blob: 46ee2c01f4c5167209c23f3e1440b82630327cea [file] [log] [blame]
/* bnx2x_init.h: Qlogic Everest network driver.
* Structures and macroes needed during the initialization.
*
* Copyright (c) 2007-2013 Broadcom Corporation
* Copyright (c) 2014 QLogic Corporation
All rights reserved
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation.
*
* Maintained by: Ariel Elior <ariel.elior@qlogic.com>
* Written by: Eliezer Tamir
* Modified by: Vladislav Zolotarov
*/
#ifndef BNX2X_INIT_H
#define BNX2X_INIT_H
/* Init operation types and structures */
enum {
OP_RD = 0x1, /* read a single register */
OP_WR, /* write a single register */
OP_SW, /* copy a string to the device */
OP_ZR, /* clear memory */
OP_ZP, /* unzip then copy with DMAE */
OP_WR_64, /* write 64 bit pattern */
OP_WB, /* copy a string using DMAE */
OP_WB_ZR, /* Clear a string using DMAE or indirect-wr */
/* Skip the following ops if all of the init modes don't match */
OP_IF_MODE_OR,
/* Skip the following ops if any of the init modes don't match */
OP_IF_MODE_AND,
OP_MAX
};
enum {
STAGE_START,
STAGE_END,
};
/* Returns the index of start or end of a specific block stage in ops array*/
#define BLOCK_OPS_IDX(block, stage, end) \
(2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))
/* structs for the various opcodes */
struct raw_op {
u32 op:8;
u32 offset:24;
u32 raw_data;
};
struct op_read {
u32 op:8;
u32 offset:24;
u32 val;
};
struct op_write {
u32 op:8;
u32 offset:24;
u32 val;
};
struct op_arr_write {
u32 op:8;
u32 offset:24;
#ifdef __BIG_ENDIAN
u16 data_len;
u16 data_off;
#else /* __LITTLE_ENDIAN */
u16 data_off;
u16 data_len;
#endif
};
struct op_zero {
u32 op:8;
u32 offset:24;
u32 len;
};
struct op_if_mode {
u32 op:8;
u32 cmd_offset:24;
u32 mode_bit_map;
};
union init_op {
struct op_read read;
struct op_write write;
struct op_arr_write arr_wr;
struct op_zero zero;
struct raw_op raw;
struct op_if_mode if_mode;
};
/* Init Phases */
enum {
PHASE_COMMON,
PHASE_PORT0,
PHASE_PORT1,
PHASE_PF0,
PHASE_PF1,
PHASE_PF2,
PHASE_PF3,
PHASE_PF4,
PHASE_PF5,
PHASE_PF6,
PHASE_PF7,
NUM_OF_INIT_PHASES
};
/* Init Modes */
enum {
MODE_ASIC = 0x00000001,
MODE_FPGA = 0x00000002,
MODE_EMUL = 0x00000004,
MODE_E2 = 0x00000008,
MODE_E3 = 0x00000010,
MODE_PORT2 = 0x00000020,
MODE_PORT4 = 0x00000040,
MODE_SF = 0x00000080,
MODE_MF = 0x00000100,
MODE_MF_SD = 0x00000200,
MODE_MF_SI = 0x00000400,
MODE_MF_AFEX = 0x00000800,
MODE_E3_A0 = 0x00001000,
MODE_E3_B0 = 0x00002000,
MODE_COS3 = 0x00004000,
MODE_COS6 = 0x00008000,
MODE_LITTLE_ENDIAN = 0x00010000,
MODE_BIG_ENDIAN = 0x00020000,
};
/* Init Blocks */
enum {
BLOCK_ATC,
BLOCK_BRB1,
BLOCK_CCM,
BLOCK_CDU,
BLOCK_CFC,
BLOCK_CSDM,
