| /* |
| * |
| * Optmized version of the standard do_csum() function |
| * |
| * Return: a 64bit quantity containing the 16bit Internet checksum |
| * |
| * Inputs: |
| * in0: address of buffer to checksum (char *) |
| * in1: length of the buffer (int) |
| * |
| * Copyright (C) 1999, 2001-2002 Hewlett-Packard Co |
| * Stephane Eranian <eranian@hpl.hp.com> |
| * |
| * 02/04/22 Ken Chen <kenneth.w.chen@intel.com> |
| * Data locality study on the checksum buffer. |
| * More optimization cleanup - remove excessive stop bits. |
| * 02/04/08 David Mosberger <davidm@hpl.hp.com> |
| * More cleanup and tuning. |
| * 01/04/18 Jun Nakajima <jun.nakajima@intel.com> |
| * Clean up and optimize and the software pipeline, loading two |
| * back-to-back 8-byte words per loop. Clean up the initialization |
| * for the loop. Support the cases where load latency = 1 or 2. |
| * Set CONFIG_IA64_LOAD_LATENCY to 1 or 2 (default). |
| */ |
| |
| #include <asm/asmmacro.h> |
| |
| // |
| // Theory of operations: |
| // The goal is to go as quickly as possible to the point where |
| // we can checksum 16 bytes/loop. Before reaching that point we must |
| // take care of incorrect alignment of first byte. |
| // |
| // The code hereafter also takes care of the "tail" part of the buffer |
| // before entering the core loop, if any. The checksum is a sum so it |
| // allows us to commute operations. So we do the "head" and "tail" |
| // first to finish at full speed in the body. Once we get the head and |
| // tail values, we feed them into the pipeline, very handy initialization. |
| // |
| // Of course we deal with the special case where the whole buffer fits |
| // into one 8 byte word. In this case we have only one entry in the pipeline. |
| // |
| // We use a (LOAD_LATENCY+2)-stage pipeline in the loop to account for |
| // possible load latency and also to accommodate for head and tail. |
| // |
| // The end of the function deals with folding the checksum from 64bits |
| // down to 16bits taking care of the carry. |
| // |
| // This version avoids synchronization in the core loop by also using a |
| // pipeline for the accumulation of the checksum in resultx[] (x=1,2). |
| // |
| // wordx[] (x=1,2) |
| // |---| |
| // | | 0 : new value loaded in pipeline |
| // |---| |
| // | | - : in transit data |
| // |---| |
| // | | LOAD_LATENCY : current value to add to checksum |
| // |---| |
| // | | LOAD_LATENCY+1 : previous value added to checksum |
| // |---| (previous iteration) |
| // |
| // resultx[] (x=1,2) |
| // |---| |
| // | | 0 : initial value |
| // |---| |
| // | | LOAD_LATENCY-1 : new checksum |
| // |---| |
| // | | LOAD_LATENCY : previous value of checksum |
| // |---| |
| // | | LOAD_LATENCY+1 : final checksum when out of the loop |
| // |---| |
| // |
| // |
| // See RFC1071 "Computing the Internet Checksum" for various techniques for |
| // calculating the Internet checksum. |
| // |
| // NOT YET DONE: |
| // - Maybe another algorithm which would take care of the folding at the |
| // end in a different manner |
| // - Work with people more knowledgeable than me on the network stack |
| // to figure out if we could not split the function depending on the |
| // type of packet or alignment we get. Like the ip_fast_csum() routine |
| // where we know we have at least 20bytes worth of data to checksum. |
| // - Do a better job of handling small packets. |
| // - Note on prefetching: it was found that under various load, i.e. ftp read/write, |
| // nfs read/write, the L1 cache hit rate is at 60% and L2 cache hit rate is at 99.8% |
| // on the data that buffer points to (partly because the checksum is often preceded by |
| // a copy_from_user()). This finding indiate that lfetch will not be beneficial since |
