blob: 70c198d072dcffaa423be628c66876a7410e6f1f [file] [log] [blame]
/*
* Copyright 2008 - 2015 Freescale Semiconductor Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Freescale Semiconductor nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
*
* ALTERNATIVELY, this software may be distributed under the terms of the
* GNU General Public License ("GPL") as published by the Free Software
* Foundation, either version 2 of that License or (at your option) any
* later version.
*
* THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include "fman_port.h"
#include "fman.h"
#include "fman_sp.h"
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/of_platform.h>
#include <linux/of_address.h>
#include <linux/delay.h>
#include <linux/libfdt_env.h>
/* Queue ID */
#define DFLT_FQ_ID 0x00FFFFFF
/* General defines */
#define PORT_BMI_FIFO_UNITS 0x100
#define MAX_PORT_FIFO_SIZE(bmi_max_fifo_size) \
min((u32)bmi_max_fifo_size, (u32)1024 * FMAN_BMI_FIFO_UNITS)
#define PORT_CG_MAP_NUM 8
#define PORT_PRS_RESULT_WORDS_NUM 8
#define PORT_IC_OFFSET_UNITS 0x10
#define MIN_EXT_BUF_SIZE 64
#define BMI_PORT_REGS_OFFSET 0
#define QMI_PORT_REGS_OFFSET 0x400
/* Default values */
#define DFLT_PORT_BUFFER_PREFIX_CONTEXT_DATA_ALIGN \
DFLT_FM_SP_BUFFER_PREFIX_CONTEXT_DATA_ALIGN
#define DFLT_PORT_CUT_BYTES_FROM_END 4
#define DFLT_PORT_ERRORS_TO_DISCARD FM_PORT_FRM_ERR_CLS_DISCARD
#define DFLT_PORT_MAX_FRAME_LENGTH 9600
#define DFLT_PORT_RX_FIFO_PRI_ELEVATION_LEV(bmi_max_fifo_size) \
MAX_PORT_FIFO_SIZE(bmi_max_fifo_size)
#define DFLT_PORT_RX_FIFO_THRESHOLD(major, bmi_max_fifo_size) \
(major == 6 ? \
MAX_PORT_FIFO_SIZE(bmi_max_fifo_size) : \
(MAX_PORT_FIFO_SIZE(bmi_max_fifo_size) * 3 / 4)) \
#define DFLT_PORT_EXTRA_NUM_OF_FIFO_BUFS 0
/* QMI defines */
#define QMI_DEQ_CFG_SUBPORTAL_MASK 0x1f
#define QMI_PORT_CFG_EN 0x80000000
#define QMI_PORT_STATUS_DEQ_FD_BSY 0x20000000
#define QMI_DEQ_CFG_PRI 0x80000000
#define QMI_DEQ_CFG_TYPE1 0x10000000
#define QMI_DEQ_CFG_TYPE2 0x20000000
#define QMI_DEQ_CFG_TYPE3 0x30000000
#define QMI_DEQ_CFG_PREFETCH_PARTIAL 0x01000000
#define QMI_DEQ_CFG_PREFETCH_FULL 0x03000000
#define QMI_DEQ_CFG_SP_MASK 0xf
#define QMI_DEQ_CFG_SP_SHIFT 20
#define QMI_BYTE_COUNT_LEVEL_CONTROL(_type) \
(_type == FMAN_PORT_TYPE_TX ? 0x1400 : 0x400)
/* BMI defins */
#define BMI_EBD_EN 0x80000000
#define BMI_PORT_CFG_EN 0x80000000
#define BMI_PORT_STATUS_BSY 0x80000000
#define BMI_DMA_ATTR_SWP_SHIFT FMAN_SP_DMA_ATTR_SWP_SHIFT
#define BMI_DMA_ATTR_WRITE_OPTIMIZE FMAN_SP_DMA_ATTR_WRITE_OPTIMIZE
#define BMI_RX_FIFO_PRI_ELEVATION_SHIFT 16
#define BMI_RX_FIFO_THRESHOLD_ETHE 0x80000000
#define BMI_FRAME_END_CS_IGNORE_SHIFT 24
#define BMI_FRAME_END_CS_IGNORE_MASK 0x0000001f
#define BMI_RX_FRAME_END_CUT_SHIFT 16
#define BMI_RX_FRAME_END_CUT_MASK 0x0000001f
#define BMI_IC_TO_EXT_SHIFT FMAN_SP_IC_TO_EXT_SHIFT
#define BMI_IC_TO_EXT_MASK 0x0000001f
#define BMI_IC_FROM_INT_SHIFT FMAN_SP_IC_FROM_INT_SHIFT
#define BMI_IC_FROM_INT_MASK 0x0000000f
#define BMI_IC_SIZE_MASK 0x0000001f
#define BMI_INT_BUF_MARG_SHIFT 28
#define BMI_INT_BUF_MARG_MASK 0x0000000f
#define BMI_EXT_BUF_MARG_START_SHIFT FMAN_SP_EXT_BUF_MARG_START_SHIFT
#define BMI_EXT_BUF_MARG_START_MASK 0x000001ff
#define BMI_EXT_BUF_MARG_END_MASK 0x000001ff
#define BMI_CMD_MR_LEAC 0x00200000
#define BMI_CMD_MR_SLEAC 0x00100000
#define BMI_CMD_MR_MA 0x00080000
#define BMI_CMD_MR_DEAS 0x00040000
#define BMI_CMD_RX_MR_DEF (BMI_CMD_MR_LEAC | \
BMI_CMD_MR_SLEAC | \
BMI_CMD_MR_MA | \
BMI_CMD_MR_DEAS)
#define BMI_CMD_TX_MR_DEF 0
#define BMI_CMD_ATTR_ORDER 0x80000000
#define BMI_CMD_ATTR_SYNC 0x02000000
#define BMI_CMD_ATTR_COLOR_SHIFT 26
#define BMI_FIFO_PIPELINE_DEPTH_SHIFT 12
#define BMI_FIFO_PIPELINE_DEPTH_MASK 0x0000000f
#define BMI_NEXT_ENG_FD_BITS_SHIFT 24
#define BMI_EXT_BUF_POOL_VALID FMAN_SP_EXT_BUF_POOL_VALID
#define BMI_EXT_BUF_POOL_EN_COUNTER FMAN_SP_EXT_BUF_POOL_EN_COUNTER
#define BMI_EXT_BUF_POOL_BACKUP FMAN_SP_EXT_BUF_POOL_BACKUP
#define BMI_EXT_BUF_POOL_ID_SHIFT 16
#define BMI_EXT_BUF_POOL_ID_MASK 0x003F0000
#define BMI_POOL_DEP_NUM_OF_POOLS_SHIFT 16
#define BMI_TX_FIFO_MIN_FILL_SHIFT 16
#define BMI_PRIORITY_ELEVATION_LEVEL ((0x3FF + 1) * PORT_BMI_FIFO_UNITS)
#define BMI_FIFO_THRESHOLD ((0x3FF + 1) * PORT_BMI_FIFO_UNITS)
#define BMI_DEQUEUE_PIPELINE_DEPTH(_type, _speed) \
((_type == FMAN_PORT_TYPE_TX && _speed == 10000) ? 4 : 1)
#define RX_ERRS_TO_ENQ \
(FM_PORT_FRM_ERR_DMA | \
FM_PORT_FRM_ERR_PHYSICAL | \
FM_PORT_FRM_ERR_SIZE | \
FM_PORT_FRM_ERR_EXTRACTION | \
FM_PORT_FRM_ERR_NO_SCHEME | \
FM_PORT_FRM_ERR_PRS_TIMEOUT | \
FM_PORT_FRM_ERR_PRS_ILL_INSTRUCT | \
FM_PORT_FRM_ERR_BLOCK_LIMIT_EXCEEDED | \
FM_PORT_FRM_ERR_PRS_HDR_ERR | \
FM_PORT_FRM_ERR_KEYSIZE_OVERFLOW | \
FM_PORT_FRM_ERR_IPRE)
/* NIA defines */
#define NIA_ORDER_RESTOR 0x00800000
#define NIA_ENG_BMI 0x00500000
#define NIA_ENG_QMI_ENQ 0x00540000
#define NIA_ENG_QMI_DEQ 0x00580000
#define NIA_BMI_AC_ENQ_FRAME 0x00000002
#define NIA_BMI_AC_TX_RELEASE 0x000002C0
#define NIA_BMI_AC_RELEASE 0x000000C0
#define NIA_BMI_AC_TX 0x00000274
#define NIA_BMI_AC_FETCH_ALL_FRAME 0x0000020c
/* Port IDs */
#define TX_10G_PORT_BASE 0x30
#define RX_10G_PORT_BASE 0x10
/* BMI Rx port register map */
struct fman_port_rx_bmi_regs {
u32 fmbm_rcfg; /* Rx Configuration */
u32 fmbm_rst; /* Rx Status */
u32 fmbm_rda; /* Rx DMA attributes */
u32 fmbm_rfp; /* Rx FIFO Parameters */
u32 fmbm_rfed; /* Rx Frame End Data */
u32 fmbm_ricp; /* Rx Internal Context Parameters */
u32 fmbm_rim; /* Rx Internal Buffer Margins */
u32 fmbm_rebm; /* Rx External Buffer Margins */
u32 fmbm_rfne; /* Rx Frame Next Engine */
u32 fmbm_rfca; /* Rx Frame Command Attributes. */
u32 fmbm_rfpne; /* Rx Frame Parser Next Engine */
