| /* ASB2305 PCI resource stuff |
| * |
| * Copyright (C) 2001 Red Hat, Inc. All Rights Reserved. |
| * Written by David Howells (dhowells@redhat.com) |
| * - Derived from arch/i386/pci-i386.c |
| * - Copyright 1997--2000 Martin Mares <mj@suse.cz> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public Licence |
| * as published by the Free Software Foundation; either version |
| * 2 of the Licence, or (at your option) any later version. |
| */ |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/pci.h> |
| #include <linux/init.h> |
| #include <linux/ioport.h> |
| #include <linux/errno.h> |
| #include "pci-asb2305.h" |
| |
| /* |
| * We need to avoid collisions with `mirrored' VGA ports |
| * and other strange ISA hardware, so we always want the |
| * addresses to be allocated in the 0x000-0x0ff region |
| * modulo 0x400. |
| * |
| * Why? Because some silly external IO cards only decode |
| * the low 10 bits of the IO address. The 0x00-0xff region |
| * is reserved for motherboard devices that decode all 16 |
| * bits, so it's ok to allocate at, say, 0x2800-0x28ff, |
| * but we want to try to avoid allocating at 0x2900-0x2bff |
| * which might have be mirrored at 0x0100-0x03ff.. |
| */ |
| resource_size_t pcibios_align_resource(void *data, const struct resource *res, |
| resource_size_t size, resource_size_t align) |
| { |
| resource_size_t start = res->start; |
| |
| #if 0 |
| struct pci_dev *dev = data; |
| |
| printk(KERN_DEBUG |
| "### PCIBIOS_ALIGN_RESOURCE(%s,,{%08lx-%08lx,%08lx},%lx)\n", |
| pci_name(dev), |
| res->start, |
| res->end, |
| res->flags, |
| size |
| ); |
| #endif |
| |
| if ((res->flags & IORESOURCE_IO) && (start & 0x300)) |
| start = (start + 0x3ff) & ~0x3ff; |
| |
| return start; |
| } |
| |
| |
| /* |
| * Handle resources of PCI devices. If the world were perfect, we could |
| * just allocate all the resource regions and do nothing more. It isn't. |
| * On the other hand, we cannot just re-allocate all devices, as it would |
| * require us to know lots of host bridge internals. So we attempt to |
| * keep as much of the original configuration as possible, but tweak it |
| * when it's found to be wrong. |
| * |
| * Known BIOS problems we have to work around: |
| * - I/O or memory regions not configured |
| * - regions configured, but not enabled in the command register |
| * - bogus I/O addresses above 64K used |
| * - expansion ROMs left enabled (this may sound harmless, but given |
| * the fact the PCI specs explicitly allow address decoders to be |
| * shared between expansion ROMs and other resource regions, it's |
| * at least dangerous) |
| * |
| * Our solution: |
| * (1) Allocate resources for all buses behind PCI-to-PCI bridges. |
| * This gives us fixed barriers on where we can allocate. |
| * (2) Allocate resources for all enabled devices. If there is |
| * a collision, just mark the resource as unallocated. Also |
| * disable expansion ROMs during this step. |
| * (3) Try to allocate resources for disabled devices. If the |
| * resources were assigned correctly, everything goes well, |
| * if they weren't, they won't disturb allocation of other |
| * resources. |
| * (4) Assign new addresses to resources which were either |
| * not configured at all or misconfigured. If explicitly |
| * requested by the user, configure expansion ROM address |
| * as well. |
| */ |
| static void __init pcibios_allocate_bus_resources(struct list_head *bus_list) |
| { |
| struct pci_bus *bus; |
| struct pci_dev *dev; |
| int idx; |
| struct resource *r; |
| |
| /* Depth-First Search on bus tree */ |
