| /* |
| * Copyright (c) 2016 HGST, a Western Digital Company. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms and conditions of the GNU General Public License, |
| * version 2, as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| */ |
| #include <linux/moduleparam.h> |
| #include <linux/slab.h> |
| #include <rdma/mr_pool.h> |
| #include <rdma/rw.h> |
| |
| enum { |
| RDMA_RW_SINGLE_WR, |
| RDMA_RW_MULTI_WR, |
| RDMA_RW_MR, |
| RDMA_RW_SIG_MR, |
| }; |
| |
| static bool rdma_rw_force_mr; |
| module_param_named(force_mr, rdma_rw_force_mr, bool, 0); |
| MODULE_PARM_DESC(force_mr, "Force usage of MRs for RDMA READ/WRITE operations"); |
| |
| /* |
| * Check if the device might use memory registration. This is currently only |
| * true for iWarp devices. In the future we can hopefully fine tune this based |
| * on HCA driver input. |
| */ |
| static inline bool rdma_rw_can_use_mr(struct ib_device *dev, u8 port_num) |
| { |
| if (rdma_protocol_iwarp(dev, port_num)) |
| return true; |
| if (unlikely(rdma_rw_force_mr)) |
| return true; |
| return false; |
| } |
| |
| /* |
| * Check if the device will use memory registration for this RW operation. |
| * We currently always use memory registrations for iWarp RDMA READs, and |
| * have a debug option to force usage of MRs. |
| * |
| * XXX: In the future we can hopefully fine tune this based on HCA driver |
| * input. |
| */ |
| static inline bool rdma_rw_io_needs_mr(struct ib_device *dev, u8 port_num, |
| enum dma_data_direction dir, int dma_nents) |
| { |
| if (rdma_protocol_iwarp(dev, port_num) && dir == DMA_FROM_DEVICE) |
| return true; |
| if (unlikely(rdma_rw_force_mr)) |
| return true; |
| return false; |
| } |
| |
| static inline u32 rdma_rw_max_sge(struct ib_device *dev, |
| enum dma_data_direction dir) |
| { |
| return dir == DMA_TO_DEVICE ? |
| dev->attrs.max_sge : dev->attrs.max_sge_rd; |
| } |
| |
| static inline u32 rdma_rw_fr_page_list_len(struct ib_device *dev) |
| { |
| /* arbitrary limit to avoid allocating gigantic resources */ |
| return min_t(u32, dev->attrs.max_fast_reg_page_list_len, 256); |
| } |
| |
| static int rdma_rw_init_one_mr(struct ib_qp *qp, u8 port_num, |
| struct rdma_rw_reg_ctx *reg, struct scatterlist *sg, |
| u32 sg_cnt, u32 offset) |
| { |
| u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device); |
| u32 nents = min(sg_cnt, pages_per_mr); |
| int count = 0, ret; |
| |
| reg->mr = ib_mr_pool_get(qp, &qp->rdma_mrs); |
| if (!reg->mr) |
| return -EAGAIN; |
| |
| if (reg->mr->need_inval) { |
| reg->inv_wr.opcode = IB_WR_LOCAL_INV; |
| reg->inv_wr.ex.invalidate_rkey = reg->mr->lkey; |
| reg->inv_wr.next = ®->reg_wr.wr; |
| count++; |
| } else { |
| reg->inv_wr.next = NULL; |
| } |
| |
| ret = ib_map_mr_sg(reg->mr, sg, nents, &offset, PAGE_SIZE); |
| if (ret < nents) { |
| ib_mr_pool_put(qp, &qp->rdma_mrs, reg->mr); |
| return -EINVAL; |
| } |
| |
| reg->reg_wr.wr.opcode = IB_WR_REG_MR; |
| reg->reg_wr.mr = reg->mr; |
| reg->reg_wr.access = IB_ACCESS_LOCAL_WRITE; |
| if (rdma_protocol_iwarp(qp->device, port_num)) |
| reg->reg_wr.access |= IB_ACCESS_REMOTE_WRITE; |
| count++; |
| |
| reg->sge.addr = reg->mr->iova; |
