| /* |
| * linux/fs/partitions/acorn.c |
| * |
| * Copyright (c) 1996-2000 Russell King. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * Scan ADFS partitions on hard disk drives. Unfortunately, there |
| * isn't a standard for partitioning drives on Acorn machines, so |
| * every single manufacturer of SCSI and IDE cards created their own |
| * method. |
| */ |
| #include <linux/buffer_head.h> |
| #include <linux/adfs_fs.h> |
| |
| #include "check.h" |
| #include "acorn.h" |
| |
| /* |
| * Partition types. (Oh for reusability) |
| */ |
| #define PARTITION_RISCIX_MFM 1 |
| #define PARTITION_RISCIX_SCSI 2 |
| #define PARTITION_LINUX 9 |
| |
| #if defined(CONFIG_ACORN_PARTITION_CUMANA) || \ |
| defined(CONFIG_ACORN_PARTITION_ADFS) |
| static struct adfs_discrecord * |
| adfs_partition(struct parsed_partitions *state, char *name, char *data, |
| unsigned long first_sector, int slot) |
| { |
| struct adfs_discrecord *dr; |
| unsigned int nr_sects; |
| |
| if (adfs_checkbblk(data)) |
| return NULL; |
| |
| dr = (struct adfs_discrecord *)(data + 0x1c0); |
| |
| if (dr->disc_size == 0 && dr->disc_size_high == 0) |
| return NULL; |
| |
| nr_sects = (le32_to_cpu(dr->disc_size_high) << 23) | |
| (le32_to_cpu(dr->disc_size) >> 9); |
| |
| if (name) { |
| strlcat(state->pp_buf, " [", PAGE_SIZE); |
| strlcat(state->pp_buf, name, PAGE_SIZE); |
| strlcat(state->pp_buf, "]", PAGE_SIZE); |
| } |
| put_partition(state, slot, first_sector, nr_sects); |
| return dr; |
| } |
| #endif |
| |
| #ifdef CONFIG_ACORN_PARTITION_RISCIX |
| |
| struct riscix_part { |
| __le32 start; |
| __le32 length; |
| __le32 one; |
| char name[16]; |
| }; |
| |
| struct riscix_record { |
| __le32 magic; |
| #define RISCIX_MAGIC cpu_to_le32(0x4a657320) |
| __le32 date; |
| struct riscix_part part[8]; |
| }; |
| |
| #if defined(CONFIG_ACORN_PARTITION_CUMANA) || \ |
| defined(CONFIG_ACORN_PARTITION_ADFS) |
| static int riscix_partition(struct parsed_partitions *state, |
| unsigned long first_sect, int slot, |
| unsigned long nr_sects) |
| { |
| Sector sect; |
| struct riscix_record *rr; |
| |
| rr = read_part_sector(state, first_sect, §); |
| if (!rr) |
| return -1; |
| |
| strlcat(state->pp_buf, " [RISCiX]", PAGE_SIZE); |
| |
| |
| if (rr->magic == RISCIX_MAGIC) { |
| unsigned long size = nr_sects > 2 ? 2 : nr_sects; |
| int part; |
| |
| strlcat(state->pp_buf, " <", PAGE_SIZE); |
| |
| put_partition(state, slot++, first_sect, size); |
| for (part = 0; part < 8; part++) { |
| if (rr->part[part].one && |
| memcmp(rr->part[part].name, "All\0", 4)) { |
| put_partition(state, slot++, |
| le32_to_cpu(rr->part[part].start), |
| le32_to_cpu(rr->part[part].length)); |
| strlcat(state->pp_buf, "(", PAGE_SIZE); |
| strlcat(state->pp_buf, rr->part[part].name, PAGE_SIZE); |
| strlcat(state->pp_buf, ")", PAGE_SIZE); |
| } |
| } |
| |
| strlcat(state->pp_buf, " >\n", PAGE_SIZE); |
| } else { |
| put_partition(state, slot++, first_sect, nr_sects); |
| } |
| |
| put_dev_sector(sect); |
| return slot; |
| } |
| #endif |
| #endif |
| |
| #define LINUX_NATIVE_MAGIC 0xdeafa1de |
| #define LINUX_SWAP_MAGIC 0xdeafab1e |
| |
| struct linux_part { |
| __le32 magic; |
| __le32 start_sect; |
| __le32 nr_sects; |
| }; |
| |
| #if defined(CONFIG_ACORN_PARTITION_CUMANA) || \ |
| defined(CONFIG_ACORN_PARTITION_ADFS) |
| static int linux_partition(struct parsed_partitions *state, |
| unsigned long first_sect, int slot, |
| unsigned long nr_sects) |