u32 fmbm_rpso; /* Rx Parse Start Offset */
u32 fmbm_rpp; /* Rx Policer Profile */
u32 fmbm_rccb; /* Rx Coarse Classification Base */
u32 fmbm_reth; /* Rx Excessive Threshold */
u32 reserved003c[1]; /* (0x03C 0x03F) */
u32 fmbm_rprai[PORT_PRS_RESULT_WORDS_NUM];
/* Rx Parse Results Array Init */
u32 fmbm_rfqid; /* Rx Frame Queue ID */
u32 fmbm_refqid; /* Rx Error Frame Queue ID */
u32 fmbm_rfsdm; /* Rx Frame Status Discard Mask */
u32 fmbm_rfsem; /* Rx Frame Status Error Mask */
u32 fmbm_rfene; /* Rx Frame Enqueue Next Engine */
u32 reserved0074[0x2]; /* (0x074-0x07C) */
u32 fmbm_rcmne; /* Rx Frame Continuous Mode Next Engine */
u32 reserved0080[0x20]; /* (0x080 0x0FF) */
u32 fmbm_ebmpi[FMAN_PORT_MAX_EXT_POOLS_NUM];
/* Buffer Manager pool Information- */
u32 fmbm_acnt[FMAN_PORT_MAX_EXT_POOLS_NUM]; /* Allocate Counter- */
u32 reserved0130[8]; /* 0x130/0x140 - 0x15F reserved - */
u32 fmbm_rcgm[PORT_CG_MAP_NUM]; /* Congestion Group Map */
u32 fmbm_mpd; /* BM Pool Depletion */
u32 reserved0184[0x1F]; /* (0x184 0x1FF) */
u32 fmbm_rstc; /* Rx Statistics Counters */
u32 fmbm_rfrc; /* Rx Frame Counter */
u32 fmbm_rfbc; /* Rx Bad Frames Counter */
u32 fmbm_rlfc; /* Rx Large Frames Counter */
u32 fmbm_rffc; /* Rx Filter Frames Counter */
u32 fmbm_rfdc; /* Rx Frame Discard Counter */
u32 fmbm_rfldec; /* Rx Frames List DMA Error Counter */
u32 fmbm_rodc; /* Rx Out of Buffers Discard nntr */
u32 fmbm_rbdc; /* Rx Buffers Deallocate Counter */
u32 fmbm_rpec; /* RX Prepare to enqueue Counte */
u32 reserved0224[0x16]; /* (0x224 0x27F) */
u32 fmbm_rpc; /* Rx Performance Counters */
u32 fmbm_rpcp; /* Rx Performance Count Parameters */
u32 fmbm_rccn; /* Rx Cycle Counter */
u32 fmbm_rtuc; /* Rx Tasks Utilization Counter */
u32 fmbm_rrquc; /* Rx Receive Queue Utilization cntr */
u32 fmbm_rduc; /* Rx DMA Utilization Counter */
u32 fmbm_rfuc; /* Rx FIFO Utilization Counter */
u32 fmbm_rpac; /* Rx Pause Activation Counter */
u32 reserved02a0[0x18]; /* (0x2A0 0x2FF) */
u32 fmbm_rdcfg[0x3]; /* Rx Debug Configuration */
u32 fmbm_rgpr; /* Rx General Purpose Register */
u32 reserved0310[0x3a];
};
/* BMI Tx port register map */
struct fman_port_tx_bmi_regs {
u32 fmbm_tcfg; /* Tx Configuration */
u32 fmbm_tst; /* Tx Status */
u32 fmbm_tda; /* Tx DMA attributes */
u32 fmbm_tfp; /* Tx FIFO Parameters */
u32 fmbm_tfed; /* Tx Frame End Data */
u32 fmbm_ticp; /* Tx Internal Context Parameters */
u32 fmbm_tfdne; /* Tx Frame Dequeue Next Engine. */
u32 fmbm_tfca; /* Tx Frame Command attribute. */
u32 fmbm_tcfqid; /* Tx Confirmation Frame Queue ID. */
u32 fmbm_tefqid; /* Tx Frame Error Queue ID */
u32 fmbm_tfene; /* Tx Frame Enqueue Next Engine */
u32 fmbm_trlmts; /* Tx Rate Limiter Scale */
u32 fmbm_trlmt; /* Tx Rate Limiter */
u32 reserved0034[0x0e]; /* (0x034-0x6c) */
u32 fmbm_tccb; /* Tx Coarse Classification base */
u32 fmbm_tfne; /* Tx Frame Next Engine */
u32 fmbm_tpfcm[0x02];
/* Tx Priority based Flow Control (PFC) Mapping */
u32 fmbm_tcmne; /* Tx Frame Continuous Mode Next Engine */
u32 reserved0080[0x60]; /* (0x080-0x200) */
u32 fmbm_tstc; /* Tx Statistics Counters */
u32 fmbm_tfrc; /* Tx Frame Counter */
u32 fmbm_tfdc; /* Tx Frames Discard Counter */
u32 fmbm_tfledc; /* Tx Frame len error discard cntr */
u32 fmbm_tfufdc; /* Tx Frame unsprt frmt discard cntr */
u32 fmbm_tbdc; /* Tx Buffers Deallocate Counter */
u32 reserved0218[0x1A]; /* (0x218-0x280) */
u32 fmbm_tpc; /* Tx Performance Counters */
u32 fmbm_tpcp; /* Tx Performance Count Parameters */
u32 fmbm_tccn; /* Tx Cycle Counter */
u32 fmbm_ttuc; /* Tx Tasks Utilization Counter */
u32 fmbm_ttcquc; /* Tx Transmit conf Q util Counter */
u32 fmbm_tduc; /* Tx DMA Utilization Counter */
u32 fmbm_tfuc; /* Tx FIFO Utilization Counter */
u32 reserved029c[16]; /* (0x29C-0x2FF) */
u32 fmbm_tdcfg[0x3]; /* Tx Debug Configuration */
u32 fmbm_tgpr; /* Tx General Purpose Register */
u32 reserved0310[0x3a]; /* (0x310-0x3FF) */
};
/* BMI port register map */
union fman_port_bmi_regs {
struct fman_port_rx_bmi_regs rx;
struct fman_port_tx_bmi_regs tx;
};
/* QMI port register map */
struct fman_port_qmi_regs {
u32 fmqm_pnc; /* PortID n Configuration Register */
u32 fmqm_pns; /* PortID n Status Register */
u32 fmqm_pnts; /* PortID n Task Status Register */
u32 reserved00c[4]; /* 0xn00C - 0xn01B */
u32 fmqm_pnen; /* PortID n Enqueue NIA Register */
u32 fmqm_pnetfc; /* PortID n Enq Total Frame Counter */
u32 reserved024[2]; /* 0xn024 - 0x02B */
u32 fmqm_pndn; /* PortID n Dequeue NIA Register */
u32 fmqm_pndc; /* PortID n Dequeue Config Register */
u32 fmqm_pndtfc; /* PortID n Dequeue tot Frame cntr */
u32 fmqm_pndfdc; /* PortID n Dequeue FQID Dflt Cntr */
u32 fmqm_pndcc; /* PortID n Dequeue Confirm Counter */
};
/* QMI dequeue prefetch modes */
enum fman_port_deq_prefetch {
FMAN_PORT_DEQ_NO_PREFETCH, /* No prefetch mode */
FMAN_PORT_DEQ_PART_PREFETCH, /* Partial prefetch mode */
FMAN_PORT_DEQ_FULL_PREFETCH /* Full prefetch mode */
};
/* A structure for defining FM port resources */
struct fman_port_rsrc {
u32 num; /* Committed required resource */
u32 extra; /* Extra (not committed) required resource */
};
enum fman_port_dma_swap {
FMAN_PORT_DMA_NO_SWAP, /* No swap, transfer data as is */
FMAN_PORT_DMA_SWAP_LE,
/* The transferred data should be swapped in PPC Little Endian mode */
FMAN_PORT_DMA_SWAP_BE
/* The transferred data should be swapped in Big Endian mode */
};
/* Default port color */
enum fman_port_color {
FMAN_PORT_COLOR_GREEN, /* Default port color is green */
FMAN_PORT_COLOR_YELLOW, /* Default port color is yellow */
FMAN_PORT_COLOR_RED, /* Default port color is red */
FMAN_PORT_COLOR_OVERRIDE /* Ignore color */
};
/* QMI dequeue from the SP channel - types */