| reg->sge.length = reg->mr->length; |
| return count; |
| } |
| |
| static int rdma_rw_init_mr_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp, |
| u8 port_num, struct scatterlist *sg, u32 sg_cnt, u32 offset, |
| u64 remote_addr, u32 rkey, enum dma_data_direction dir) |
| { |
| u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device); |
| int i, j, ret = 0, count = 0; |
| |
| ctx->nr_ops = (sg_cnt + pages_per_mr - 1) / pages_per_mr; |
| ctx->reg = kcalloc(ctx->nr_ops, sizeof(*ctx->reg), GFP_KERNEL); |
| if (!ctx->reg) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| for (i = 0; i < ctx->nr_ops; i++) { |
| struct rdma_rw_reg_ctx *prev = i ? &ctx->reg[i - 1] : NULL; |
| struct rdma_rw_reg_ctx *reg = &ctx->reg[i]; |
| u32 nents = min(sg_cnt, pages_per_mr); |
| |
| ret = rdma_rw_init_one_mr(qp, port_num, reg, sg, sg_cnt, |
| offset); |
| if (ret < 0) |
| goto out_free; |
| count += ret; |
| |
| if (prev) { |
| if (reg->mr->need_inval) |
| prev->wr.wr.next = ®->inv_wr; |
| else |
| prev->wr.wr.next = ®->reg_wr.wr; |
| } |
| |
| reg->reg_wr.wr.next = ®->wr.wr; |
| |
| reg->wr.wr.sg_list = ®->sge; |
| reg->wr.wr.num_sge = 1; |
| reg->wr.remote_addr = remote_addr; |
| reg->wr.rkey = rkey; |
| if (dir == DMA_TO_DEVICE) { |
| reg->wr.wr.opcode = IB_WR_RDMA_WRITE; |
| } else if (!rdma_cap_read_inv(qp->device, port_num)) { |
| reg->wr.wr.opcode = IB_WR_RDMA_READ; |
| } else { |
| reg->wr.wr.opcode = IB_WR_RDMA_READ_WITH_INV; |
| reg->wr.wr.ex.invalidate_rkey = reg->mr->lkey; |
| } |
| count++; |
| |
| remote_addr += reg->sge.length; |
| sg_cnt -= nents; |
| for (j = 0; j < nents; j++) |
| sg = sg_next(sg); |
| offset = 0; |
| } |
| |
| ctx->type = RDMA_RW_MR; |
| return count; |
| |
| out_free: |
| while (--i >= 0) |
| ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr); |
| kfree(ctx->reg); |
| out: |
| return ret; |
| } |
| |
| static int rdma_rw_init_map_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp, |
| struct scatterlist *sg, u32 sg_cnt, u32 offset, |
| u64 remote_addr, u32 rkey, enum dma_data_direction dir) |
| { |
| struct ib_device *dev = qp->pd->device; |
| u32 max_sge = rdma_rw_max_sge(dev, dir); |
| struct ib_sge *sge; |
| u32 total_len = 0, i, j; |
| |
| ctx->nr_ops = DIV_ROUND_UP(sg_cnt, max_sge); |
| |
| ctx->map.sges = sge = kcalloc(sg_cnt, sizeof(*sge), GFP_KERNEL); |
| if (!ctx->map.sges) |
| goto out; |
| |
| ctx->map.wrs = kcalloc(ctx->nr_ops, sizeof(*ctx->map.wrs), GFP_KERNEL); |
| if (!ctx->map.wrs) |
| goto out_free_sges; |
| |
| for (i = 0; i < ctx->nr_ops; i++) { |
| struct ib_rdma_wr *rdma_wr = &ctx->map.wrs[i]; |
| u32 nr_sge = min(sg_cnt, max_sge); |
| |
| if (dir == DMA_TO_DEVICE) |
| rdma_wr->wr.opcode = IB_WR_RDMA_WRITE; |
| else |
| rdma_wr->wr.opcode = IB_WR_RDMA_READ; |
| rdma_wr->remote_addr = remote_addr + total_len; |
| rdma_wr->rkey = rkey; |
| rdma_wr->wr.sg_list = sge; |
| |
| for (j = 0; j < nr_sge; j++, sg = sg_next(sg)) { |
| rdma_wr->wr.num_sge++; |
| |
| sge->addr = ib_sg_dma_address(dev, sg) + offset; |
| sge->length = ib_sg_dma_len(dev, sg) - offset; |
| sge->lkey = qp->pd->local_dma_lkey; |
| |
| total_len += sge->length; |