BLOCK_CSEM,
BLOCK_DBG,
BLOCK_DMAE,
BLOCK_DORQ,
BLOCK_HC,
BLOCK_IGU,
BLOCK_MISC,
BLOCK_NIG,
BLOCK_PBF,
BLOCK_PGLUE_B,
BLOCK_PRS,
BLOCK_PXP2,
BLOCK_PXP,
BLOCK_QM,
BLOCK_SRC,
BLOCK_TCM,
BLOCK_TM,
BLOCK_TSDM,
BLOCK_TSEM,
BLOCK_UCM,
BLOCK_UPB,
BLOCK_USDM,
BLOCK_USEM,
BLOCK_XCM,
BLOCK_XPB,
BLOCK_XSDM,
BLOCK_XSEM,
BLOCK_MISC_AEU,
NUM_OF_INIT_BLOCKS
};
/* QM queue numbers */
#define BNX2X_ETH_Q 0
#define BNX2X_TOE_Q 3
#define BNX2X_TOE_ACK_Q 6
#define BNX2X_ISCSI_Q 9
#define BNX2X_ISCSI_ACK_Q 11
#define BNX2X_FCOE_Q 10
/* Vnics per mode */
#define BNX2X_PORT2_MODE_NUM_VNICS 4
#define BNX2X_PORT4_MODE_NUM_VNICS 2
/* COS offset for port1 in E3 B0 4port mode */
#define BNX2X_E3B0_PORT1_COS_OFFSET 3
/* QM Register addresses */
#define BNX2X_Q_VOQ_REG_ADDR(pf_q_num)\
(QM_REG_QVOQIDX_0 + 4 * (pf_q_num))
#define BNX2X_VOQ_Q_REG_ADDR(cos, pf_q_num)\
(QM_REG_VOQQMASK_0_LSB + 4 * ((cos) * 2 + ((pf_q_num) >> 5)))
#define BNX2X_Q_CMDQ_REG_ADDR(pf_q_num)\
(QM_REG_BYTECRDCMDQ_0 + 4 * ((pf_q_num) >> 4))
/* extracts the QM queue number for the specified port and vnic */
#define BNX2X_PF_Q_NUM(q_num, port, vnic)\
((((port) << 1) | (vnic)) * 16 + (q_num))
/* Maps the specified queue to the specified COS */
static inline void bnx2x_map_q_cos(struct bnx2x *bp, u32 q_num, u32 new_cos)
{
/* find current COS mapping */
u32 curr_cos = REG_RD(bp, QM_REG_QVOQIDX_0 + q_num * 4);
/* check if queue->COS mapping has changed */
if (curr_cos != new_cos) {
u32 num_vnics = BNX2X_PORT2_MODE_NUM_VNICS;
u32 reg_addr, reg_bit_map, vnic;
/* update parameters for 4port mode */
if (INIT_MODE_FLAGS(bp) & MODE_PORT4) {
num_vnics = BNX2X_PORT4_MODE_NUM_VNICS;
if (BP_PORT(bp)) {
curr_cos += BNX2X_E3B0_PORT1_COS_OFFSET;
new_cos += BNX2X_E3B0_PORT1_COS_OFFSET;
}
}
/* change queue mapping for each VNIC */
for (vnic = 0; vnic < num_vnics; vnic++) {
u32 pf_q_num =
BNX2X_PF_Q_NUM(q_num, BP_PORT(bp), vnic);
u32 q_bit_map = 1 << (pf_q_num & 0x1f);
/* overwrite queue->VOQ mapping */
REG_WR(bp, BNX2X_Q_VOQ_REG_ADDR(pf_q_num), new_cos);
/* clear queue bit from current COS bit map */
reg_addr = BNX2X_VOQ_Q_REG_ADDR(curr_cos, pf_q_num);
reg_bit_map = REG_RD(bp, reg_addr);
REG_WR(bp, reg_addr, reg_bit_map & (~q_bit_map));
/* set queue bit in new COS bit map */
reg_addr = BNX2X_VOQ_Q_REG_ADDR(new_cos, pf_q_num);
reg_bit_map = REG_RD(bp, reg_addr);
REG_WR(bp, reg_addr, reg_bit_map | q_bit_map);
/* set/clear queue bit in command-queue bit map
* (E2/E3A0 only, valid COS values are 0/1)
*/
if (!(INIT_MODE_FLAGS(bp) & MODE_E3_B0)) {
reg_addr = BNX2X_Q_CMDQ_REG_ADDR(pf_q_num);
reg_bit_map = REG_RD(bp, reg_addr);
q_bit_map = 1 << (2 * (pf_q_num & 0xf));
reg_bit_map = new_cos ?