enum fman_port_deq_type {
FMAN_PORT_DEQ_BY_PRI,
/* Priority precedence and Intra-Class scheduling */
FMAN_PORT_DEQ_ACTIVE_FQ,
/* Active FQ precedence and Intra-Class scheduling */
FMAN_PORT_DEQ_ACTIVE_FQ_NO_ICS
/* Active FQ precedence and override Intra-Class scheduling */
};
/* External buffer pools configuration */
struct fman_port_bpools {
u8 count; /* Num of pools to set up */
bool counters_enable; /* Enable allocate counters */
u8 grp_bp_depleted_num;
/* Number of depleted pools - if reached the BMI indicates
* the MAC to send a pause frame
*/
struct {
u8 bpid; /* BM pool ID */
u16 size;
/* Pool's size - must be in ascending order */
bool is_backup;
/* If this is a backup pool */
bool grp_bp_depleted;
/* Consider this buffer in multiple pools depletion criteria */
bool single_bp_depleted;
/* Consider this buffer in single pool depletion criteria */
} bpool[FMAN_PORT_MAX_EXT_POOLS_NUM];
};
struct fman_port_cfg {
u32 dflt_fqid;
u32 err_fqid;
u8 deq_sp;
bool deq_high_priority;
enum fman_port_deq_type deq_type;
enum fman_port_deq_prefetch deq_prefetch_option;
u16 deq_byte_cnt;
u8 cheksum_last_bytes_ignore;
u8 rx_cut_end_bytes;
struct fman_buf_pool_depletion buf_pool_depletion;
struct fman_ext_pools ext_buf_pools;
u32 tx_fifo_min_level;
u32 tx_fifo_low_comf_level;
u32 rx_pri_elevation;
u32 rx_fifo_thr;
struct fman_sp_buf_margins buf_margins;
u32 int_buf_start_margin;
struct fman_sp_int_context_data_copy int_context;
u32 discard_mask;
u32 err_mask;
struct fman_buffer_prefix_content buffer_prefix_content;
bool dont_release_buf;
u8 rx_fd_bits;
u32 tx_fifo_deq_pipeline_depth;
bool errata_A006320;
bool excessive_threshold_register;
bool fmbm_tfne_has_features;
enum fman_port_dma_swap dma_swap_data;
enum fman_port_color color;
};
struct fman_port_rx_pools_params {
u8 num_of_pools;
u16 second_largest_buf_size;
u16 largest_buf_size;
};
struct fman_port_dts_params {
void __iomem *base_addr; /* FMan port virtual memory */
enum fman_port_type type; /* Port type */
u16 speed; /* Port speed */
u8 id; /* HW Port Id */
u32 qman_channel_id; /* QMan channel id (non RX only) */
struct fman *fman; /* FMan Handle */
};
struct fman_port {
void *fm;
struct device *dev;
struct fman_rev_info rev_info;
u8 port_id;
enum fman_port_type port_type;
u16 port_speed;
union fman_port_bmi_regs __iomem *bmi_regs;
struct fman_port_qmi_regs __iomem *qmi_regs;
struct fman_sp_buffer_offsets buffer_offsets;
u8 internal_buf_offset;
struct fman_ext_pools ext_buf_pools;
u16 max_frame_length;
struct fman_port_rsrc open_dmas;
struct fman_port_rsrc tasks;
struct fman_port_rsrc fifo_bufs;
struct fman_port_rx_pools_params rx_pools_params;
struct fman_port_cfg *cfg;
struct fman_port_dts_params dts_params;
u8 ext_pools_num;
u32 max_port_fifo_size;
u32 max_num_of_ext_pools;
u32 max_num_of_sub_portals;
u32 bm_max_num_of_pools;
};
static int init_bmi_rx(struct fman_port *port)
{
struct fman_port_rx_bmi_regs __iomem *regs = &port->bmi_regs->rx;
struct fman_port_cfg *cfg = port->cfg;
u32 tmp;
/* DMA attributes */
tmp = (u32)cfg->dma_swap_data << BMI_DMA_ATTR_SWP_SHIFT;
/* Enable write optimization */
tmp |= BMI_DMA_ATTR_WRITE_OPTIMIZE;
iowrite32be(tmp, &regs->fmbm_rda);
/* Rx FIFO parameters */
tmp = (cfg->rx_pri_elevation / PORT_BMI_FIFO_UNITS - 1) <<
BMI_RX_FIFO_PRI_ELEVATION_SHIFT;
tmp |= cfg->rx_fifo_thr / PORT_BMI_FIFO_UNITS - 1;
iowrite32be(tmp, &regs->fmbm_rfp);
if (cfg->excessive_threshold_register)
/* always allow access to the extra resources */
iowrite32be(BMI_RX_FIFO_THRESHOLD_ETHE, &regs->fmbm_reth);
/* Frame end data */
tmp = (cfg->cheksum_last_bytes_ignore & BMI_FRAME_END_CS_IGNORE_MASK) <<
BMI_FRAME_END_CS_IGNORE_SHIFT;
tmp |= (cfg->rx_cut_end_bytes & BMI_RX_FRAME_END_CUT_MASK) <<
BMI_RX_FRAME_END_CUT_SHIFT;
if (cfg->errata_A006320)
tmp &= 0xffe0ffff;
iowrite32be(tmp, &regs->fmbm_rfed);
/* Internal context parameters */
tmp = ((cfg->int_context.ext_buf_offset / PORT_IC_OFFSET_UNITS) &
BMI_IC_TO_EXT_MASK) << BMI_IC_TO_EXT_SHIFT;
tmp |= ((cfg->int_context.int_context_offset / PORT_IC_OFFSET_UNITS) &
BMI_IC_FROM_INT_MASK) << BMI_IC_FROM_INT_SHIFT;
tmp |= (cfg->int_context.size / PORT_IC_OFFSET_UNITS) &
BMI_IC_SIZE_MASK;
iowrite32be(tmp, &regs->fmbm_ricp);
/* Internal buffer offset */
tmp = ((cfg->int_buf_start_margin / PORT_IC_OFFSET_UNITS) &
BMI_INT_BUF_MARG_MASK) << BMI_INT_BUF_MARG_SHIFT;
iowrite32be(tmp, &regs->fmbm_rim);
/* External buffer margins */
tmp = (cfg->buf_margins.start_margins & BMI_EXT_BUF_MARG_START_MASK) <<
BMI_EXT_BUF_MARG_START_SHIFT;
tmp |= cfg->buf_margins.end_margins & BMI_EXT_BUF_MARG_END_MASK;
iowrite32be(tmp, &regs->fmbm_rebm);
/* Frame attributes */
tmp = BMI_CMD_RX_MR_DEF;
tmp |= BMI_CMD_ATTR_ORDER;
tmp |= (u32)cfg->color << BMI_CMD_ATTR_COLOR_SHIFT;
/* Synchronization request */
tmp |= BMI_CMD_ATTR_SYNC;
iowrite32be(tmp, &regs->fmbm_rfca);
/* NIA */
tmp = (u32)cfg->rx_fd_bits << BMI_NEXT_ENG_FD_BITS_SHIFT;
tmp |= NIA_ENG_BMI | NIA_BMI_AC_ENQ_FRAME;
iowrite32be(tmp, &regs->fmbm_rfne);
/* Enqueue NIA */
iowrite32be(NIA_ENG_QMI_ENQ | NIA_ORDER_RESTOR, &regs->fmbm_rfene);
/* Default/error queues */
iowrite32be((cfg->dflt_fqid & DFLT_FQ_ID), &regs->fmbm_rfqid);
iowrite32be((cfg->err_fqid & DFLT_FQ_ID), &regs->fmbm_refqid);
/* Discard/error masks */
iowrite32be(cfg->discard_mask, &regs->fmbm_rfsdm);
iowrite32be(cfg->err_mask, &regs->fmbm_rfsem);
return 0;
}
static int init_bmi_tx(struct fman_port *port)
{
struct fman_port_tx_bmi_regs __iomem *regs = &port->bmi_regs->tx;
struct fman_port_cfg *cfg = port->cfg;
u32 tmp;
/* Tx Configuration register */
tmp = 0;
iowrite32be(tmp, &regs->fmbm_tcfg);
/* DMA attributes */
tmp = (u32)cfg->dma_swap_data << BMI_DMA_ATTR_SWP_SHIFT;
iowrite32be(tmp, &regs->fmbm_tda);