| sge++; |
| sg_cnt--; |
| offset = 0; |
| } |
| |
| if (i + 1 < ctx->nr_ops) |
| rdma_wr->wr.next = &ctx->map.wrs[i + 1].wr; |
| } |
| |
| ctx->type = RDMA_RW_MULTI_WR; |
| return ctx->nr_ops; |
| |
| out_free_sges: |
| kfree(ctx->map.sges); |
| out: |
| return -ENOMEM; |
| } |
| |
| static int rdma_rw_init_single_wr(struct rdma_rw_ctx *ctx, struct ib_qp *qp, |
| struct scatterlist *sg, u32 offset, u64 remote_addr, u32 rkey, |
| enum dma_data_direction dir) |
| { |
| struct ib_device *dev = qp->pd->device; |
| struct ib_rdma_wr *rdma_wr = &ctx->single.wr; |
| |
| ctx->nr_ops = 1; |
| |
| ctx->single.sge.lkey = qp->pd->local_dma_lkey; |
| ctx->single.sge.addr = ib_sg_dma_address(dev, sg) + offset; |
| ctx->single.sge.length = ib_sg_dma_len(dev, sg) - offset; |
| |
| memset(rdma_wr, 0, sizeof(*rdma_wr)); |
| if (dir == DMA_TO_DEVICE) |
| rdma_wr->wr.opcode = IB_WR_RDMA_WRITE; |
| else |
| rdma_wr->wr.opcode = IB_WR_RDMA_READ; |
| rdma_wr->wr.sg_list = &ctx->single.sge; |
| rdma_wr->wr.num_sge = 1; |
| rdma_wr->remote_addr = remote_addr; |
| rdma_wr->rkey = rkey; |
| |
| ctx->type = RDMA_RW_SINGLE_WR; |
| return 1; |
| } |
| |
| /** |
| * rdma_rw_ctx_init - initialize a RDMA READ/WRITE context |
| * @ctx: context to initialize |
| * @qp: queue pair to operate on |
| * @port_num: port num to which the connection is bound |
| * @sg: scatterlist to READ/WRITE from/to |
| * @sg_cnt: number of entries in @sg |
| * @sg_offset: current byte offset into @sg |
| * @remote_addr:remote address to read/write (relative to @rkey) |
| * @rkey: remote key to operate on |
| * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ |
| * |
| * Returns the number of WQEs that will be needed on the workqueue if |
| * successful, or a negative error code. |
| */ |
| int rdma_rw_ctx_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num, |
| struct scatterlist *sg, u32 sg_cnt, u32 sg_offset, |
| u64 remote_addr, u32 rkey, enum dma_data_direction dir) |
| { |
| struct ib_device *dev = qp->pd->device; |
| int ret; |
| |
| ret = ib_dma_map_sg(dev, sg, sg_cnt, dir); |
| if (!ret) |
| return -ENOMEM; |
| sg_cnt = ret; |
| |
| /* |
| * Skip to the S/G entry that sg_offset falls into: |
| */ |
| for (;;) { |
| u32 len = ib_sg_dma_len(dev, sg); |
| |
| if (sg_offset < len) |
| break; |
| |
| sg = sg_next(sg); |
| sg_offset -= len; |
| sg_cnt--; |
| } |
| |
| ret = -EIO; |
| if (WARN_ON_ONCE(sg_cnt == 0)) |
| goto out_unmap_sg; |
| |
| if (rdma_rw_io_needs_mr(qp->device, port_num, dir, sg_cnt)) { |
| ret = rdma_rw_init_mr_wrs(ctx, qp, port_num, sg, sg_cnt, |
| sg_offset, remote_addr, rkey, dir); |
| } else if (sg_cnt > 1) { |
| ret = rdma_rw_init_map_wrs(ctx, qp, sg, sg_cnt, sg_offset, |
| remote_addr, rkey, dir); |
| } else { |
| ret = rdma_rw_init_single_wr(ctx, qp, sg, sg_offset, |
| remote_addr, rkey, dir); |
| } |
| |
| if (ret < 0) |
| goto out_unmap_sg; |
| return ret; |
| |
| out_unmap_sg: |
| ib_dma_unmap_sg(dev, sg, sg_cnt, dir); |
| return ret; |
| } |
| EXPORT_SYMBOL(rdma_rw_ctx_init); |
| |
| /** |
| * rdma_rw_ctx_signature init - initialize a RW context with signature offload |
| * @ctx: context to initialize |
