk, 0);
if (sdp->skip_ms_page_3f) {
sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
return;
}
if (sdp->use_192_bytes_for_3f) {
res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
} else {
/*
* First attempt: ask for all pages (0x3F), but only 4 bytes.
* We have to start carefully: some devices hang if we ask
* for more than is available.
*/
res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
/*
* Second attempt: ask for page 0 When only page 0 is
* implemented, a request for page 3F may return Sense Key
* 5: Illegal Request, Sense Code 24: Invalid field in
* CDB.
*/
if (!scsi_status_is_good(res))
res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
/*
* Third attempt: ask 255 bytes, as we did earlier.
*/
if (!scsi_status_is_good(res))
res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
&data, NULL);
}
if (!scsi_status_is_good(res)) {
sd_first_printk(KERN_WARNING, sdkp,
"Test WP failed, assume Write Enabled\n");
} else {
sdkp->write_prot = ((data.device_specific & 0x80) != 0);
set_disk_ro(sdkp->disk, sdkp->write_prot);
if (sdkp->first_scan || old_wp != sdkp->write_prot) {
sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
sdkp->write_prot ? "on" : "off");
sd_printk(KERN_DEBUG, sdkp,
"Mode Sense: %02x %02x %02x %02x\n",
buffer[0], buffer[1], buffer[2], buffer[3]);
}
}
}
/*
* sd_read_cache_type - called only from sd_revalidate_disk()
* called with buffer of length SD_BUF_SIZE
*/
static void
sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
{
int len = 0, res;
struct scsi_device *sdp = sdkp->device;
int dbd;
int modepage;
int first_len;
struct scsi_mode_data data;
struct scsi_sense_hdr sshdr;
int old_wce = sdkp->WCE;
int old_rcd = sdkp->RCD;
int old_dpofua = sdkp->DPOFUA;
if (sdkp->cache_override)
return;
first_len = 4;
if (sdp->skip_ms_page_8) {
if (sdp->type == TYPE_RBC)
goto defaults;
else {
if (sdp->skip_ms_page_3f)
goto defaults;
modepage = 0x3F;
if (sdp->use_192_bytes_for_3f)
first_len = 192;
dbd = 0;
}
} else if (sdp->type == TYPE_RBC) {
modepage = 6;
dbd = 8;
} else {
modepage = 8;
dbd = 0;
}
/* cautiously ask */
res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
&data, &sshdr);
if (!scsi_status_is_good(res))
goto bad_sense;
if (!data.header_length) {
modepage = 6;
first_len = 0;
sd_first_printk(KERN_ERR, sdkp,
"Missing header in MODE_SENSE response\n");
}
/* that went OK, now ask for the proper length */
len = data.length;
/*
* We're only interested in the first three bytes, actually.
* But the data cache page is defined for the first 20.
*/
if (len < 3)
goto bad_sense;
else if (len > SD_BUF_SIZE) {
sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
"data from %d to %d bytes\n", len, SD_BUF_SIZE);
len = SD_BUF_SIZE;
}
if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
len = 192;
/* Get the data */
if (len > first_len)
res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
&data, &sshdr);
if (scsi_status_is_good(res)) {
int offset = data.header_length + data.block_descriptor_length;
while (offset < len) {
u8 page_code = buffer[offset] & 0x3F;
u8 spf = buffer[offset] & 0x40;
if (page_code == 8 || page_code == 6) {
/* We're interested only in the first 3 bytes.
*/
if (len - offset <= 2) {
sd_first_printk(KERN_ERR, sdkp,
"Incomplete mode parameter "
"data\n");
goto defaults;
} else {
modepage = page_code;
goto Page_found;
}
} else {
/* Go to the next page */
if (spf && len - offset > 3)
offset += 4 + (buffer[offset+2] << 8) +
buffer[offset+3];
else if (!spf && len - offset > 1)
offset += 2 + buffer[offset+1];
else {
sd_first_printk(KERN_ERR, sdkp,
"Incomplete mode "
"parameter data\n");
goto defaults;
}
}
}
sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
goto defaults;
Page_found:
if (modepage == 8) {
sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
} else {
sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
sdkp->RCD = 0;
}
sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
if (sdp->broken_fua) {
sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
sdkp->DPOFUA = 0;
} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw) {
sd_first_printk(KERN_NOTICE, sdkp,
"Uses READ/WRITE(6), disabling FUA\n");
sdkp->DPOFUA = 0;
}
/* No cache flush allowed for write protected devices */
if (sdkp->WCE && sdkp->write_prot)
sdkp->WCE = 0;
if (sdkp->first_scan || old_wce != sdkp->WCE ||
old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
sd_printk(KERN_NOTICE, sdkp,
"Write cache: %s, read cache: %s, %s\n",
sdkp->WCE ? "enabled" : "disabled",
sdkp->RCD ? "disabled" : "enabled",
sdkp->DPOFUA ? "supports DPO and FUA"
: "doesn't support DPO or FUA");
return;
}
bad_sense:
if (scsi_sense_valid(&sshdr) &&
sshdr.sense_key == ILLEGAL_REQUEST &&
sshdr.asc == 0x24 && sshdr.ascq == 0x0)
/* Invalid field in CDB */
sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
else
sd_first_printk(KERN_ERR, sdkp,
"Asking for cache data failed\n");
defaults:
if (sdp->wce_default_on) {
sd_first_printk(KERN_NOTICE, sdkp,
"Assuming drive cache: write back\n");
sdkp->WCE = 1;
} else {
sd_first_printk(KERN_ERR, sdkp,
"Assuming drive cache: write through\n");
sdkp->WCE = 0;
}
sdkp->RCD = 0;
sdkp->DPOFUA = 0;
}
/*
* The ATO bit indicates whether the DIF application tag is available
* for use by the operating system.