/* Tx FIFO parameters */
tmp = (cfg->tx_fifo_min_level / PORT_BMI_FIFO_UNITS) <<
BMI_TX_FIFO_MIN_FILL_SHIFT;
tmp |= ((cfg->tx_fifo_deq_pipeline_depth - 1) &
BMI_FIFO_PIPELINE_DEPTH_MASK) << BMI_FIFO_PIPELINE_DEPTH_SHIFT;
tmp |= (cfg->tx_fifo_low_comf_level / PORT_BMI_FIFO_UNITS) - 1;
iowrite32be(tmp, &regs->fmbm_tfp);
/* Frame end data */
tmp = (cfg->cheksum_last_bytes_ignore & BMI_FRAME_END_CS_IGNORE_MASK) <<
BMI_FRAME_END_CS_IGNORE_SHIFT;
iowrite32be(tmp, &regs->fmbm_tfed);
/* Internal context parameters */
tmp = ((cfg->int_context.ext_buf_offset / PORT_IC_OFFSET_UNITS) &
BMI_IC_TO_EXT_MASK) << BMI_IC_TO_EXT_SHIFT;
tmp |= ((cfg->int_context.int_context_offset / PORT_IC_OFFSET_UNITS) &
BMI_IC_FROM_INT_MASK) << BMI_IC_FROM_INT_SHIFT;
tmp |= (cfg->int_context.size / PORT_IC_OFFSET_UNITS) &
BMI_IC_SIZE_MASK;
iowrite32be(tmp, &regs->fmbm_ticp);
/* Frame attributes */
tmp = BMI_CMD_TX_MR_DEF;
tmp |= BMI_CMD_ATTR_ORDER;
tmp |= (u32)cfg->color << BMI_CMD_ATTR_COLOR_SHIFT;
iowrite32be(tmp, &regs->fmbm_tfca);
/* Dequeue NIA + enqueue NIA */
iowrite32be(NIA_ENG_QMI_DEQ, &regs->fmbm_tfdne);
iowrite32be(NIA_ENG_QMI_ENQ | NIA_ORDER_RESTOR, &regs->fmbm_tfene);
if (cfg->fmbm_tfne_has_features)
iowrite32be(!cfg->dflt_fqid ?
BMI_EBD_EN | NIA_BMI_AC_FETCH_ALL_FRAME :
NIA_BMI_AC_FETCH_ALL_FRAME, &regs->fmbm_tfne);
if (!cfg->dflt_fqid && cfg->dont_release_buf) {
iowrite32be(DFLT_FQ_ID, &regs->fmbm_tcfqid);
iowrite32be(NIA_ENG_BMI | NIA_BMI_AC_TX_RELEASE,
&regs->fmbm_tfene);
if (cfg->fmbm_tfne_has_features)
iowrite32be(ioread32be(&regs->fmbm_tfne) & ~BMI_EBD_EN,
&regs->fmbm_tfne);
}
/* Confirmation/error queues */
if (cfg->dflt_fqid || !cfg->dont_release_buf)
iowrite32be(cfg->dflt_fqid & DFLT_FQ_ID, &regs->fmbm_tcfqid);
iowrite32be((cfg->err_fqid & DFLT_FQ_ID), &regs->fmbm_tefqid);
return 0;
}
static int init_qmi(struct fman_port *port)
{
struct fman_port_qmi_regs __iomem *regs = port->qmi_regs;
struct fman_port_cfg *cfg = port->cfg;
u32 tmp;
/* Rx port configuration */
if (port->port_type == FMAN_PORT_TYPE_RX) {
/* Enqueue NIA */
iowrite32be(NIA_ENG_BMI | NIA_BMI_AC_RELEASE, &regs->fmqm_pnen);
return 0;
}
/* Continue with Tx port configuration */
if (port->port_type == FMAN_PORT_TYPE_TX) {
/* Enqueue NIA */
iowrite32be(NIA_ENG_BMI | NIA_BMI_AC_TX_RELEASE,
&regs->fmqm_pnen);
/* Dequeue NIA */
iowrite32be(NIA_ENG_BMI | NIA_BMI_AC_TX, &regs->fmqm_pndn);
}
/* Dequeue Configuration register */
tmp = 0;
if (cfg->deq_high_priority)
tmp |= QMI_DEQ_CFG_PRI;
switch (cfg->deq_type) {
case FMAN_PORT_DEQ_BY_PRI:
tmp |= QMI_DEQ_CFG_TYPE1;
break;
case FMAN_PORT_DEQ_ACTIVE_FQ:
tmp |= QMI_DEQ_CFG_TYPE2;
break;
case FMAN_PORT_DEQ_ACTIVE_FQ_NO_ICS:
tmp |= QMI_DEQ_CFG_TYPE3;
break;
default:
return -EINVAL;
}
switch (cfg->deq_prefetch_option) {
case FMAN_PORT_DEQ_NO_PREFETCH:
break;
case FMAN_PORT_DEQ_PART_PREFETCH:
tmp |= QMI_DEQ_CFG_PREFETCH_PARTIAL;
break;
case FMAN_PORT_DEQ_FULL_PREFETCH:
tmp |= QMI_DEQ_CFG_PREFETCH_FULL;
break;
default:
return -EINVAL;
}
tmp |= (cfg->deq_sp & QMI_DEQ_CFG_SP_MASK) << QMI_DEQ_CFG_SP_SHIFT;
tmp |= cfg->deq_byte_cnt;
iowrite32be(tmp, &regs->fmqm_pndc);
return 0;
}
static int init(struct fman_port *port)
{
int err;
/* Init BMI registers */
switch (port->port_type) {
case FMAN_PORT_TYPE_RX:
err = init_bmi_rx(port);
break;
case FMAN_PORT_TYPE_TX:
err = init_bmi_tx(port);
break;
default:
return -EINVAL;
}
if (err)
return err;
/* Init QMI registers */
err = init_qmi(port);
return err;
return 0;
}
static int set_bpools(const struct fman_port *port,
const struct fman_port_bpools *bp)
{
u32 __iomem *bp_reg, *bp_depl_reg;
u32 tmp;
u8 i, max_bp_num;
bool grp_depl_used = false, rx_port;
switch (port->port_type) {
case FMAN_PORT_TYPE_RX:
max_bp_num = port->ext_pools_num;
rx_port = true;
bp_reg = port->bmi_regs->rx.fmbm_ebmpi;
bp_depl_reg = &port->bmi_regs->rx.fmbm_mpd;
break;
default:
return -EINVAL;
}
if (rx_port) {
/* Check buffers are provided in ascending order */
for (i = 0; (i < (bp->count - 1) &&
(i < FMAN_PORT_MAX_EXT_POOLS_NUM - 1)); i++) {
if (bp->bpool[i].size > bp->bpool[i + 1].size)
return -EINVAL;
}
}
/* Set up external buffers pools */
for (i = 0; i < bp->count; i++) {
tmp = BMI_EXT_BUF_POOL_VALID;
tmp |= ((u32)bp->bpool[i].bpid <<
BMI_EXT_BUF_POOL_ID_SHIFT) & BMI_EXT_BUF_POOL_ID_MASK;
if (rx_port) {
if (bp->counters_enable)
tmp |= BMI_EXT_BUF_POOL_EN_COUNTER;
if (bp->bpool[i].is_backup)
tmp |= BMI_EXT_BUF_POOL_BACKUP;
tmp |= (u32)bp->bpool[i].size;
}
iowrite32be(tmp, &bp_reg[i]);
}
/* Clear unused pools */
for (i = bp->count; i < max_bp_num; i++)
iowrite32be(0, &bp_reg[i]);
/* Pools depletion */
tmp = 0;
for (i = 0; i < FMAN_PORT_MAX_EXT_POOLS_NUM; i++) {
if (bp->bpool[i].grp_bp_depleted) {
grp_depl_used = true;
tmp |= 0x80000000 >> i;
}
if (bp->bpool[i].single_bp_depleted)
tmp |= 0x80 >> i;
}
if (grp_depl_used)
tmp |= ((u32)bp->grp_bp_depleted_num - 1) <<
BMI_POOL_DEP_NUM_OF_POOLS_SHIFT;
iowrite32be(tmp, bp_depl_reg);
return 0;
}
static bool is_init_done(struct fman_port_cfg *cfg)
{
/* Checks if FMan port driver parameters were initialized */
if (!cfg)
return true;
return false;
}
static int verify_size_of_fifo(struct fman_port *port)
{
u32 min_fifo_size_required = 0, opt_fifo_size_for_b2b = 0;
/* TX Ports */
if (port->port_type == FMAN_PORT_TYPE_TX) {
min_fifo_size_required = (u32)
(roundup(port->max_frame_length,
FMAN_BMI_FIFO_UNITS) + (3 * FMAN_BMI_FIFO_UNITS));
min_fifo_size_required +=
port->cfg->tx_fifo_deq_pipeline_depth *
FMAN_BMI_FIFO_UNITS;
opt_fifo_size_for_b2b = min_fifo_size_required;
/* Add some margin for back-to-back capability to improve
* performance, allows the hardware to pipeline new frame dma
* while the previous frame not yet transmitted.