| * @qp: queue pair to operate on |
| * @port_num: port num to which the connection is bound |
| * @sg: scatterlist to READ/WRITE from/to |
| * @sg_cnt: number of entries in @sg |
| * @prot_sg: scatterlist to READ/WRITE protection information from/to |
| * @prot_sg_cnt: number of entries in @prot_sg |
| * @sig_attrs: signature offloading algorithms |
| * @remote_addr:remote address to read/write (relative to @rkey) |
| * @rkey: remote key to operate on |
| * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ |
| * |
| * Returns the number of WQEs that will be needed on the workqueue if |
| * successful, or a negative error code. |
| */ |
| int rdma_rw_ctx_signature_init(struct rdma_rw_ctx *ctx, struct ib_qp *qp, |
| u8 port_num, struct scatterlist *sg, u32 sg_cnt, |
| struct scatterlist *prot_sg, u32 prot_sg_cnt, |
| struct ib_sig_attrs *sig_attrs, |
| u64 remote_addr, u32 rkey, enum dma_data_direction dir) |
| { |
| struct ib_device *dev = qp->pd->device; |
| u32 pages_per_mr = rdma_rw_fr_page_list_len(qp->pd->device); |
| struct ib_rdma_wr *rdma_wr; |
| struct ib_send_wr *prev_wr = NULL; |
| int count = 0, ret; |
| |
| if (sg_cnt > pages_per_mr || prot_sg_cnt > pages_per_mr) { |
| pr_err("SG count too large\n"); |
| return -EINVAL; |
| } |
| |
| ret = ib_dma_map_sg(dev, sg, sg_cnt, dir); |
| if (!ret) |
| return -ENOMEM; |
| sg_cnt = ret; |
| |
| ret = ib_dma_map_sg(dev, prot_sg, prot_sg_cnt, dir); |
| if (!ret) { |
| ret = -ENOMEM; |
| goto out_unmap_sg; |
| } |
| prot_sg_cnt = ret; |
| |
| ctx->type = RDMA_RW_SIG_MR; |
| ctx->nr_ops = 1; |
| ctx->sig = kcalloc(1, sizeof(*ctx->sig), GFP_KERNEL); |
| if (!ctx->sig) { |
| ret = -ENOMEM; |
| goto out_unmap_prot_sg; |
| } |
| |
| ret = rdma_rw_init_one_mr(qp, port_num, &ctx->sig->data, sg, sg_cnt, 0); |
| if (ret < 0) |
| goto out_free_ctx; |
| count += ret; |
| prev_wr = &ctx->sig->data.reg_wr.wr; |
| |
| if (prot_sg_cnt) { |
| ret = rdma_rw_init_one_mr(qp, port_num, &ctx->sig->prot, |
| prot_sg, prot_sg_cnt, 0); |
| if (ret < 0) |
| goto out_destroy_data_mr; |
| count += ret; |
| |
| if (ctx->sig->prot.inv_wr.next) |
| prev_wr->next = &ctx->sig->prot.inv_wr; |
| else |
| prev_wr->next = &ctx->sig->prot.reg_wr.wr; |
| prev_wr = &ctx->sig->prot.reg_wr.wr; |
| } else { |
| ctx->sig->prot.mr = NULL; |
| } |
| |
| ctx->sig->sig_mr = ib_mr_pool_get(qp, &qp->sig_mrs); |
| if (!ctx->sig->sig_mr) { |
| ret = -EAGAIN; |
| goto out_destroy_prot_mr; |
| } |
| |
| if (ctx->sig->sig_mr->need_inval) { |
| memset(&ctx->sig->sig_inv_wr, 0, sizeof(ctx->sig->sig_inv_wr)); |
| |
| ctx->sig->sig_inv_wr.opcode = IB_WR_LOCAL_INV; |
| ctx->sig->sig_inv_wr.ex.invalidate_rkey = ctx->sig->sig_mr->rkey; |
| |
| prev_wr->next = &ctx->sig->sig_inv_wr; |
| prev_wr = &ctx->sig->sig_inv_wr; |
| } |
| |
| ctx->sig->sig_wr.wr.opcode = IB_WR_REG_SIG_MR; |
| ctx->sig->sig_wr.wr.wr_cqe = NULL; |
| ctx->sig->sig_wr.wr.sg_list = &ctx->sig->data.sge; |
| ctx->sig->sig_wr.wr.num_sge = 1; |
| ctx->sig->sig_wr.access_flags = IB_ACCESS_LOCAL_WRITE; |
| ctx->sig->sig_wr.sig_attrs = sig_attrs; |
| ctx->sig->sig_wr.sig_mr = ctx->sig->sig_mr; |
| if (prot_sg_cnt) |
| ctx->sig->sig_wr.prot = &ctx->sig->prot.sge; |