| { |
| Sector sect; |
| struct linux_part *linuxp; |
| unsigned long size = nr_sects > 2 ? 2 : nr_sects; |
| |
| strlcat(state->pp_buf, " [Linux]", PAGE_SIZE); |
| |
| put_partition(state, slot++, first_sect, size); |
| |
| linuxp = read_part_sector(state, first_sect, §); |
| if (!linuxp) |
| return -1; |
| |
| strlcat(state->pp_buf, " <", PAGE_SIZE); |
| while (linuxp->magic == cpu_to_le32(LINUX_NATIVE_MAGIC) || |
| linuxp->magic == cpu_to_le32(LINUX_SWAP_MAGIC)) { |
| if (slot == state->limit) |
| break; |
| put_partition(state, slot++, first_sect + |
| le32_to_cpu(linuxp->start_sect), |
| le32_to_cpu(linuxp->nr_sects)); |
| linuxp ++; |
| } |
| strlcat(state->pp_buf, " >", PAGE_SIZE); |
| |
| put_dev_sector(sect); |
| return slot; |
| } |
| #endif |
| |
| #ifdef CONFIG_ACORN_PARTITION_CUMANA |
| int adfspart_check_CUMANA(struct parsed_partitions *state) |
| { |
| unsigned long first_sector = 0; |
| unsigned int start_blk = 0; |
| Sector sect; |
| unsigned char *data; |
| char *name = "CUMANA/ADFS"; |
| int first = 1; |
| int slot = 1; |
| |
| /* |
| * Try Cumana style partitions - sector 6 contains ADFS boot block |
| * with pointer to next 'drive'. |
| * |
| * There are unknowns in this code - is the 'cylinder number' of the |
| * next partition relative to the start of this one - I'm assuming |
| * it is. |
| * |
| * Also, which ID did Cumana use? |
| * |
| * This is totally unfinished, and will require more work to get it |
| * going. Hence it is totally untested. |
| */ |
| do { |
| struct adfs_discrecord *dr; |
| unsigned int nr_sects; |
| |
| data = read_part_sector(state, start_blk * 2 + 6, §); |
| if (!data) |
| return -1; |
| |
| if (slot == state->limit) |
| break; |
| |
| dr = adfs_partition(state, name, data, first_sector, slot++); |
| if (!dr) |
| break; |
| |
| name = NULL; |
| |
| nr_sects = (data[0x1fd] + (data[0x1fe] << 8)) * |
| (dr->heads + (dr->lowsector & 0x40 ? 1 : 0)) * |
| dr->secspertrack; |
| |
| if (!nr_sects) |
| break; |
| |
| first = 0; |
| first_sector += nr_sects; |
| start_blk += nr_sects >> (BLOCK_SIZE_BITS - 9); |
| nr_sects = 0; /* hmm - should be partition size */ |
| |
| switch (data[0x1fc] & 15) { |
| case 0: /* No partition / ADFS? */ |
| break; |
| |
| #ifdef CONFIG_ACORN_PARTITION_RISCIX |
| case PARTITION_RISCIX_SCSI: |
| /* RISCiX - we don't know how to find the next one. */ |
| slot = riscix_partition(state, first_sector, slot, |
| nr_sects); |
| break; |
| #endif |
| |
| case PARTITION_LINUX: |
| slot = linux_partition(state, first_sector, slot, |
| nr_sects); |
| break; |
| } |
| put_dev_sector(sect); |
| if (slot == -1) |
| return -1; |
| } while (1); |
| put_dev_sector(sect); |
| return first ? 0 : 1; |
| } |
| #endif |
| |
| #ifdef CONFIG_ACORN_PARTITION_ADFS |
| /* |
| * Purpose: allocate ADFS partitions. |
| * |
| * Params : hd - pointer to gendisk structure to store partition info. |
| * dev - device number to access. |
| * |
| * Returns: -1 on error, 0 for no ADFS boot sector, 1 for ok. |
| * |
| * Alloc : hda = whole drive |
| * hda1 = ADFS partition on first drive. |
| * hda2 = non-ADFS partition. |
| */ |
| int adfspart_check_ADFS(struct parsed_partitions *state) |
| { |
| unsigned long start_sect, nr_sects, sectscyl, heads; |
| Sector sect; |
| unsigned char *data; |
| struct adfs_discrecord *dr; |
| unsigned char id; |
| int slot = 1; |
| |
| data = read_part_sector(state, 6, §); |
| if (!data) |
