| /* |
| * Optimized version of the strlen_user() function |
| * |
| * Inputs: |
| * in0 address of buffer |
| * |
| * Outputs: |
| * ret0 0 in case of fault, strlen(buffer)+1 otherwise |
| * |
| * Copyright (C) 1998, 1999, 2001 Hewlett-Packard Co |
| * David Mosberger-Tang <davidm@hpl.hp.com> |
| * Stephane Eranian <eranian@hpl.hp.com> |
| * |
| * 01/19/99 S.Eranian heavily enhanced version (see details below) |
| * 09/24/99 S.Eranian added speculation recovery code |
| */ |
| |
| #include <asm/asmmacro.h> |
| |
| // |
| // int strlen_user(char *) |
| // ------------------------ |
| // Returns: |
| // - length of string + 1 |
| // - 0 in case an exception is raised |
| // |
| // This is an enhanced version of the basic strlen_user. it includes a |
| // combination of compute zero index (czx), parallel comparisons, speculative |
| // loads and loop unroll using rotating registers. |
| // |
| // General Ideas about the algorithm: |
| // The goal is to look at the string in chunks of 8 bytes. |
| // so we need to do a few extra checks at the beginning because the |
| // string may not be 8-byte aligned. In this case we load the 8byte |
| // quantity which includes the start of the string and mask the unused |
| // bytes with 0xff to avoid confusing czx. |
| // We use speculative loads and software pipelining to hide memory |
| // latency and do read ahead safely. This way we defer any exception. |
| // |
| // Because we don't want the kernel to be relying on particular |
| // settings of the DCR register, we provide recovery code in case |
| // speculation fails. The recovery code is going to "redo" the work using |
| // only normal loads. If we still get a fault then we return an |
| // error (ret0=0). Otherwise we return the strlen+1 as usual. |
| // The fact that speculation may fail can be caused, for instance, by |
| // the DCR.dm bit being set. In this case TLB misses are deferred, i.e., |
| // a NaT bit will be set if the translation is not present. The normal |
| // load, on the other hand, will cause the translation to be inserted |
| // if the mapping exists. |
| // |
| // It should be noted that we execute recovery code only when we need |
| // to use the data that has been speculatively loaded: we don't execute |
| // recovery code on pure read ahead data. |
| // |
| // Remarks: |
| // - the cmp r0,r0 is used as a fast way to initialize a predicate |
| // register to 1. This is required to make sure that we get the parallel |
| // compare correct. |
| // |
| // - we don't use the epilogue counter to exit the loop but we need to set |
| // it to zero beforehand. |
| // |
| // - after the loop we must test for Nat values because neither the |
| // czx nor cmp instruction raise a NaT consumption fault. We must be |
| // careful not to look too far for a Nat for which we don't care. |
| // For instance we don't need to look at a NaT in val2 if the zero byte |
| // was in val1. |
| // |
| // - Clearly performance tuning is required. |
| // |
| |
| #define saved_pfs r11 |
| #define tmp r10 |
| #define base r16 |
| #define orig r17 |
| #define saved_pr r18 |
| #define src r19 |
| #define mask r20 |
| #define val r21 |
| #define val1 r22 |
| #define val2 r23 |
| |
| GLOBAL_ENTRY(__strlen_user) |
| .prologue |
| .save ar.pfs, saved_pfs |
| alloc saved_pfs=ar.pfs,11,0,0,8 |
| |
| .rotr v[2], w[2] // declares our 4 aliases |
| |
| extr.u tmp=in0,0,3 // tmp=least significant 3 bits |
| mov orig=in0 // keep trackof initial byte address |
| dep src=0,in0,0,3 // src=8byte-aligned in0 address |
| .save pr, saved_pr |
| mov saved_pr=pr // preserve predicates (rotation) |
| ;; |