| prev_wr->next = &ctx->sig->sig_wr.wr; |
| prev_wr = &ctx->sig->sig_wr.wr; |
| count++; |
| |
| ctx->sig->sig_sge.addr = 0; |
| ctx->sig->sig_sge.length = ctx->sig->data.sge.length; |
| if (sig_attrs->wire.sig_type != IB_SIG_TYPE_NONE) |
| ctx->sig->sig_sge.length += ctx->sig->prot.sge.length; |
| |
| rdma_wr = &ctx->sig->data.wr; |
| rdma_wr->wr.sg_list = &ctx->sig->sig_sge; |
| rdma_wr->wr.num_sge = 1; |
| rdma_wr->remote_addr = remote_addr; |
| rdma_wr->rkey = rkey; |
| if (dir == DMA_TO_DEVICE) |
| rdma_wr->wr.opcode = IB_WR_RDMA_WRITE; |
| else |
| rdma_wr->wr.opcode = IB_WR_RDMA_READ; |
| prev_wr->next = &rdma_wr->wr; |
| prev_wr = &rdma_wr->wr; |
| count++; |
| |
| return count; |
| |
| out_destroy_prot_mr: |
| if (prot_sg_cnt) |
| ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->prot.mr); |
| out_destroy_data_mr: |
| ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->data.mr); |
| out_free_ctx: |
| kfree(ctx->sig); |
| out_unmap_prot_sg: |
| ib_dma_unmap_sg(dev, prot_sg, prot_sg_cnt, dir); |
| out_unmap_sg: |
| ib_dma_unmap_sg(dev, sg, sg_cnt, dir); |
| return ret; |
| } |
| EXPORT_SYMBOL(rdma_rw_ctx_signature_init); |
| |
| /* |
| * Now that we are going to post the WRs we can update the lkey and need_inval |
| * state on the MRs. If we were doing this at init time, we would get double |
| * or missing invalidations if a context was initialized but not actually |
| * posted. |
| */ |
| static void rdma_rw_update_lkey(struct rdma_rw_reg_ctx *reg, bool need_inval) |
| { |
| reg->mr->need_inval = need_inval; |
| ib_update_fast_reg_key(reg->mr, ib_inc_rkey(reg->mr->lkey)); |
| reg->reg_wr.key = reg->mr->lkey; |
| reg->sge.lkey = reg->mr->lkey; |
| } |
| |
| /** |
| * rdma_rw_ctx_wrs - return chain of WRs for a RDMA READ or WRITE operation |
| * @ctx: context to operate on |
| * @qp: queue pair to operate on |
| * @port_num: port num to which the connection is bound |
| * @cqe: completion queue entry for the last WR |
| * @chain_wr: WR to append to the posted chain |
| * |
| * Return the WR chain for the set of RDMA READ/WRITE operations described by |
| * @ctx, as well as any memory registration operations needed. If @chain_wr |
| * is non-NULL the WR it points to will be appended to the chain of WRs posted. |
| * If @chain_wr is not set @cqe must be set so that the caller gets a |
| * completion notification. |
| */ |
| struct ib_send_wr *rdma_rw_ctx_wrs(struct rdma_rw_ctx *ctx, struct ib_qp *qp, |
| u8 port_num, struct ib_cqe *cqe, struct ib_send_wr *chain_wr) |
| { |
| struct ib_send_wr *first_wr, *last_wr; |
| int i; |
| |
| switch (ctx->type) { |
| case RDMA_RW_SIG_MR: |
| rdma_rw_update_lkey(&ctx->sig->data, true); |
| if (ctx->sig->prot.mr) |
| rdma_rw_update_lkey(&ctx->sig->prot, true); |
| |
| ctx->sig->sig_mr->need_inval = true; |
| ib_update_fast_reg_key(ctx->sig->sig_mr, |
| ib_inc_rkey(ctx->sig->sig_mr->lkey)); |
| ctx->sig->sig_sge.lkey = ctx->sig->sig_mr->lkey; |
| |
| if (ctx->sig->data.inv_wr.next) |
| first_wr = &ctx->sig->data.inv_wr; |
| else |
| first_wr = &ctx->sig->data.reg_wr.wr; |
| last_wr = &ctx->sig->data.wr.wr; |
| break; |
| case RDMA_RW_MR: |