*/
if (port->port_speed == 10000)
opt_fifo_size_for_b2b += 3 * FMAN_BMI_FIFO_UNITS;
else
opt_fifo_size_for_b2b += 2 * FMAN_BMI_FIFO_UNITS;
}
/* RX Ports */
else if (port->port_type == FMAN_PORT_TYPE_RX) {
if (port->rev_info.major >= 6)
min_fifo_size_required = (u32)
(roundup(port->max_frame_length,
FMAN_BMI_FIFO_UNITS) +
(5 * FMAN_BMI_FIFO_UNITS));
/* 4 according to spec + 1 for FOF>0 */
else
min_fifo_size_required = (u32)
(roundup(min(port->max_frame_length,
port->rx_pools_params.largest_buf_size),
FMAN_BMI_FIFO_UNITS) +
(7 * FMAN_BMI_FIFO_UNITS));
opt_fifo_size_for_b2b = min_fifo_size_required;
/* Add some margin for back-to-back capability to improve
* performance,allows the hardware to pipeline new frame dma
* while the previous frame not yet transmitted.
*/
if (port->port_speed == 10000)
opt_fifo_size_for_b2b += 8 * FMAN_BMI_FIFO_UNITS;
else
opt_fifo_size_for_b2b += 3 * FMAN_BMI_FIFO_UNITS;
}
WARN_ON(min_fifo_size_required <= 0);
WARN_ON(opt_fifo_size_for_b2b < min_fifo_size_required);
/* Verify the size */
if (port->fifo_bufs.num < min_fifo_size_required)
dev_dbg(port->dev, "%s: FIFO size should be enlarged to %d bytes\n",
__func__, min_fifo_size_required);
else if (port->fifo_bufs.num < opt_fifo_size_for_b2b)
dev_dbg(port->dev, "%s: For b2b processing,FIFO may be enlarged to %d bytes\n",
__func__, opt_fifo_size_for_b2b);
return 0;
}
static int set_ext_buffer_pools(struct fman_port *port)
{
struct fman_ext_pools *ext_buf_pools = &port->cfg->ext_buf_pools;
struct fman_buf_pool_depletion *buf_pool_depletion =
&port->cfg->buf_pool_depletion;
u8 ordered_array[FMAN_PORT_MAX_EXT_POOLS_NUM];
u16 sizes_array[BM_MAX_NUM_OF_POOLS];
int i = 0, j = 0, err;
struct fman_port_bpools bpools;
memset(&ordered_array, 0, sizeof(u8) * FMAN_PORT_MAX_EXT_POOLS_NUM);
memset(&sizes_array, 0, sizeof(u16) * BM_MAX_NUM_OF_POOLS);
memcpy(&port->ext_buf_pools, ext_buf_pools,
sizeof(struct fman_ext_pools));
fman_sp_set_buf_pools_in_asc_order_of_buf_sizes(ext_buf_pools,
ordered_array,
sizes_array);
memset(&bpools, 0, sizeof(struct fman_port_bpools));
bpools.count = ext_buf_pools->num_of_pools_used;
bpools.counters_enable = true;
for (i = 0; i < ext_buf_pools->num_of_pools_used; i++) {
bpools.bpool[i].bpid = ordered_array[i];
bpools.bpool[i].size = sizes_array[ordered_array[i]];
}
/* save pools parameters for later use */
port->rx_pools_params.num_of_pools = ext_buf_pools->num_of_pools_used;
port->rx_pools_params.largest_buf_size =
sizes_array[ordered_array[ext_buf_pools->num_of_pools_used - 1]];
port->rx_pools_params.second_largest_buf_size =
sizes_array[ordered_array[ext_buf_pools->num_of_pools_used - 2]];
/* FMBM_RMPD reg. - pool depletion */
if (buf_pool_depletion->pools_grp_mode_enable) {
bpools.grp_bp_depleted_num = buf_pool_depletion->num_of_pools;
for (i = 0; i < port->bm_max_num_of_pools; i++) {
if (buf_pool_depletion->pools_to_consider[i]) {
for (j = 0; j < ext_buf_pools->
num_of_pools_used; j++) {
if (i == ordered_array[j]) {
bpools.bpool[j].
grp_bp_depleted = true;
break;
}
}
}
}
}
if (buf_pool_depletion->single_pool_mode_enable) {
for (i = 0; i < port->bm_max_num_of_pools; i++) {
if (buf_pool_depletion->
pools_to_consider_for_single_mode[i]) {
for (j = 0; j < ext_buf_pools->
num_of_pools_used; j++) {
if (i == ordered_array[j]) {
bpools.bpool[j].
single_bp_depleted = true;
break;
}
}
}
}
}
err = set_bpools(port, &bpools);
if (err != 0) {
dev_err(port->dev, "%s: set_bpools() failed\n", __func__);
return -EINVAL;
}
return 0;
}
static int init_low_level_driver(struct fman_port *port)
{
struct fman_port_cfg *cfg = port->cfg;
u32 tmp_val;
switch (port->port_type) {
case FMAN_PORT_TYPE_RX:
cfg->err_mask = (RX_ERRS_TO_ENQ & ~cfg->discard_mask);
break;
default:
break;
}
tmp_val = (u32)((port->internal_buf_offset % OFFSET_UNITS) ?
(port->internal_buf_offset / OFFSET_UNITS + 1) :
(port->internal_buf_offset / OFFSET_UNITS));
port->internal_buf_offset = (u8)(tmp_val * OFFSET_UNITS);
port->cfg->int_buf_start_margin = port->internal_buf_offset;
if (init(port) != 0) {
dev_err(port->dev, "%s: fman port initialization failed\n",
__func__);
return -ENODEV;
}
/* The code bellow is a trick so the FM will not release the buffer
* to BM nor will try to enqueue the frame to QM
*/
if (port->port_type == FMAN_PORT_TYPE_TX) {
if (!cfg->dflt_fqid && cfg->dont_release_buf) {
/* override fmbm_tcfqid 0 with a false non-0 value.