*/
static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
{
int res, offset;
struct scsi_device *sdp = sdkp->device;
struct scsi_mode_data data;
struct scsi_sense_hdr sshdr;
if (sdp->type != TYPE_DISK)
return;
if (sdkp->protection_type == 0)
return;
res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
SD_MAX_RETRIES, &data, &sshdr);
if (!scsi_status_is_good(res) || !data.header_length ||
data.length < 6) {
sd_first_printk(KERN_WARNING, sdkp,
"getting Control mode page failed, assume no ATO\n");
if (scsi_sense_valid(&sshdr))
sd_print_sense_hdr(sdkp, &sshdr);
return;
}
offset = data.header_length + data.block_descriptor_length;
if ((buffer[offset] & 0x3f) != 0x0a) {
sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
return;
}
if ((buffer[offset + 5] & 0x80) == 0)
return;
sdkp->ATO = 1;
return;
}
/**
* sd_read_block_limits - Query disk device for preferred I/O sizes.
* @disk: disk to query
*/
static void sd_read_block_limits(struct scsi_disk *sdkp)
{
unsigned int sector_sz = sdkp->device->sector_size;
const int vpd_len = 64;
unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
if (!buffer ||
/* Block Limits VPD */
scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
goto out;
blk_queue_io_min(sdkp->disk->queue,
get_unaligned_be16(&buffer[6]) * sector_sz);
sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
if (buffer[3] == 0x3c) {
unsigned int lba_count, desc_count;
sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
if (!sdkp->lbpme)
goto out;
lba_count = get_unaligned_be32(&buffer[20]);
desc_count = get_unaligned_be32(&buffer[24]);
if (lba_count && desc_count)
sdkp->max_unmap_blocks = lba_count;
sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
if (buffer[32] & 0x80)
sdkp->unmap_alignment =
get_unaligned_be32(&buffer[32]) & ~(1 << 31);
if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
if (sdkp->max_unmap_blocks)
sd_config_discard(sdkp, SD_LBP_UNMAP);
else
sd_config_discard(sdkp, SD_LBP_WS16);
} else { /* LBP VPD page tells us what to use */
if (sdkp->lbpu && sdkp->max_unmap_blocks && !sdkp->lbprz)
sd_config_discard(sdkp, SD_LBP_UNMAP);
else if (sdkp->lbpws)
sd_config_discard(sdkp, SD_LBP_WS16);
else if (sdkp->lbpws10)
sd_config_discard(sdkp, SD_LBP_WS10);
else if (sdkp->lbpu && sdkp->max_unmap_blocks)
sd_config_discard(sdkp, SD_LBP_UNMAP);
else
sd_config_discard(sdkp, SD_LBP_DISABLE);
}
}
out:
kfree(buffer);
}
/**
* sd_read_block_characteristics - Query block dev. characteristics
* @disk: disk to query
*/
static void sd_read_block_characteristics(struct scsi_disk *sdkp)
{
unsigned char *buffer;
u16 rot;
const int vpd_len = 64;
buffer = kmalloc(vpd_len, GFP_KERNEL);
if (!buffer ||
/* Block Device Characteristics VPD */
scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
goto out;
rot = get_unaligned_be16(&buffer[4]);
if (rot == 1) {
queue_flag_set_unlocked(QUEUE_FLAG_NONROT, sdkp->disk->queue);
queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, sdkp->disk->queue);
}
out:
kfree(buffer);
}
/**
* sd_read_block_provisioning - Query provisioning VPD page
* @disk: disk to query
*/
static void sd_read_block_provisioning(struct scsi_disk *sdkp)
{
unsigned char *buffer;
const int vpd_len = 8;
if (sdkp->lbpme == 0)
return;
buffer = kmalloc(vpd_len, GFP_KERNEL);
if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
goto out;
sdkp->lbpvpd = 1;
sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */
sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */
sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */
out:
kfree(buffer);
}
static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
{
struct scsi_device *sdev = sdkp->device;
if (sdev->host->no_write_same) {
sdev->no_write_same = 1;
return;
}
if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
/* too large values might cause issues with arcmsr */
int vpd_buf_len = 64;
sdev->no_report_opcodes = 1;
/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
* CODES is unsupported and the device has an ATA
* Information VPD page (SAT).