(reg_bit_map | q_bit_map) :
(reg_bit_map & (~q_bit_map));
REG_WR(bp, reg_addr, reg_bit_map);
}
}
}
}
/* Configures the QM according to the specified per-traffic-type COSes */
static inline void bnx2x_dcb_config_qm(struct bnx2x *bp, enum cos_mode mode,
struct priority_cos *traffic_cos)
{
bnx2x_map_q_cos(bp, BNX2X_FCOE_Q,
traffic_cos[LLFC_TRAFFIC_TYPE_FCOE].cos);
bnx2x_map_q_cos(bp, BNX2X_ISCSI_Q,
traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
bnx2x_map_q_cos(bp, BNX2X_ISCSI_ACK_Q,
traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
if (mode != STATIC_COS) {
/* required only in backward compatible COS mode */
bnx2x_map_q_cos(bp, BNX2X_ETH_Q,
traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
bnx2x_map_q_cos(bp, BNX2X_TOE_Q,
traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
bnx2x_map_q_cos(bp, BNX2X_TOE_ACK_Q,
traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
}
}
/* congestion management port init api description
* the api works as follows:
* the driver should pass the cmng_init_input struct, the port_init function
* will prepare the required internal ram structure which will be passed back
* to the driver (cmng_init) that will write it into the internal ram.
*
* IMPORTANT REMARKS:
* 1. the cmng_init struct does not represent the contiguous internal ram
* structure. the driver should use the XSTORM_CMNG_PERPORT_VARS_OFFSET
* offset in order to write the port sub struct and the
* PFID_FROM_PORT_AND_VNIC offset for writing the vnic sub struct (in other
* words - don't use memcpy!).
* 2. although the cmng_init struct is filled for the maximal vnic number
* possible, the driver should only write the valid vnics into the internal
* ram according to the appropriate port mode.
*/
#define BITS_TO_BYTES(x) ((x)/8)
/* CMNG constants, as derived from system spec calculations */
/* default MIN rate in case VNIC min rate is configured to zero- 100Mbps */
#define DEF_MIN_RATE 100
/* resolution of the rate shaping timer - 400 usec */
#define RS_PERIODIC_TIMEOUT_USEC 400
/* number of bytes in single QM arbitration cycle -
* coefficient for calculating the fairness timer
*/
#define QM_ARB_BYTES 160000
/* resolution of Min algorithm 1:100 */
#define MIN_RES 100
/* how many bytes above threshold for
* the minimal credit of Min algorithm
*/
#define MIN_ABOVE_THRESH 32768
/* Fairness algorithm integration time coefficient -
* for calculating the actual Tfair
*/
#define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES)
/* Memory of fairness algorithm - 2 cycles */
#define FAIR_MEM 2
#define SAFC_TIMEOUT_USEC 52
#define SDM_TICKS 4
static inline void bnx2x_init_max(const struct cmng_init_input *input_data,
u32 r_param, struct cmng_init *ram_data)
{
u32 vnic;
struct cmng_vnic *vdata = &ram_data->vnic;
struct cmng_struct_per_port *pdata = &ram_data->port;
/* rate shaping per-port variables
* 100 micro seconds in SDM ticks = 25
* since each tick is 4 microSeconds
*/
pdata->rs_vars.rs_periodic_timeout =
RS_PERIODIC_TIMEOUT_USEC / SDM_TICKS;
/* this is the threshold below which no timer arming will occur.
* 1.25 coefficient is for the threshold to be a little bigger
* then the real time to compensate for timer in-accuracy
*/
pdata->rs_vars.rs_threshold =
(5 * RS_PERIODIC_TIMEOUT_USEC * r_param)/4;
/* rate shaping per-vnic variables */
for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++) {
/* global vnic counter */
vdata->vnic_max_rate[vnic].vn_counter.rate =
input_data->vnic_max_rate[vnic];
/* maximal Mbps for this vnic
* the quota in each timer period - number of bytes
* transmitted in this period
*/
vdata->vnic_max_rate[vnic].vn_counter.quota =
RS_PERIODIC_TIMEOUT_USEC *
(u32)vdata->vnic_max_rate[vnic].vn_counter.rate / 8;
}
}
static inline void bnx2x_init_min(const struct cmng_init_input *input_data,
u32 r_param, struct cmng_init *ram_data)
{
u32 vnic, fair_periodic_timeout_usec, vnicWeightSum, tFair;
struct cmng_vnic *vdata = &ram_data->vnic;
struct cmng_struct_per_port *pdata = &ram_data->port;
/* this is the resolution of the fairness timer */
fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
/* fairness per-port variables
* for 10G it is 1000usec. for 1G it is 10000usec.