* This will force FM to act according to tfene.
* Otherwise, if fmbm_tcfqid is 0 the FM will release
* buffers to BM regardless of fmbm_tfene
*/
iowrite32be(0xFFFFFF, &port->bmi_regs->tx.fmbm_tcfqid);
iowrite32be(NIA_ENG_BMI | NIA_BMI_AC_TX_RELEASE,
&port->bmi_regs->tx.fmbm_tfene);
}
}
return 0;
}
static int fill_soc_specific_params(struct fman_port *port)
{
u32 bmi_max_fifo_size;
bmi_max_fifo_size = fman_get_bmi_max_fifo_size(port->fm);
port->max_port_fifo_size = MAX_PORT_FIFO_SIZE(bmi_max_fifo_size);
port->bm_max_num_of_pools = 64;
/* P4080 - Major 2
* P2041/P3041/P5020/P5040 - Major 3
* Tx/Bx - Major 6
*/
switch (port->rev_info.major) {
case 2:
case 3:
port->max_num_of_ext_pools = 4;
port->max_num_of_sub_portals = 12;
break;
case 6:
port->max_num_of_ext_pools = 8;
port->max_num_of_sub_portals = 16;
break;
default:
dev_err(port->dev, "%s: Unsupported FMan version\n", __func__);
return -EINVAL;
}
return 0;
}
static int get_dflt_fifo_deq_pipeline_depth(u8 major, enum fman_port_type type,
u16 speed)
{
switch (type) {
case FMAN_PORT_TYPE_RX:
case FMAN_PORT_TYPE_TX:
switch (speed) {
case 10000:
return 4;
case 1000:
if (major >= 6)
return 2;
else
return 1;
default:
return 0;
}
default:
return 0;
}
}
static int get_dflt_num_of_tasks(u8 major, enum fman_port_type type,
u16 speed)
{
switch (type) {
case FMAN_PORT_TYPE_RX:
case FMAN_PORT_TYPE_TX:
switch (speed) {
case 10000:
return 16;
case 1000:
if (major >= 6)
return 4;
else
return 3;
default:
return 0;
}
default:
return 0;
}
}
static int get_dflt_extra_num_of_tasks(u8 major, enum fman_port_type type,
u16 speed)
{
switch (type) {
case FMAN_PORT_TYPE_RX:
/* FMan V3 */
if (major >= 6)
return 0;
/* FMan V2 */
if (speed == 10000)
return 8;
else
return 2;
case FMAN_PORT_TYPE_TX:
default:
return 0;
}
}
static int get_dflt_num_of_open_dmas(u8 major, enum fman_port_type type,
u16 speed)
{
int val;
if (major >= 6) {
switch (type) {
case FMAN_PORT_TYPE_TX:
if (speed == 10000)
val = 12;
else
val = 3;
break;
case FMAN_PORT_TYPE_RX:
if (speed == 10000)
val = 8;
else
val = 2;
break;
default:
return 0;
}
} else {
switch (type) {
case FMAN_PORT_TYPE_TX:
case FMAN_PORT_TYPE_RX:
if (speed == 10000)
val = 8;
else
val = 1;
break;
default:
val = 0;
}
}
return val;
}
static int get_dflt_extra_num_of_open_dmas(u8 major, enum fman_port_type type,
u16 speed)
{
/* FMan V3 */
if (major >= 6)
return 0;
/* FMan V2 */
switch (type) {
case FMAN_PORT_TYPE_RX:
case FMAN_PORT_TYPE_TX:
if (speed == 10000)
return 8;
else
return 1;
default:
return 0;
}
}
static int get_dflt_num_of_fifo_bufs(u8 major, enum fman_port_type type,
u16 speed)
{
int val;
if (major >= 6) {
switch (type) {
case FMAN_PORT_TYPE_TX:
if (speed == 10000)
val = 64;
else
val = 50;
break;
case FMAN_PORT_TYPE_RX:
if (speed == 10000)
val = 96;
else
val = 50;
break;
default:
val = 0;
}
} else {
switch (type) {
case FMAN_PORT_TYPE_TX:
if (speed == 10000)
val = 48;
else
val = 44;
break;
case FMAN_PORT_TYPE_RX:
if (speed == 10000)
val = 48;
else
val = 45;
break;
default:
val = 0;
}
}
return val;
}
static void set_dflt_cfg(struct fman_port *port,
struct fman_port_params *port_params)
{
struct fman_port_cfg *cfg = port->cfg;
cfg->dma_swap_data = FMAN_PORT_DMA_NO_SWAP;
cfg->color = FMAN_PORT_COLOR_GREEN;
cfg->rx_cut_end_bytes = DFLT_PORT_CUT_BYTES_FROM_END;
cfg->rx_pri_elevation = BMI_PRIORITY_ELEVATION_LEVEL;
cfg->rx_fifo_thr = BMI_FIFO_THRESHOLD;
cfg->tx_fifo_low_comf_level = (5 * 1024);
cfg->deq_type = FMAN_PORT_DEQ_BY_PRI;
cfg->deq_prefetch_option = FMAN_PORT_DEQ_FULL_PREFETCH;
cfg->tx_fifo_deq_pipeline_depth =
BMI_DEQUEUE_PIPELINE_DEPTH(port->port_type, port->port_speed);
cfg->deq_byte_cnt = QMI_BYTE_COUNT_LEVEL_CONTROL(port->port_type);
cfg->rx_pri_elevation =
DFLT_PORT_RX_FIFO_PRI_ELEVATION_LEV(port->max_port_fifo_size);
port->cfg->rx_fifo_thr =
DFLT_PORT_RX_FIFO_THRESHOLD(port->rev_info.major,
port->max_port_fifo_size);
if ((port->rev_info.major == 6) &&
((port->rev_info.minor == 0) || (port->rev_info.minor == 3)))
cfg->errata_A006320 = true;
/* Excessive Threshold register - exists for pre-FMv3 chips only */
if (port->rev_info.major < 6)
cfg->excessive_threshold_register = true;
else
cfg->fmbm_tfne_has_features = true;
cfg->buffer_prefix_content.data_align =
DFLT_PORT_BUFFER_PREFIX_CONTEXT_DATA_ALIGN;
}
static void set_rx_dflt_cfg(struct fman_port *port,
struct fman_port_params *port_params)
{
port->cfg->discard_mask = DFLT_PORT_ERRORS_TO_DISCARD;
memcpy(&port->cfg->ext_buf_pools,
&port_params->specific_params.rx_params.ext_buf_pools,
sizeof(struct fman_ext_pools));
port->cfg->err_fqid =
port_params->specific_params.rx_params.err_fqid;
port->cfg->dflt_fqid =
port_params->specific_params.rx_params.dflt_fqid;
}
static void set_tx_dflt_cfg(struct fman_port *port,
struct fman_port_params *port_params,
struct fman_port_dts_params *dts_params)
{
port->cfg->tx_fifo_deq_pipeline_depth =
get_dflt_fifo_deq_pipeline_depth(port->rev_info.major,
port->port_type,
port->port_speed);
port->cfg->err_fqid =
port_params->specific_params.non_rx_params.err_fqid;
port->cfg->deq_sp =
(u8)(dts_params->qman_channel_id & QMI_DEQ_CFG_SUBPORTAL_MASK);
port->cfg->dflt_fqid =
port_params->specific_params.non_rx_params.dflt_fqid;
port->cfg->deq_high_priority = true;
}
/**
* fman_port_config
* @port: Pointer to the port structure
* @params: Pointer to data structure of parameters
*
* Creates a descriptor for the FM PORT module.
* The routine returns a pointer to the FM PORT object.
* This descriptor must be passed as first parameter to all other FM PORT
* function calls.
* No actual initialization or configuration of FM hardware is done by this
* routine.
*
* Return: 0 on success; Error code otherwise.