| for (i = 0; i < ctx->nr_ops; i++) { |
| rdma_rw_update_lkey(&ctx->reg[i], |
| ctx->reg[i].wr.wr.opcode != |
| IB_WR_RDMA_READ_WITH_INV); |
| } |
| |
| if (ctx->reg[0].inv_wr.next) |
| first_wr = &ctx->reg[0].inv_wr; |
| else |
| first_wr = &ctx->reg[0].reg_wr.wr; |
| last_wr = &ctx->reg[ctx->nr_ops - 1].wr.wr; |
| break; |
| case RDMA_RW_MULTI_WR: |
| first_wr = &ctx->map.wrs[0].wr; |
| last_wr = &ctx->map.wrs[ctx->nr_ops - 1].wr; |
| break; |
| case RDMA_RW_SINGLE_WR: |
| first_wr = &ctx->single.wr.wr; |
| last_wr = &ctx->single.wr.wr; |
| break; |
| default: |
| BUG(); |
| } |
| |
| if (chain_wr) { |
| last_wr->next = chain_wr; |
| } else { |
| last_wr->wr_cqe = cqe; |
| last_wr->send_flags |= IB_SEND_SIGNALED; |
| } |
| |
| return first_wr; |
| } |
| EXPORT_SYMBOL(rdma_rw_ctx_wrs); |
| |
| /** |
| * rdma_rw_ctx_post - post a RDMA READ or RDMA WRITE operation |
| * @ctx: context to operate on |
| * @qp: queue pair to operate on |
| * @port_num: port num to which the connection is bound |
| * @cqe: completion queue entry for the last WR |
| * @chain_wr: WR to append to the posted chain |
| * |
| * Post the set of RDMA READ/WRITE operations described by @ctx, as well as |
| * any memory registration operations needed. If @chain_wr is non-NULL the |
| * WR it points to will be appended to the chain of WRs posted. If @chain_wr |
| * is not set @cqe must be set so that the caller gets a completion |
| * notification. |
| */ |
| int rdma_rw_ctx_post(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num, |
| struct ib_cqe *cqe, struct ib_send_wr *chain_wr) |
| { |
| struct ib_send_wr *first_wr, *bad_wr; |
| |
| first_wr = rdma_rw_ctx_wrs(ctx, qp, port_num, cqe, chain_wr); |
| return ib_post_send(qp, first_wr, &bad_wr); |
| } |
| EXPORT_SYMBOL(rdma_rw_ctx_post); |
| |
| /** |
| * rdma_rw_ctx_destroy - release all resources allocated by rdma_rw_ctx_init |
| * @ctx: context to release |
| * @qp: queue pair to operate on |
| * @port_num: port num to which the connection is bound |
| * @sg: scatterlist that was used for the READ/WRITE |
| * @sg_cnt: number of entries in @sg |
| * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ |
| */ |
| void rdma_rw_ctx_destroy(struct rdma_rw_ctx *ctx, struct ib_qp *qp, u8 port_num, |
| struct scatterlist *sg, u32 sg_cnt, enum dma_data_direction dir) |
| { |
| int i; |
| |
| switch (ctx->type) { |
| case RDMA_RW_MR: |
| for (i = 0; i < ctx->nr_ops; i++) |
| ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->reg[i].mr); |
| kfree(ctx->reg); |
| break; |
| case RDMA_RW_MULTI_WR: |
| kfree(ctx->map.wrs); |
| kfree(ctx->map.sges); |
| break; |
| case RDMA_RW_SINGLE_WR: |
| break; |
| default: |
| BUG(); |
| break; |
| } |
| |
| ib_dma_unmap_sg(qp->pd->device, sg, sg_cnt, dir); |
| } |
| EXPORT_SYMBOL(rdma_rw_ctx_destroy); |
| |
| /** |
| * rdma_rw_ctx_destroy_signature - release all resources allocated by |
| * rdma_rw_ctx_init_signature |
| * @ctx: context to release |
| * @qp: queue pair to operate on |
| * @port_num: port num to which the connection is bound |
| * @sg: scatterlist that was used for the READ/WRITE |
| * @sg_cnt: number of entries in @sg |