*/
tFair = T_FAIR_COEF / input_data->port_rate;
/* this is the threshold below which we won't arm the timer anymore */
pdata->fair_vars.fair_threshold = QM_ARB_BYTES;
/* we multiply by 1e3/8 to get bytes/msec. We don't want the credits
* to pass a credit of the T_FAIR*FAIR_MEM (algorithm resolution)
*/
pdata->fair_vars.upper_bound = r_param * tFair * FAIR_MEM;
/* since each tick is 4 microSeconds */
pdata->fair_vars.fairness_timeout =
fair_periodic_timeout_usec / SDM_TICKS;
/* calculate sum of weights */
vnicWeightSum = 0;
for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++)
vnicWeightSum += input_data->vnic_min_rate[vnic];
/* global vnic counter */
if (vnicWeightSum > 0) {
/* fairness per-vnic variables */
for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++) {
/* this is the credit for each period of the fairness
* algorithm - number of bytes in T_FAIR (this vnic
* share of the port rate)
*/
vdata->vnic_min_rate[vnic].vn_credit_delta =
(u32)input_data->vnic_min_rate[vnic] * 100 *
(T_FAIR_COEF / (8 * 100 * vnicWeightSum));
if (vdata->vnic_min_rate[vnic].vn_credit_delta <
pdata->fair_vars.fair_threshold +
MIN_ABOVE_THRESH) {
vdata->vnic_min_rate[vnic].vn_credit_delta =
pdata->fair_vars.fair_threshold +
MIN_ABOVE_THRESH;
}
}
}
}
static inline void bnx2x_init_fw_wrr(const struct cmng_init_input *input_data,
u32 r_param, struct cmng_init *ram_data)
{
u32 vnic, cos;
u32 cosWeightSum = 0;
struct cmng_vnic *vdata = &ram_data->vnic;
struct cmng_struct_per_port *pdata = &ram_data->port;
for (cos = 0; cos < MAX_COS_NUMBER; cos++)
cosWeightSum += input_data->cos_min_rate[cos];
if (cosWeightSum > 0) {
for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++) {
/* Since cos and vnic shouldn't work together the rate
* to divide between the coses is the port rate.
*/
u32 *ccd = vdata->vnic_min_rate[vnic].cos_credit_delta;
for (cos = 0; cos < MAX_COS_NUMBER; cos++) {
/* this is the credit for each period of
* the fairness algorithm - number of bytes
* in T_FAIR (this cos share of the vnic rate)
*/
ccd[cos] =
(u32)input_data->cos_min_rate[cos] * 100 *
(T_FAIR_COEF / (8 * 100 * cosWeightSum));
if (ccd[cos] < pdata->fair_vars.fair_threshold
+ MIN_ABOVE_THRESH) {
ccd[cos] =
pdata->fair_vars.fair_threshold +
MIN_ABOVE_THRESH;
}
}
}
}
}
static inline void bnx2x_init_safc(const struct cmng_init_input *input_data,
struct cmng_init *ram_data)
{
/* in microSeconds */
ram_data->port.safc_vars.safc_timeout_usec = SAFC_TIMEOUT_USEC;
}
/* Congestion management port init */
static inline void bnx2x_init_cmng(const struct cmng_init_input *input_data,
struct cmng_init *ram_data)
{
u32 r_param;
memset(ram_data, 0, sizeof(struct cmng_init));
ram_data->port.flags = input_data->flags;
/* number of bytes transmitted in a rate of 10Gbps
* in one usec = 1.25KB.