*/
int fman_port_config(struct fman_port *port, struct fman_port_params *params)
{
void __iomem *base_addr = port->dts_params.base_addr;
int err;
/* Allocate the FM driver's parameters structure */
port->cfg = kzalloc(sizeof(*port->cfg), GFP_KERNEL);
if (!port->cfg)
goto err_params;
/* Initialize FM port parameters which will be kept by the driver */
port->port_type = port->dts_params.type;
port->port_speed = port->dts_params.speed;
port->port_id = port->dts_params.id;
port->fm = port->dts_params.fman;
port->ext_pools_num = (u8)8;
/* get FM revision */
fman_get_revision(port->fm, &port->rev_info);
err = fill_soc_specific_params(port);
if (err)
goto err_port_cfg;
switch (port->port_type) {
case FMAN_PORT_TYPE_RX:
set_rx_dflt_cfg(port, params);
case FMAN_PORT_TYPE_TX:
set_tx_dflt_cfg(port, params, &port->dts_params);
default:
set_dflt_cfg(port, params);
}
/* Continue with other parameters */
/* set memory map pointers */
port->bmi_regs = base_addr + BMI_PORT_REGS_OFFSET;
port->qmi_regs = base_addr + QMI_PORT_REGS_OFFSET;
port->max_frame_length = DFLT_PORT_MAX_FRAME_LENGTH;
/* resource distribution. */
port->fifo_bufs.num =
get_dflt_num_of_fifo_bufs(port->rev_info.major, port->port_type,
port->port_speed) * FMAN_BMI_FIFO_UNITS;
port->fifo_bufs.extra =
DFLT_PORT_EXTRA_NUM_OF_FIFO_BUFS * FMAN_BMI_FIFO_UNITS;
port->open_dmas.num =
get_dflt_num_of_open_dmas(port->rev_info.major,
port->port_type, port->port_speed);
port->open_dmas.extra =
get_dflt_extra_num_of_open_dmas(port->rev_info.major,
port->port_type, port->port_speed);
port->tasks.num =
get_dflt_num_of_tasks(port->rev_info.major,
port->port_type, port->port_speed);
port->tasks.extra =
get_dflt_extra_num_of_tasks(port->rev_info.major,
port->port_type, port->port_speed);
/* FM_HEAVY_TRAFFIC_SEQUENCER_HANG_ERRATA_FMAN_A006981 errata
* workaround
*/
if ((port->rev_info.major == 6) && (port->rev_info.minor == 0) &&
(((port->port_type == FMAN_PORT_TYPE_TX) &&
(port->port_speed == 1000)))) {
port->open_dmas.num = 16;
port->open_dmas.extra = 0;
}
if (port->rev_info.major >= 6 &&
port->port_type == FMAN_PORT_TYPE_TX &&
port->port_speed == 1000) {
/* FM_WRONG_RESET_VALUES_ERRATA_FMAN_A005127 Errata
* workaround
*/
if (port->rev_info.major >= 6) {
u32 reg;
reg = 0x00001013;
iowrite32be(reg, &port->bmi_regs->tx.fmbm_tfp);
}
}
return 0;
err_port_cfg:
kfree(port->cfg);
err_params:
kfree(port);
return -EINVAL;
}
EXPORT_SYMBOL(fman_port_config);
/**
* fman_port_init
* port: A pointer to a FM Port module.
* Initializes the FM PORT module by defining the software structure and
* configuring the hardware registers.
*
* Return: 0 on success; Error code otherwise.
*/
int fman_port_init(struct fman_port *port)
{
struct fman_port_cfg *cfg;
int err;
struct fman_port_init_params params;
if (is_init_done(port->cfg))
return -EINVAL;
err = fman_sp_build_buffer_struct(&port->cfg->int_context,
&port->cfg->buffer_prefix_content,
&port->cfg->buf_margins,
&port->buffer_offsets,
&port->internal_buf_offset);
if (err)
return err;
cfg = port->cfg;
if (port->port_type == FMAN_PORT_TYPE_RX) {
/* Call the external Buffer routine which also checks fifo
* size and updates it if necessary
*/
/* define external buffer pools and pool depletion */
err = set_ext_buffer_pools(port);
if (err)
return err;
/* check if the largest external buffer pool is large enough */
if (cfg->buf_margins.start_margins + MIN_EXT_BUF_SIZE +
cfg->buf_margins.end_margins >
port->rx_pools_params.largest_buf_size) {
dev_err(port->dev, "%s: buf_margins.start_margins (%d) + minimum buf size (64) + buf_margins.end_margins (%d) is larger than maximum external buffer size (%d)\n",
__func__, cfg->buf_margins.start_margins,
cfg->buf_margins.end_margins,
port->rx_pools_params.largest_buf_size);
return -EINVAL;
}
}
/* Call FM module routine for communicating parameters */
memset(&params, 0, sizeof(params));
params.port_id = port->port_id;
params.port_type = port->port_type;
params.port_speed = port->port_speed;
params.num_of_tasks = (u8)port->tasks.num;
params.num_of_extra_tasks = (u8)port->tasks.extra;
params.num_of_open_dmas = (u8)port->open_dmas.num;
params.num_of_extra_open_dmas = (u8)port->open_dmas.extra;
if (port->fifo_bufs.num) {
err = verify_size_of_fifo(port);
if (err)
return err;
}
params.size_of_fifo = port->fifo_bufs.num;
params.extra_size_of_fifo = port->fifo_bufs.extra;
params.deq_pipeline_depth = port->cfg->tx_fifo_deq_pipeline_depth;
params.max_frame_length = port->max_frame_length;
err = fman_set_port_params(port->fm, &params);
if (err)
return err;
err = init_low_level_driver(port);
if (err)
return err;
kfree(port->cfg);
port->cfg = NULL;
return 0;
}
EXPORT_SYMBOL(fman_port_init);
/**
* fman_port_cfg_buf_prefix_content
* @port A pointer to a FM Port module.
* @buffer_prefix_content A structure of parameters describing
* the structure of the buffer.
* Out parameter:
* Start margin - offset of data from
* start of external buffer.
* Defines the structure, size and content of the application buffer.
* The prefix, in Tx ports, if 'pass_prs_result', the application should set
* a value to their offsets in the prefix of the FM will save the first
* 'priv_data_size', than, depending on 'pass_prs_result' and
* 'pass_time_stamp', copy parse result and timeStamp, and the packet itself
* (in this order), to the application buffer, and to offset.
* Calling this routine changes the buffer margins definitions in the internal
* driver data base from its default configuration:
* Data size: [DEFAULT_PORT_BUFFER_PREFIX_CONTENT_PRIV_DATA_SIZE]
* Pass Parser result: [DEFAULT_PORT_BUFFER_PREFIX_CONTENT_PASS_PRS_RESULT].
* Pass timestamp: [DEFAULT_PORT_BUFFER_PREFIX_CONTENT_PASS_TIME_STAMP].
* May be used for all ports
*
* Allowed only following fman_port_config() and before fman_port_init().
*
* Return: 0 on success; Error code otherwise.
*/
int fman_port_cfg_buf_prefix_content(struct fman_port *port,
struct fman_buffer_prefix_content *
buffer_prefix_content)
{
if (is_init_done(port->cfg))
return -EINVAL;
memcpy(&port->cfg->buffer_prefix_content,
buffer_prefix_content,
sizeof(struct fman_buffer_prefix_content));
/* if data_align was not initialized by user,
* we return to driver's default
*/
if (!port->cfg->buffer_prefix_content.data_align)
port->cfg->buffer_prefix_content.data_align =
DFLT_PORT_BUFFER_PREFIX_CONTEXT_DATA_ALIGN;
return 0;
}
EXPORT_SYMBOL(fman_port_cfg_buf_prefix_content);
/**
* fman_port_disable
* port: A pointer to a FM Port module.
*
* Gracefully disable an FM port. The port will not start new tasks after all
* tasks associated with the port are terminated.
*
* This is a blocking routine, it returns after port is gracefully stopped,
* i.e. the port will not except new frames, but it will finish all frames
* or tasks which were already began.
* Allowed only following fman_port_init().
*
* Return: 0 on success; Error code otherwise.