| // the data is already in the cache. |
| // |
| |
| #define saved_pfs r11 |
| #define hmask r16 |
| #define tmask r17 |
| #define first1 r18 |
| #define firstval r19 |
| #define firstoff r20 |
| #define last r21 |
| #define lastval r22 |
| #define lastoff r23 |
| #define saved_lc r24 |
| #define saved_pr r25 |
| #define tmp1 r26 |
| #define tmp2 r27 |
| #define tmp3 r28 |
| #define carry1 r29 |
| #define carry2 r30 |
| #define first2 r31 |
| |
| #define buf in0 |
| #define len in1 |
| |
| #define LOAD_LATENCY 2 // XXX fix me |
| |
| #if (LOAD_LATENCY != 1) && (LOAD_LATENCY != 2) |
| # error "Only 1 or 2 is supported/tested for LOAD_LATENCY." |
| #endif |
| |
| #define PIPE_DEPTH (LOAD_LATENCY+2) |
| #define ELD p[LOAD_LATENCY] // end of load |
| #define ELD_1 p[LOAD_LATENCY+1] // and next stage |
| |
| // unsigned long do_csum(unsigned char *buf,long len) |
| |
| GLOBAL_ENTRY(do_csum) |
| .prologue |
| .save ar.pfs, saved_pfs |
| alloc saved_pfs=ar.pfs,2,16,0,16 |
| .rotr word1[4], word2[4],result1[LOAD_LATENCY+2],result2[LOAD_LATENCY+2] |
| .rotp p[PIPE_DEPTH], pC1[2], pC2[2] |
| mov ret0=r0 // in case we have zero length |
| cmp.lt p0,p6=r0,len // check for zero length or negative (32bit len) |
| ;; |
| add tmp1=buf,len // last byte's address |
| .save pr, saved_pr |
| mov saved_pr=pr // preserve predicates (rotation) |
| (p6) br.ret.spnt.many rp // return if zero or negative length |
| |
| mov hmask=-1 // initialize head mask |
| tbit.nz p15,p0=buf,0 // is buf an odd address? |
| and first1=-8,buf // 8-byte align down address of first1 element |
| |
| and firstoff=7,buf // how many bytes off for first1 element |
| mov tmask=-1 // initialize tail mask |
| |
| ;; |
| adds tmp2=-1,tmp1 // last-1 |
| and lastoff=7,tmp1 // how many bytes off for last element |
| ;; |
| sub tmp1=8,lastoff // complement to lastoff |
| and last=-8,tmp2 // address of word containing last byte |
| ;; |
| sub tmp3=last,first1 // tmp3=distance from first1 to last |
| .save ar.lc, saved_lc |
| mov saved_lc=ar.lc // save lc |
| cmp.eq p8,p9=last,first1 // everything fits in one word ? |
| |
| ld8 firstval=[first1],8 // load, ahead of time, "first1" word |
| and tmp1=7, tmp1 // make sure that if tmp1==8 -> tmp1=0 |
| shl tmp2=firstoff,3 // number of bits |
| ;; |
| (p9) ld8 lastval=[last] // load, ahead of time, "last" word, if needed |
| shl tmp1=tmp1,3 // number of bits |
| (p9) adds tmp3=-8,tmp3 // effectively loaded |
| ;; |
| (p8) mov lastval=r0 // we don't need lastval if first1==last |
| shl hmask=hmask,tmp2 // build head mask, mask off [0,first1off[ |
| shr.u tmask=tmask,tmp1 // build tail mask, mask off ]8,lastoff] |
| ;; |
| .body |
| #define count tmp3 |
| |
| (p8) and hmask=hmask,tmask // apply tail mask to head mask if 1 word only |
| (p9) and word2[0]=lastval,tmask // mask last it as appropriate |
| shr.u count=count,3 // how many 8-byte? |
| ;; |
| // If count is odd, finish this 8-byte word so that we can |
| // load two back-to-back 8-byte words per loop thereafter. |
| and word1[0]=firstval,hmask // and mask it as appropriate |
| tbit.nz p10,p11=count,0 // if (count is odd) |
| ;; |
| (p8) mov result1[0]=word1[0] |
| (p9) add result1[0]=word1[0],word2[0] |
| ;; |
| cmp.ltu p6,p0=result1[0],word1[0] // check the carry |
| cmp.eq.or.andcm p8,p0=0,count // exit if zero 8-byte |
| ;; |
| (p6) adds result1[0]=1,result1[0] |
| (p8) br.cond.dptk .do_csum_exit // if (within an 8-byte word) |
| (p11) br.cond.dptk .do_csum16 // if (count is even) |
| |
| // Here count is odd. |
| ld8 word1[1]=[first1],8 // load an 8-byte word |
| cmp.eq p9,p10=1,count // if (count == 1) |
| adds count=-1,count // loaded an 8-byte word |
| ;; |
| add result1[0]=result1[0],word1[1] |
| ;; |