| |
| .body |
| |
| ld8.s v[1]=[src],8 // load the initial 8bytes (must speculate) |
| shl tmp=tmp,3 // multiply by 8bits/byte |
| mov mask=-1 // our mask |
| ;; |
| ld8.s w[1]=[src],8 // load next 8 bytes in 2nd pipeline |
| cmp.eq p6,p0=r0,r0 // sets p6 (required because of // cmp.and) |
| sub tmp=64,tmp // how many bits to shift our mask on the right |
| ;; |
| shr.u mask=mask,tmp // zero enough bits to hold v[1] valuable part |
| mov ar.ec=r0 // clear epilogue counter (saved in ar.pfs) |
| ;; |
| add base=-16,src // keep track of aligned base |
| chk.s v[1], .recover // if already NaT, then directly skip to recover |
| or v[1]=v[1],mask // now we have a safe initial byte pattern |
| ;; |
| 1: |
| ld8.s v[0]=[src],8 // speculatively load next |
| czx1.r val1=v[1] // search 0 byte from right |
| czx1.r val2=w[1] // search 0 byte from right following 8bytes |
| ;; |
| ld8.s w[0]=[src],8 // speculatively load next to next |
| cmp.eq.and p6,p0=8,val1 // p6 = p6 and val1==8 |
| cmp.eq.and p6,p0=8,val2 // p6 = p6 and mask==8 |
| (p6) br.wtop.dptk.few 1b // loop until p6 == 0 |
| ;; |
| // |
| // We must return try the recovery code iff |
| // val1_is_nat || (val1==8 && val2_is_nat) |
| // |
| // XXX Fixme |
| // - there must be a better way of doing the test |
| // |
| cmp.eq p8,p9=8,val1 // p6 = val1 had zero (disambiguate) |
| tnat.nz p6,p7=val1 // test NaT on val1 |
| (p6) br.cond.spnt .recover // jump to recovery if val1 is NaT |
| ;; |
| // |
| // if we come here p7 is true, i.e., initialized for // cmp |
| // |
| cmp.eq.and p7,p0=8,val1// val1==8? |
| tnat.nz.and p7,p0=val2 // test NaT if val2 |
| (p7) br.cond.spnt .recover // jump to recovery if val2 is NaT |
| ;; |
| (p8) mov val1=val2 // val2 contains the value |
| (p8) adds src=-16,src // correct position when 3 ahead |
| (p9) adds src=-24,src // correct position when 4 ahead |
| ;; |
| sub ret0=src,orig // distance from origin |
| sub tmp=7,val1 // 7=8-1 because this strlen returns strlen+1 |
| mov pr=saved_pr,0xffffffffffff0000 |
| ;; |
| sub ret0=ret0,tmp // length=now - back -1 |
| mov ar.pfs=saved_pfs // because of ar.ec, restore no matter what |
| br.ret.sptk.many rp // end of normal execution |
| |
| // |
| // Outlined recovery code when speculation failed |
| // |
| // This time we don't use speculation and rely on the normal exception |
| // mechanism. that's why the loop is not as good as the previous one |
| // because read ahead is not possible |
| // |
| // XXX Fixme |
| // - today we restart from the beginning of the string instead |
| // of trying to continue where we left off. |
| // |
| .recover: |
| EX(.Lexit1, ld8 val=[base],8) // load the initial bytes |
| ;; |
| or val=val,mask // remask first bytes |
| cmp.eq p0,p6=r0,r0 // nullify first ld8 in loop |
| ;; |
| // |
| // ar.ec is still zero here |
| // |
| 2: |
| EX(.Lexit1, (p6) ld8 val=[base],8) |
| ;; |
| czx1.r val1=val // search 0 byte from right |
| ;; |
| cmp.eq p6,p0=8,val1 // val1==8 ? |
| (p6) br.wtop.dptk.few 2b // loop until p6 == 0 |
| ;; |
| sub ret0=base,orig // distance from base |
| sub tmp=7,val1 // 7=8-1 because this strlen returns strlen+1 |
| mov pr=saved_pr,0xffffffffffff0000 |
| ;; |
| sub ret0=ret0,tmp // length=now - back -1 |
| mov ar.pfs=saved_pfs // because of ar.ec, restore no matter what |
| br.ret.sptk.many rp // end of successful recovery code |
| |
| // |
| // We failed even on the normal load (called from exception handler) |
| // |
| .Lexit1: |
| mov ret0=0 |
| mov pr=saved_pr,0xffffffffffff0000 |
| mov ar.pfs=saved_pfs // because of ar.ec, restore no matter what |
| br.ret.sptk.many rp |
| END(__strlen_user) |