*/
r_param = BITS_TO_BYTES(input_data->port_rate);
bnx2x_init_max(input_data, r_param, ram_data);
bnx2x_init_min(input_data, r_param, ram_data);
bnx2x_init_fw_wrr(input_data, r_param, ram_data);
bnx2x_init_safc(input_data, ram_data);
}
/* Returns the index of start or end of a specific block stage in ops array */
#define BLOCK_OPS_IDX(block, stage, end) \
(2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))
#define INITOP_SET 0 /* set the HW directly */
#define INITOP_CLEAR 1 /* clear the HW directly */
#define INITOP_INIT 2 /* set the init-value array */
/****************************************************************************
* ILT management
****************************************************************************/
struct ilt_line {
dma_addr_t page_mapping;
void *page;
u32 size;
};
struct ilt_client_info {
u32 page_size;
u16 start;
u16 end;
u16 client_num;
u16 flags;
#define ILT_CLIENT_SKIP_INIT 0x1
#define ILT_CLIENT_SKIP_MEM 0x2
};
struct bnx2x_ilt {
u32 start_line;
struct ilt_line *lines;
struct ilt_client_info clients[4];
#define ILT_CLIENT_CDU 0
#define ILT_CLIENT_QM 1
#define ILT_CLIENT_SRC 2
#define ILT_CLIENT_TM 3
};
/****************************************************************************
* SRC configuration
****************************************************************************/
struct src_ent {
u8 opaque[56];
u64 next;
};
/****************************************************************************
* Parity configuration
****************************************************************************/
#define BLOCK_PRTY_INFO(block, en_mask, m1, m1h, m2, m3) \
{ \
block##_REG_##block##_PRTY_MASK, \
block##_REG_##block##_PRTY_STS_CLR, \
en_mask, {m1, m1h, m2, m3}, #block \
}
#define BLOCK_PRTY_INFO_0(block, en_mask, m1, m1h, m2, m3) \
{ \
block##_REG_##block##_PRTY_MASK_0, \
block##_REG_##block##_PRTY_STS_CLR_0, \
en_mask, {m1, m1h, m2, m3}, #block"_0" \
}
#define BLOCK_PRTY_INFO_1(block, en_mask, m1, m1h, m2, m3) \
{ \
block##_REG_##block##_PRTY_MASK_1, \
block##_REG_##block##_PRTY_STS_CLR_1, \
en_mask, {m1, m1h, m2, m3}, #block"_1" \
}
static const struct {
u32 mask_addr;
u32 sts_clr_addr;
u32 en_mask; /* Mask to enable parity attentions */
struct {
u32 e1; /* 57710 */
u32 e1h; /* 57711 */
u32 e2; /* 57712 */
u32 e3; /* 578xx */
} reg_mask; /* Register mask (all valid bits) */
char name[8]; /* Block's longest name is 7 characters long
* (name + suffix)
*/
} bnx2x_blocks_parity_data[] = {
/* bit 19 masked */
/* REG_WR(bp, PXP_REG_PXP_PRTY_MASK, 0x80000); */
/* bit 5,18,20-31 */
/* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_0, 0xfff40020); */
/* bit 5 */
/* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_1, 0x20); */
/* REG_WR(bp, HC_REG_HC_PRTY_MASK, 0x0); */
/* REG_WR(bp, MISC_REG_MISC_PRTY_MASK, 0x0); */
/* Block IGU, MISC, PXP and PXP2 parity errors as long as we don't
* want to handle "system kill" flow at the moment.