| * @prot_sg: scatterlist that was used for the READ/WRITE of the PI |
| * @prot_sg_cnt: number of entries in @prot_sg |
| * @dir: %DMA_TO_DEVICE for RDMA WRITE, %DMA_FROM_DEVICE for RDMA READ |
| */ |
| void rdma_rw_ctx_destroy_signature(struct rdma_rw_ctx *ctx, struct ib_qp *qp, |
| u8 port_num, struct scatterlist *sg, u32 sg_cnt, |
| struct scatterlist *prot_sg, u32 prot_sg_cnt, |
| enum dma_data_direction dir) |
| { |
| if (WARN_ON_ONCE(ctx->type != RDMA_RW_SIG_MR)) |
| return; |
| |
| ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->data.mr); |
| ib_dma_unmap_sg(qp->pd->device, sg, sg_cnt, dir); |
| |
| if (ctx->sig->prot.mr) { |
| ib_mr_pool_put(qp, &qp->rdma_mrs, ctx->sig->prot.mr); |
| ib_dma_unmap_sg(qp->pd->device, prot_sg, prot_sg_cnt, dir); |
| } |
| |
| ib_mr_pool_put(qp, &qp->sig_mrs, ctx->sig->sig_mr); |
| kfree(ctx->sig); |
| } |
| EXPORT_SYMBOL(rdma_rw_ctx_destroy_signature); |
| |
| void rdma_rw_init_qp(struct ib_device *dev, struct ib_qp_init_attr *attr) |
| { |
| u32 factor; |
| |
| WARN_ON_ONCE(attr->port_num == 0); |
| |
| /* |
| * Each context needs at least one RDMA READ or WRITE WR. |
| * |
| * For some hardware we might need more, eventually we should ask the |
| * HCA driver for a multiplier here. |
| */ |
| factor = 1; |
| |
| /* |
| * If the devices needs MRs to perform RDMA READ or WRITE operations, |
| * we'll need two additional MRs for the registrations and the |
| * invalidation. |
| */ |
| if (attr->create_flags & IB_QP_CREATE_SIGNATURE_EN) |
| factor += 6; /* (inv + reg) * (data + prot + sig) */ |
| else if (rdma_rw_can_use_mr(dev, attr->port_num)) |
| factor += 2; /* inv + reg */ |
| |
| attr->cap.max_send_wr += factor * attr->cap.max_rdma_ctxs; |
| |
| /* |
| * But maybe we were just too high in the sky and the device doesn't |
| * even support all we need, and we'll have to live with what we get.. |
| */ |
| attr->cap.max_send_wr = |
| min_t(u32, attr->cap.max_send_wr, dev->attrs.max_qp_wr); |
| } |
| |
| int rdma_rw_init_mrs(struct ib_qp *qp, struct ib_qp_init_attr *attr) |
| { |
| struct ib_device *dev = qp->pd->device; |
| u32 nr_mrs = 0, nr_sig_mrs = 0; |
| int ret = 0; |
| |
| if (attr->create_flags & IB_QP_CREATE_SIGNATURE_EN) { |
| nr_sig_mrs = attr->cap.max_rdma_ctxs; |
| nr_mrs = attr->cap.max_rdma_ctxs * 2; |
| } else if (rdma_rw_can_use_mr(dev, attr->port_num)) { |
| nr_mrs = attr->cap.max_rdma_ctxs; |
| } |
| |
| if (nr_mrs) { |
| ret = ib_mr_pool_init(qp, &qp->rdma_mrs, nr_mrs, |
| IB_MR_TYPE_MEM_REG, |
| rdma_rw_fr_page_list_len(dev)); |
| if (ret) { |
| pr_err("%s: failed to allocated %d MRs\n", |
| __func__, nr_mrs); |
| return ret; |
| } |
| } |
| |
| if (nr_sig_mrs) { |
| ret = ib_mr_pool_init(qp, &qp->sig_mrs, nr_sig_mrs, |
| IB_MR_TYPE_SIGNATURE, 2); |
| if (ret) { |
| pr_err("%s: failed to allocated %d SIG MRs\n", |
| __func__, nr_mrs); |
| goto out_free_rdma_mrs; |
| } |
| } |
| |
| return 0; |
| |
| out_free_rdma_mrs: |
| ib_mr_pool_destroy(qp, &qp->rdma_mrs); |
| return ret; |
| } |
| |
| void rdma_rw_cleanup_mrs(struct ib_qp *qp) |
| { |
| ib_mr_pool_destroy(qp, &qp->sig_mrs); |
| ib_mr_pool_destroy(qp, &qp->rdma_mrs); |
| } |