| cmp.ltu p6,p0=result1[0],word1[1] |
| ;; |
| (p6) adds result1[0]=1,result1[0] |
| (p9) br.cond.sptk .do_csum_exit // if (count == 1) exit |
| // Fall through to calculate the checksum, feeding result1[0] as |
| // the initial value in result1[0]. |
| // |
| // Calculate the checksum loading two 8-byte words per loop. |
| // |
| .do_csum16: |
| add first2=8,first1 |
| shr.u count=count,1 // we do 16 bytes per loop |
| ;; |
| adds count=-1,count |
| mov carry1=r0 |
| mov carry2=r0 |
| brp.loop.imp 1f,2f |
| ;; |
| mov ar.ec=PIPE_DEPTH |
| mov ar.lc=count // set lc |
| mov pr.rot=1<<16 |
| // result1[0] must be initialized in advance. |
| mov result2[0]=r0 |
| ;; |
| .align 32 |
| 1: |
| (ELD_1) cmp.ltu pC1[0],p0=result1[LOAD_LATENCY],word1[LOAD_LATENCY+1] |
| (pC1[1])adds carry1=1,carry1 |
| (ELD_1) cmp.ltu pC2[0],p0=result2[LOAD_LATENCY],word2[LOAD_LATENCY+1] |
| (pC2[1])adds carry2=1,carry2 |
| (ELD) add result1[LOAD_LATENCY-1]=result1[LOAD_LATENCY],word1[LOAD_LATENCY] |
| (ELD) add result2[LOAD_LATENCY-1]=result2[LOAD_LATENCY],word2[LOAD_LATENCY] |
| 2: |
| (p[0]) ld8 word1[0]=[first1],16 |
| (p[0]) ld8 word2[0]=[first2],16 |
| br.ctop.sptk 1b |
| ;; |
| // Since len is a 32-bit value, carry cannot be larger than a 64-bit value. |
| (pC1[1])adds carry1=1,carry1 // since we miss the last one |
| (pC2[1])adds carry2=1,carry2 |
| ;; |
| add result1[LOAD_LATENCY+1]=result1[LOAD_LATENCY+1],carry1 |
| add result2[LOAD_LATENCY+1]=result2[LOAD_LATENCY+1],carry2 |
| ;; |
| cmp.ltu p6,p0=result1[LOAD_LATENCY+1],carry1 |
| cmp.ltu p7,p0=result2[LOAD_LATENCY+1],carry2 |
| ;; |
| (p6) adds result1[LOAD_LATENCY+1]=1,result1[LOAD_LATENCY+1] |
| (p7) adds result2[LOAD_LATENCY+1]=1,result2[LOAD_LATENCY+1] |
| ;; |
| add result1[0]=result1[LOAD_LATENCY+1],result2[LOAD_LATENCY+1] |
| ;; |
| cmp.ltu p6,p0=result1[0],result2[LOAD_LATENCY+1] |
| ;; |
| (p6) adds result1[0]=1,result1[0] |
| ;; |
| .do_csum_exit: |
| // |
| // now fold 64 into 16 bits taking care of carry |
| // that's not very good because it has lots of sequentiality |
| // |
| mov tmp3=0xffff |
| zxt4 tmp1=result1[0] |
| shr.u tmp2=result1[0],32 |
| ;; |
| add result1[0]=tmp1,tmp2 |
| ;; |
| and tmp1=result1[0],tmp3 |
| shr.u tmp2=result1[0],16 |
| ;; |
| add result1[0]=tmp1,tmp2 |
| ;; |
| and tmp1=result1[0],tmp3 |
| shr.u tmp2=result1[0],16 |
| ;; |
| add result1[0]=tmp1,tmp2 |
| ;; |
| and tmp1=result1[0],tmp3 |
| shr.u tmp2=result1[0],16 |
| ;; |
| add ret0=tmp1,tmp2 |
| mov pr=saved_pr,0xffffffffffff0000 |
| ;; |
| // if buf was odd then swap bytes |
| mov ar.pfs=saved_pfs // restore ar.ec |
| (p15) mux1 ret0=ret0,@rev // reverse word |
| ;; |
| mov ar.lc=saved_lc |
| (p15) shr.u ret0=ret0,64-16 // + shift back to position = swap bytes |
| br.ret.sptk.many rp |
| |
| // I (Jun Nakajima) wrote an equivalent code (see below), but it was |
| // not much better than the original. So keep the original there so that |
| // someone else can challenge. |
| // |
| // shr.u word1[0]=result1[0],32 |
| // zxt4 result1[0]=result1[0] |
| // ;; |
| // add result1[0]=result1[0],word1[0] |
| // ;; |
| // zxt2 result2[0]=result1[0] |
| // extr.u word1[0]=result1[0],16,16 |
| // shr.u carry1=result1[0],32 |
| // ;; |
| // add result2[0]=result2[0],word1[0] |
| // ;; |
| // add result2[0]=result2[0],carry1 |
| // ;; |
| // extr.u ret0=result2[0],16,16 |
| // ;; |
| // add ret0=ret0,result2[0] |
| // ;; |
| // zxt2 ret0=ret0 |
| // mov ar.pfs=saved_pfs // restore ar.ec |
| // mov pr=saved_pr,0xffffffffffff0000 |
| // ;; |
| // // if buf was odd then swap bytes |
| // mov ar.lc=saved_lc |
| //(p15) mux1 ret0=ret0,@rev // reverse word |
| // ;; |
| //(p15) shr.u ret0=ret0,64-16 // + shift back to position = swap bytes |
| // br.ret.sptk.many rp |
| |
| END(do_csum) |