*/
if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
sdev->no_write_same = 1;
}
if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
sdkp->ws16 = 1;
if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
sdkp->ws10 = 1;
}
/**
* sd_revalidate_disk - called the first time a new disk is seen,
* performs disk spin up, read_capacity, etc.
* @disk: struct gendisk we care about
**/
static int sd_revalidate_disk(struct gendisk *disk)
{
struct scsi_disk *sdkp = scsi_disk(disk);
struct scsi_device *sdp = sdkp->device;
struct request_queue *q = sdkp->disk->queue;
unsigned char *buffer;
unsigned int dev_max, rw_max;
SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
"sd_revalidate_disk\n"));
/*
* If the device is offline, don't try and read capacity or any
* of the other niceties.
*/
if (!scsi_device_online(sdp))
goto out;
buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
if (!buffer) {
sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
"allocation failure.\n");
goto out;
}
sd_spinup_disk(sdkp);
/*
* Without media there is no reason to ask; moreover, some devices
* react badly if we do.
*/
if (sdkp->media_present) {
sd_read_capacity(sdkp, buffer);
if (scsi_device_supports_vpd(sdp)) {
sd_read_block_provisioning(sdkp);
sd_read_block_limits(sdkp);
sd_read_block_characteristics(sdkp);
}
sd_read_write_protect_flag(sdkp, buffer);
sd_read_cache_type(sdkp, buffer);
sd_read_app_tag_own(sdkp, buffer);
sd_read_write_same(sdkp, buffer);
}
sdkp->first_scan = 0;
/*
* We now have all cache related info, determine how we deal
* with flush requests.
*/
sd_set_flush_flag(sdkp);
/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
/* Some devices report a maximum block count for READ/WRITE requests. */
dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
/*
* Use the device's preferred I/O size for reads and writes
* unless the reported value is unreasonably small, large, or
* garbage.
*/
if (sdkp->opt_xfer_blocks &&
sdkp->opt_xfer_blocks <= dev_max &&
sdkp->opt_xfer_blocks <= SD_DEF_XFER_BLOCKS &&
logical_to_bytes(sdp, sdkp->opt_xfer_blocks) >= PAGE_SIZE) {
q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
} else
rw_max = BLK_DEF_MAX_SECTORS;
/* Combine with controller limits */
q->limits.max_sectors = min(rw_max, queue_max_hw_sectors(q));
set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity));
sd_config_write_same(sdkp);
kfree(buffer);
out:
return 0;
}
/**
* sd_unlock_native_capacity - unlock native capacity
* @disk: struct gendisk to set capacity for
*
* Block layer calls this function if it detects that partitions
* on @disk reach beyond the end of the device. If the SCSI host
* implements ->unlock_native_capacity() method, it's invoked to
* give it a chance to adjust the device capacity.
*
* CONTEXT:
* Defined by block layer. Might sleep.
*/
static void sd_unlock_native_capacity(struct gendisk *disk)
{
struct scsi_device *sdev = scsi_disk(disk)->device;
if (sdev->host->hostt->unlock_native_capacity)
sdev->host->hostt->unlock_native_capacity(sdev);
}
/**
* sd_format_disk_name - format disk name
* @prefix: name prefix - ie. "sd" for SCSI disks
* @index: index of the disk to format name for
* @buf: output buffer
* @buflen: length of the output buffer
*
* SCSI disk names starts at sda. The 26th device is sdz and the
* 27th is sdaa. The last one for two lettered suffix is sdzz
* which is followed by sdaaa.
*
* This is basically 26 base counting with one extra 'nil' entry
* at the beginning from the second digit on and can be
* determined using similar method as 26 base conversion with the
* index shifted -1 after each digit is computed.
*
* CONTEXT:
* Don't care.
*
* RETURNS:
* 0 on success, -errno on failure.
*/
static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
{
const int base = 'z' - 'a' + 1;
char *begin = buf + strlen(prefix);
char *end = buf + buflen;
char *p;
int unit;
p = end - 1;
*p = '\0';
unit = base;
do {
if (p == begin)
return -EINVAL;
*--p = 'a' + (index % unit);
index = (index / unit) - 1;
} while (index >= 0);
memmove(begin, p, end - p);
memcpy(buf, prefix, strlen(prefix));
return 0;
}
/*
* The asynchronous part of sd_probe
*/
static void sd_probe_async(void *data, async_cookie_t cookie)
{
struct scsi_disk *sdkp = data;
struct scsi_device *sdp;
struct gendisk *gd;
u32 index;
struct device *dev;
sdp = sdkp->device;
gd = sdkp->disk;
index = sdkp->index;
dev = &sdp->sdev_gendev;