*/
BLOCK_PRTY_INFO(PXP, 0x7ffffff, 0x3ffffff, 0x3ffffff, 0x7ffffff,
0x7ffffff),
BLOCK_PRTY_INFO_0(PXP2, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff,
0xffffffff),
BLOCK_PRTY_INFO_1(PXP2, 0x1ffffff, 0x7f, 0x7f, 0x7ff, 0x1ffffff),
BLOCK_PRTY_INFO(HC, 0x7, 0x7, 0x7, 0, 0),
BLOCK_PRTY_INFO(NIG, 0xffffffff, 0x3fffffff, 0xffffffff, 0, 0),
BLOCK_PRTY_INFO_0(NIG, 0xffffffff, 0, 0, 0xffffffff, 0xffffffff),
BLOCK_PRTY_INFO_1(NIG, 0xffff, 0, 0, 0xff, 0xffff),
BLOCK_PRTY_INFO(IGU, 0x7ff, 0, 0, 0x7ff, 0x7ff),
BLOCK_PRTY_INFO(MISC, 0x1, 0x1, 0x1, 0x1, 0x1),
BLOCK_PRTY_INFO(QM, 0, 0x1ff, 0xfff, 0xfff, 0xfff),
BLOCK_PRTY_INFO(ATC, 0x1f, 0, 0, 0x1f, 0x1f),
BLOCK_PRTY_INFO(PGLUE_B, 0x3, 0, 0, 0x3, 0x3),
BLOCK_PRTY_INFO(DORQ, 0, 0x3, 0x3, 0x3, 0x3),
{GRCBASE_UPB + PB_REG_PB_PRTY_MASK,
GRCBASE_UPB + PB_REG_PB_PRTY_STS_CLR, 0xf,
{0xf, 0xf, 0xf, 0xf}, "UPB"},
{GRCBASE_XPB + PB_REG_PB_PRTY_MASK,
GRCBASE_XPB + PB_REG_PB_PRTY_STS_CLR, 0,
{0xf, 0xf, 0xf, 0xf}, "XPB"},
BLOCK_PRTY_INFO(SRC, 0x4, 0x7, 0x7, 0x7, 0x7),
BLOCK_PRTY_INFO(CDU, 0, 0x1f, 0x1f, 0x1f, 0x1f),
BLOCK_PRTY_INFO(CFC, 0, 0xf, 0xf, 0xf, 0x3f),
BLOCK_PRTY_INFO(DBG, 0, 0x1, 0x1, 0x1, 0x1),
BLOCK_PRTY_INFO(DMAE, 0, 0xf, 0xf, 0xf, 0xf),
BLOCK_PRTY_INFO(BRB1, 0, 0xf, 0xf, 0xf, 0xf),
BLOCK_PRTY_INFO(PRS, (1<<6), 0xff, 0xff, 0xff, 0xff),
BLOCK_PRTY_INFO(PBF, 0, 0, 0x3ffff, 0xfffff, 0xfffffff),
BLOCK_PRTY_INFO(TM, 0, 0, 0x7f, 0x7f, 0x7f),
BLOCK_PRTY_INFO(TSDM, 0x18, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
BLOCK_PRTY_INFO(CSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
BLOCK_PRTY_INFO(USDM, 0x38, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
BLOCK_PRTY_INFO(XSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
BLOCK_PRTY_INFO(TCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
BLOCK_PRTY_INFO(CCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
BLOCK_PRTY_INFO(UCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
BLOCK_PRTY_INFO(XCM, 0, 0, 0x3fffffff, 0x3fffffff, 0x3fffffff),
BLOCK_PRTY_INFO_0(TSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
0xffffffff),
BLOCK_PRTY_INFO_1(TSEM, 0, 0x3, 0x1f, 0x3f, 0x3f),
BLOCK_PRTY_INFO_0(USEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
0xffffffff),
BLOCK_PRTY_INFO_1(USEM, 0, 0x3, 0x1f, 0x1f, 0x1f),
BLOCK_PRTY_INFO_0(CSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
0xffffffff),
BLOCK_PRTY_INFO_1(CSEM, 0, 0x3, 0x1f, 0x1f, 0x1f),
BLOCK_PRTY_INFO_0(XSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
0xffffffff),
BLOCK_PRTY_INFO_1(XSEM, 0, 0x3, 0x1f, 0x3f, 0x3f),
};
/* [28] MCP Latched rom_parity
* [29] MCP Latched ump_rx_parity
* [30] MCP Latched ump_tx_parity
* [31] MCP Latched scpad_parity
*/
#define MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS \
(AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \
AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \
AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY)
#define MISC_AEU_ENABLE_MCP_PRTY_BITS \
(MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS | \
AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY)
/* Below registers control the MCP parity attention output. When
* MISC_AEU_ENABLE_MCP_PRTY_BITS are set - attentions are
* enabled, when cleared - disabled.