| list_for_each_entry(bus, bus_list, node) { |
| dev = bus->self; |
| if (dev) { |
| for (idx = PCI_BRIDGE_RESOURCES; |
| idx < PCI_NUM_RESOURCES; |
| idx++) { |
| r = &dev->resource[idx]; |
| if (!r->flags) |
| continue; |
| if (!r->start || |
| pci_claim_bridge_resource(dev, idx) < 0) { |
| printk(KERN_ERR "PCI:" |
| " Cannot allocate resource" |
| " region %d of bridge %s\n", |
| idx, pci_name(dev)); |
| /* Something is wrong with the region. |
| * Invalidate the resource to prevent |
| * child resource allocations in this |
| * range. */ |
| r->start = r->end = 0; |
| r->flags = 0; |
| } |
| } |
| } |
| pcibios_allocate_bus_resources(&bus->children); |
| } |
| } |
| |
| static void __init pcibios_allocate_resources(int pass) |
| { |
| struct pci_dev *dev = NULL; |
| int idx, disabled; |
| u16 command; |
| struct resource *r; |
| |
| for_each_pci_dev(dev) { |
| pci_read_config_word(dev, PCI_COMMAND, &command); |
| for (idx = 0; idx < 6; idx++) { |
| r = &dev->resource[idx]; |
| if (r->parent) /* Already allocated */ |
| continue; |
| if (!r->start) /* Address not assigned */ |
| continue; |
| if (r->flags & IORESOURCE_IO) |
| disabled = !(command & PCI_COMMAND_IO); |
| else |
| disabled = !(command & PCI_COMMAND_MEMORY); |
| if (pass == disabled) { |
| DBG("PCI[%s]: Resource %08lx-%08lx" |
| " (f=%lx, d=%d, p=%d)\n", |
| pci_name(dev), r->start, r->end, r->flags, |
| disabled, pass); |
| if (pci_claim_resource(dev, idx) < 0) { |
| printk(KERN_ERR "PCI:" |
| " Cannot allocate resource" |
| " region %d of device %s\n", |
| idx, pci_name(dev)); |
| /* We'll assign a new address later */ |
| r->end -= r->start; |
| r->start = 0; |
| } |
| } |
| } |
| if (!pass) { |
| r = &dev->resource[PCI_ROM_RESOURCE]; |
| if (r->flags & IORESOURCE_ROM_ENABLE) { |
| /* Turn the ROM off, leave the resource region, |
| * but keep it unregistered. */ |
| u32 reg; |
| DBG("PCI: Switching off ROM of %s\n", |
| pci_name(dev)); |
| r->flags &= ~IORESOURCE_ROM_ENABLE; |
| pci_read_config_dword( |
| dev, dev->rom_base_reg, ®); |
| pci_write_config_dword( |
| dev, dev->rom_base_reg, |
| reg & ~PCI_ROM_ADDRESS_ENABLE); |
| } |
| } |
| } |
| } |
| |
| static int __init pcibios_assign_resources(void) |
| { |
| struct pci_dev *dev = NULL; |
| struct resource *r; |
| |
| /* Try to use BIOS settings for ROMs, otherwise let |
| pci_assign_unassigned_resources() allocate the new |
| addresses. */ |
| for_each_pci_dev(dev) { |
| r = &dev->resource[PCI_ROM_RESOURCE]; |
| if (!r->flags || !r->start) |
| continue; |
| if (pci_claim_resource(dev, PCI_ROM_RESOURCE) < 0) { |
| r->end -= r->start; |
| r->start = 0; |
| } |
| } |
| |
| pci_assign_unassigned_resources(); |
| |
| return 0; |
| } |
| |
| fs_initcall(pcibios_assign_resources); |
| |
| void __init pcibios_resource_survey(void) |
| { |
| DBG("PCI: Allocating resources\n"); |
| pcibios_allocate_bus_resources(&pci_root_buses); |
| pcibios_allocate_resources(0); |
| pcibios_allocate_resources(1); |
| } |
| |
| int pci_mmap_page_range(struct pci_dev *dev, struct vm_area_struct *vma, |
| enum pci_mmap_state mmap_state, int write_combine) |
| { |
| unsigned long prot; |
| |
| /* Leave vm_pgoff as-is, the PCI space address is the physical |
| * address on this platform. |
| */ |
| vma->vm_flags |= VM_LOCKED; |
| |
| prot = pgprot_val(vma->vm_page_prot); |
| prot &= ~_PAGE_CACHE; |
| vma->vm_page_prot = __pgprot(prot); |
| |
| /* Write-combine setting is ignored */ |
| if (io_remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, |
| vma->vm_end - vma->vm_start, |
| vma->vm_page_prot)) |
| return -EAGAIN; |
| |
| return 0; |
| } |