| return -1; |
| |
| dr = adfs_partition(state, "ADFS", data, 0, slot++); |
| if (!dr) { |
| put_dev_sector(sect); |
| return 0; |
| } |
| |
| heads = dr->heads + ((dr->lowsector >> 6) & 1); |
| sectscyl = dr->secspertrack * heads; |
| start_sect = ((data[0x1fe] << 8) + data[0x1fd]) * sectscyl; |
| id = data[0x1fc] & 15; |
| put_dev_sector(sect); |
| |
| /* |
| * Work out start of non-adfs partition. |
| */ |
| nr_sects = (state->bdev->bd_inode->i_size >> 9) - start_sect; |
| |
| if (start_sect) { |
| switch (id) { |
| #ifdef CONFIG_ACORN_PARTITION_RISCIX |
| case PARTITION_RISCIX_SCSI: |
| case PARTITION_RISCIX_MFM: |
| slot = riscix_partition(state, start_sect, slot, |
| nr_sects); |
| break; |
| #endif |
| |
| case PARTITION_LINUX: |
| slot = linux_partition(state, start_sect, slot, |
| nr_sects); |
| break; |
| } |
| } |
| strlcat(state->pp_buf, "\n", PAGE_SIZE); |
| return 1; |
| } |
| #endif |
| |
| #ifdef CONFIG_ACORN_PARTITION_ICS |
| |
| struct ics_part { |
| __le32 start; |
| __le32 size; |
| }; |
| |
| static int adfspart_check_ICSLinux(struct parsed_partitions *state, |
| unsigned long block) |
| { |
| Sector sect; |
| unsigned char *data = read_part_sector(state, block, §); |
| int result = 0; |
| |
| if (data) { |
| if (memcmp(data, "LinuxPart", 9) == 0) |
| result = 1; |
| put_dev_sector(sect); |
| } |
| |
| return result; |
| } |
| |
| /* |
| * Check for a valid ICS partition using the checksum. |
| */ |
| static inline int valid_ics_sector(const unsigned char *data) |
| { |
| unsigned long sum; |
| int i; |
| |
| for (i = 0, sum = 0x50617274; i < 508; i++) |
| sum += data[i]; |
| |
| sum -= le32_to_cpu(*(__le32 *)(&data[508])); |
| |
| return sum == 0; |
| } |
| |
| /* |
| * Purpose: allocate ICS partitions. |
| * Params : hd - pointer to gendisk structure to store partition info. |
| * dev - device number to access. |
| * Returns: -1 on error, 0 for no ICS table, 1 for partitions ok. |
| * Alloc : hda = whole drive |
| * hda1 = ADFS partition 0 on first drive. |
| * hda2 = ADFS partition 1 on first drive. |
| * ..etc.. |
| */ |
| int adfspart_check_ICS(struct parsed_partitions *state) |
| { |
| const unsigned char *data; |
| const struct ics_part *p; |
| int slot; |
| Sector sect; |
| |
| /* |
| * Try ICS style partitions - sector 0 contains partition info. |
| */ |
| data = read_part_sector(state, 0, §); |
| if (!data) |
| return -1; |
| |
| if (!valid_ics_sector(data)) { |
| put_dev_sector(sect); |
| return 0; |
| } |
| |
| strlcat(state->pp_buf, " [ICS]", PAGE_SIZE); |
| |
| for (slot = 1, p = (const struct ics_part *)data; p->size; p++) { |
| u32 start = le32_to_cpu(p->start); |
| s32 size = le32_to_cpu(p->size); /* yes, it's signed. */ |
| |
| if (slot == state->limit) |
| break; |
| |
| /* |
| * Negative sizes tell the RISC OS ICS driver to ignore |
| * this partition - in effect it says that this does not |
| * contain an ADFS filesystem. |
| */ |
| if (size < 0) { |
| size = -size; |
| |
| /* |
| * Our own extension - We use the first sector |
| * of the partition to identify what type this |
| * partition is. We must not make this visible |
| * to the filesystem. |
| */ |
| if (size > 1 && adfspart_check_ICSLinux(state, start)) { |
| start += 1; |
| size -= 1; |
| } |
| } |
| |
| if (size) |
| put_partition(state, slot++, start, size); |
| } |
| |
| put_dev_sector(sect); |
| strlcat(state->pp_buf, "\n", PAGE_SIZE); |
| return 1; |
| } |
| #endif |
| |