*/
int fman_port_disable(struct fman_port *port)
{
u32 __iomem *bmi_cfg_reg, *bmi_status_reg, tmp;
bool rx_port, failure = false;
int count;
if (!is_init_done(port->cfg))
return -EINVAL;
switch (port->port_type) {
case FMAN_PORT_TYPE_RX:
bmi_cfg_reg = &port->bmi_regs->rx.fmbm_rcfg;
bmi_status_reg = &port->bmi_regs->rx.fmbm_rst;
rx_port = true;
break;
case FMAN_PORT_TYPE_TX:
bmi_cfg_reg = &port->bmi_regs->tx.fmbm_tcfg;
bmi_status_reg = &port->bmi_regs->tx.fmbm_tst;
rx_port = false;
break;
default:
return -EINVAL;
}
/* Disable QMI */
if (!rx_port) {
tmp = ioread32be(&port->qmi_regs->fmqm_pnc) & ~QMI_PORT_CFG_EN;
iowrite32be(tmp, &port->qmi_regs->fmqm_pnc);
/* Wait for QMI to finish FD handling */
count = 100;
do {
udelay(10);
tmp = ioread32be(&port->qmi_regs->fmqm_pns);
} while ((tmp & QMI_PORT_STATUS_DEQ_FD_BSY) && --count);
if (count == 0) {
/* Timeout */
failure = true;
}
}
/* Disable BMI */
tmp = ioread32be(bmi_cfg_reg) & ~BMI_PORT_CFG_EN;
iowrite32be(tmp, bmi_cfg_reg);
/* Wait for graceful stop end */
count = 500;
do {
udelay(10);
tmp = ioread32be(bmi_status_reg);
} while ((tmp & BMI_PORT_STATUS_BSY) && --count);
if (count == 0) {
/* Timeout */
failure = true;
}
if (failure)
dev_dbg(port->dev, "%s: FMan Port[%d]: BMI or QMI is Busy. Port forced down\n",
__func__, port->port_id);
return 0;
}
EXPORT_SYMBOL(fman_port_disable);
/**
* fman_port_enable
* port: A pointer to a FM Port module.
*
* A runtime routine provided to allow disable/enable of port.
*
* Allowed only following fman_port_init().
*
* Return: 0 on success; Error code otherwise.
*/
int fman_port_enable(struct fman_port *port)
{
u32 __iomem *bmi_cfg_reg, tmp;
bool rx_port;
if (!is_init_done(port->cfg))
return -EINVAL;
switch (port->port_type) {
case FMAN_PORT_TYPE_RX:
bmi_cfg_reg = &port->bmi_regs->rx.fmbm_rcfg;
rx_port = true;
break;
case FMAN_PORT_TYPE_TX:
bmi_cfg_reg = &port->bmi_regs->tx.fmbm_tcfg;
rx_port = false;
break;
default:
return -EINVAL;
}
/* Enable QMI */
if (!rx_port) {
tmp = ioread32be(&port->qmi_regs->fmqm_pnc) | QMI_PORT_CFG_EN;
iowrite32be(tmp, &port->qmi_regs->fmqm_pnc);
}
/* Enable BMI */
tmp = ioread32be(bmi_cfg_reg) | BMI_PORT_CFG_EN;
iowrite32be(tmp, bmi_cfg_reg);
return 0;
}
EXPORT_SYMBOL(fman_port_enable);
/**
* fman_port_bind
* dev: FMan Port OF device pointer
*
* Bind to a specific FMan Port.
*
* Allowed only after the port was created.
*
* Return: A pointer to the FMan port device.
*/
struct fman_port *fman_port_bind(struct device *dev)
{
return (struct fman_port *)(dev_get_drvdata(get_device(dev)));
}
EXPORT_SYMBOL(fman_port_bind);
/**
* fman_port_get_qman_channel_id
* port: Pointer to the FMan port devuce
*
* Get the QMan channel ID for the specific port
*
* Return: QMan channel ID
*/
u32 fman_port_get_qman_channel_id(struct fman_port *port)
{
return port->dts_params.qman_channel_id;
}
EXPORT_SYMBOL(fman_port_get_qman_channel_id);
static int fman_port_probe(struct platform_device *of_dev)
{
struct fman_port *port;
struct fman *fman;
struct device_node *fm_node, *port_node;
struct resource res;
struct resource *dev_res;
const u32 *u32_prop;
int err = 0, lenp;
enum fman_port_type port_type;
u16 port_speed;
u8 port_id;
port = kzalloc(sizeof(*port), GFP_KERNEL);
if (!port)
return -ENOMEM;
port->dev = &of_dev->dev;
port_node = of_node_get(of_dev->dev.of_node);
/* Get the FM node */
fm_node = of_get_parent(port_node);
if (!fm_node) {
dev_err(port->dev, "%s: of_get_parent() failed\n", __func__);
err = -ENODEV;
goto return_err;
}
fman = dev_get_drvdata(&of_find_device_by_node(fm_node)->dev);
of_node_put(fm_node);
if (!fman) {
err = -EINVAL;
goto return_err;
}
u32_prop = (const u32 *)of_get_property(port_node, "cell-index", &lenp);
if (!u32_prop) {
dev_err(port->dev, "%s: of_get_property(%s, cell-index) failed\n",
__func__, port_node->full_name);
err = -EINVAL;
goto return_err;
}
if (WARN_ON(lenp != sizeof(u32))) {
err = -EINVAL;
goto return_err;
}
port_id = (u8)fdt32_to_cpu(u32_prop[0]);
port->dts_params.id = port_id;
if (of_device_is_compatible(port_node, "fsl,fman-v3-port-tx")) {
port_type = FMAN_PORT_TYPE_TX;
port_speed = 1000;
u32_prop = (const u32 *)of_get_property(port_node,
"fsl,fman-10g-port",
&lenp);
if (u32_prop)
port_speed = 10000;
} else if (of_device_is_compatible(port_node, "fsl,fman-v2-port-tx")) {
if (port_id >= TX_10G_PORT_BASE)
port_speed = 10000;
else
port_speed = 1000;
port_type = FMAN_PORT_TYPE_TX;
} else if (of_device_is_compatible(port_node, "fsl,fman-v3-port-rx")) {
port_type = FMAN_PORT_TYPE_RX;
port_speed = 1000;
u32_prop = (const u32 *)of_get_property(port_node,
"fsl,fman-10g-port", &lenp);
if (u32_prop)
port_speed = 10000;
} else if (of_device_is_compatible(port_node, "fsl,fman-v2-port-rx")) {
if (port_id >= RX_10G_PORT_BASE)
port_speed = 10000;
else
port_speed = 1000;
port_type = FMAN_PORT_TYPE_RX;
} else {
dev_err(port->dev, "%s: Illegal port type\n", __func__);
err = -EINVAL;
goto return_err;
}
port->dts_params.type = port_type;
port->dts_params.speed = port_speed;
if (port_type == FMAN_PORT_TYPE_TX) {
u32 qman_channel_id;
qman_channel_id = fman_get_qman_channel_id(fman, port_id);
if (qman_channel_id == 0) {
dev_err(port->dev, "%s: incorrect qman-channel-id\n",
__func__);
err = -EINVAL;
goto return_err;
}
port->dts_params.qman_channel_id = qman_channel_id;
}
err = of_address_to_resource(port_node, 0, &res);
if (err < 0) {
dev_err(port->dev, "%s: of_address_to_resource() failed\n",
__func__);
err = -ENOMEM;
goto return_err;
}
port->dts_params.fman = fman;
of_node_put(port_node);
dev_res = __devm_request_region(port->dev, &res, res.start,
resource_size(&res), "fman-port");
if (!dev_res) {
dev_err(port->dev, "%s: __devm_request_region() failed\n",
__func__);
err = -EINVAL;
goto free_port;
}
port->dts_params.base_addr = devm_ioremap(port->dev, res.start,
resource_size(&res));
if (port->dts_params.base_addr == 0)
dev_err(port->dev, "%s: devm_ioremap() failed\n", __func__);
dev_set_drvdata(&of_dev->dev, port);
return 0;
return_err:
of_node_put(port_node);
free_port:
kfree(port);
return err;
}
static const struct of_device_id fman_port_match[] = {
{.compatible = "fsl,fman-v3-port-rx"},
{.compatible = "fsl,fman-v2-port-rx"},
{.compatible = "fsl,fman-v3-port-tx"},
{.compatible = "fsl,fman-v2-port-tx"},
{}
};
MODULE_DEVICE_TABLE(of, fman_port_match);
static struct platform_driver fman_port_driver = {
.driver = {
.name = "fsl-fman-port",
.of_match_table = fman_port_match,
},
.probe = fman_port_probe,
};
builtin_platform_driver(fman_port_driver);