*/
static const struct {
u32 addr;
u32 bits;
} mcp_attn_ctl_regs[] = {
{ MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0,
MISC_AEU_ENABLE_MCP_PRTY_BITS },
{ MISC_REG_AEU_ENABLE4_NIG_0,
MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
{ MISC_REG_AEU_ENABLE4_PXP_0,
MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
{ MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0,
MISC_AEU_ENABLE_MCP_PRTY_BITS },
{ MISC_REG_AEU_ENABLE4_NIG_1,
MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
{ MISC_REG_AEU_ENABLE4_PXP_1,
MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS }
};
static inline void bnx2x_set_mcp_parity(struct bnx2x *bp, u8 enable)
{
int i;
u32 reg_val;
for (i = 0; i < ARRAY_SIZE(mcp_attn_ctl_regs); i++) {
reg_val = REG_RD(bp, mcp_attn_ctl_regs[i].addr);
if (enable)
reg_val |= mcp_attn_ctl_regs[i].bits;
else
reg_val &= ~mcp_attn_ctl_regs[i].bits;
REG_WR(bp, mcp_attn_ctl_regs[i].addr, reg_val);
}
}
static inline u32 bnx2x_parity_reg_mask(struct bnx2x *bp, int idx)
{
if (CHIP_IS_E1(bp))
return bnx2x_blocks_parity_data[idx].reg_mask.e1;
else if (CHIP_IS_E1H(bp))
return bnx2x_blocks_parity_data[idx].reg_mask.e1h;
else if (CHIP_IS_E2(bp))
return bnx2x_blocks_parity_data[idx].reg_mask.e2;
else /* CHIP_IS_E3 */
return bnx2x_blocks_parity_data[idx].reg_mask.e3;
}
static inline void bnx2x_disable_blocks_parity(struct bnx2x *bp)
{
int i;
for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) {
u32 dis_mask = bnx2x_parity_reg_mask(bp, i);
if (dis_mask) {
REG_WR(bp, bnx2x_blocks_parity_data[i].mask_addr,
dis_mask);
DP(NETIF_MSG_HW, "Setting parity mask "
"for %s to\t\t0x%x\n",
bnx2x_blocks_parity_data[i].name, dis_mask);
}
}
/* Disable MCP parity attentions */
bnx2x_set_mcp_parity(bp, false);
}
/* Clear the parity error status registers. */
static inline void bnx2x_clear_blocks_parity(struct bnx2x *bp)
{
int i;
u32 reg_val, mcp_aeu_bits =
AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY |
AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY |
AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY |
AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY;
/* Clear SEM_FAST parities */
REG_WR(bp, XSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
REG_WR(bp, TSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
REG_WR(bp, USEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
REG_WR(bp, CSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) {
u32 reg_mask = bnx2x_parity_reg_mask(bp, i);
if (reg_mask) {
reg_val = REG_RD(bp, bnx2x_blocks_parity_data[i].
sts_clr_addr);
if (reg_val & reg_mask)
DP(NETIF_MSG_HW,
"Parity errors in %s: 0x%x\n",
bnx2x_blocks_parity_data[i].name,
reg_val & reg_mask);
}
}
/* Check if there were parity attentions in MCP */
reg_val = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_MCP);
if (reg_val & mcp_aeu_bits)
DP(NETIF_MSG_HW, "Parity error in MCP: 0x%x\n",
reg_val & mcp_aeu_bits);
/* Clear parity attentions in MCP:
* [7] clears Latched rom_parity
* [8] clears Latched ump_rx_parity
* [9] clears Latched ump_tx_parity
* [10] clears Latched scpad_parity (both ports)
*/
REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x780);
}
static inline void bnx2x_enable_blocks_parity(struct bnx2x *bp)
{
int i;
for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) {
u32 reg_mask = bnx2x_parity_reg_mask(bp, i);
if (reg_mask)
REG_WR(bp, bnx2x_blocks_parity_data[i].mask_addr,
bnx2x_blocks_parity_data[i].en_mask & reg_mask);
}
/* Enable MCP parity attentions */
bnx2x_set_mcp_parity(bp, true);
}
#endif /* BNX2X_INIT_H */