| #ifdef CONFIG_ACORN_PARTITION_POWERTEC |
| struct ptec_part { |
| __le32 unused1; |
| __le32 unused2; |
| __le32 start; |
| __le32 size; |
| __le32 unused5; |
| char type[8]; |
| }; |
| |
| static inline int valid_ptec_sector(const unsigned char *data) |
| { |
| unsigned char checksum = 0x2a; |
| int i; |
| |
| /* |
| * If it looks like a PC/BIOS partition, then it |
| * probably isn't PowerTec. |
| */ |
| if (data[510] == 0x55 && data[511] == 0xaa) |
| return 0; |
| |
| for (i = 0; i < 511; i++) |
| checksum += data[i]; |
| |
| return checksum == data[511]; |
| } |
| |
| /* |
| * Purpose: allocate ICS partitions. |
| * Params : hd - pointer to gendisk structure to store partition info. |
| * dev - device number to access. |
| * Returns: -1 on error, 0 for no ICS table, 1 for partitions ok. |
| * Alloc : hda = whole drive |
| * hda1 = ADFS partition 0 on first drive. |
| * hda2 = ADFS partition 1 on first drive. |
| * ..etc.. |
| */ |
| int adfspart_check_POWERTEC(struct parsed_partitions *state) |
| { |
| Sector sect; |
| const unsigned char *data; |
| const struct ptec_part *p; |
| int slot = 1; |
| int i; |
| |
| data = read_part_sector(state, 0, §); |
| if (!data) |
| return -1; |
| |
| if (!valid_ptec_sector(data)) { |
| put_dev_sector(sect); |
| return 0; |
| } |
| |
| strlcat(state->pp_buf, " [POWERTEC]", PAGE_SIZE); |
| |
| for (i = 0, p = (const struct ptec_part *)data; i < 12; i++, p++) { |
| u32 start = le32_to_cpu(p->start); |
| u32 size = le32_to_cpu(p->size); |
| |
| if (size) |
| put_partition(state, slot++, start, size); |
| } |
| |
| put_dev_sector(sect); |
| strlcat(state->pp_buf, "\n", PAGE_SIZE); |
| return 1; |
| } |
| #endif |
| |
| #ifdef CONFIG_ACORN_PARTITION_EESOX |
| struct eesox_part { |
| char magic[6]; |
| char name[10]; |
| __le32 start; |
| __le32 unused6; |
| __le32 unused7; |
| __le32 unused8; |
| }; |
| |
| /* |
| * Guess who created this format? |
| */ |
| static const char eesox_name[] = { |
| 'N', 'e', 'i', 'l', ' ', |
| 'C', 'r', 'i', 't', 'c', 'h', 'e', 'l', 'l', ' ', ' ' |
| }; |
| |
| /* |
| * EESOX SCSI partition format. |
| * |
| * This is a goddamned awful partition format. We don't seem to store |
| * the size of the partition in this table, only the start addresses. |
| * |
| * There are two possibilities where the size comes from: |
| * 1. The individual ADFS boot block entries that are placed on the disk. |
| * 2. The start address of the next entry. |
| */ |
| int adfspart_check_EESOX(struct parsed_partitions *state) |
| { |
| Sector sect; |
| const unsigned char *data; |
| unsigned char buffer[256]; |
| struct eesox_part *p; |
| sector_t start = 0; |
| int i, slot = 1; |
| |
| data = read_part_sector(state, 7, §); |
| if (!data) |
| return -1; |
| |
| /* |
| * "Decrypt" the partition table. God knows why... |
| */ |
| for (i = 0; i < 256; i++) |
| buffer[i] = data[i] ^ eesox_name[i & 15]; |
| |
| put_dev_sector(sect); |
| |
| for (i = 0, p = (struct eesox_part *)buffer; i < 8; i++, p++) { |
| sector_t next; |
| |
| if (memcmp(p->magic, "Eesox", 6)) |
| break; |
| |
| next = le32_to_cpu(p->start); |
| if (i) |
| put_partition(state, slot++, start, next - start); |
| start = next; |
| } |
| |
| if (i != 0) { |
| sector_t size; |
| |
| size = get_capacity(state->bdev->bd_disk); |
| put_partition(state, slot++, start, size - start); |
| strlcat(state->pp_buf, "\n", PAGE_SIZE); |
| } |
| |
| return i ? 1 : 0; |
| } |
| #endif |