blob: 2d89e8c16b3277b74c2570ba145297caa872b079 [file] [log] [blame]
/* QLogic qed NIC Driver
* Copyright (c) 2015 QLogic Corporation
*
* This software is available under the terms of the GNU General Public License
* (GPL) Version 2, available from the file COPYING in the main directory of
* this source tree.
*/
#include <linux/types.h>
#include <asm/byteorder.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/mutex.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/etherdevice.h>
#include <linux/qed/qed_chain.h>
#include <linux/qed/qed_if.h>
#include "qed.h"
#include "qed_cxt.h"
#include "qed_dcbx.h"
#include "qed_dev_api.h"
#include "qed_hsi.h"
#include "qed_hw.h"
#include "qed_init_ops.h"
#include "qed_int.h"
#include "qed_mcp.h"
#include "qed_reg_addr.h"
#include "qed_sp.h"
#include "qed_sriov.h"
#include "qed_vf.h"
static spinlock_t qm_lock;
static bool qm_lock_init = false;
/* API common to all protocols */
enum BAR_ID {
BAR_ID_0, /* used for GRC */
BAR_ID_1 /* Used for doorbells */
};
static u32 qed_hw_bar_size(struct qed_hwfn *p_hwfn,
enum BAR_ID bar_id)
{
u32 bar_reg = (bar_id == BAR_ID_0 ?
PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE);
u32 val;
if (IS_VF(p_hwfn->cdev))
return 1 << 17;
val = qed_rd(p_hwfn, p_hwfn->p_main_ptt, bar_reg);
if (val)
return 1 << (val + 15);
/* Old MFW initialized above registered only conditionally */
if (p_hwfn->cdev->num_hwfns > 1) {
DP_INFO(p_hwfn,
"BAR size not configured. Assuming BAR size of 256kB for GRC and 512kB for DB\n");
return BAR_ID_0 ? 256 * 1024 : 512 * 1024;
} else {
DP_INFO(p_hwfn,
"BAR size not configured. Assuming BAR size of 512kB for GRC and 512kB for DB\n");
return 512 * 1024;
}
}
void qed_init_dp(struct qed_dev *cdev,
u32 dp_module, u8 dp_level)
{
u32 i;
cdev->dp_level = dp_level;
cdev->dp_module = dp_module;
for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
p_hwfn->dp_level = dp_level;
p_hwfn->dp_module = dp_module;
}
}
void qed_init_struct(struct qed_dev *cdev)
{
u8 i;
for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
p_hwfn->cdev = cdev;
p_hwfn->my_id = i;
p_hwfn->b_active = false;
mutex_init(&p_hwfn->dmae_info.mutex);
}
/* hwfn 0 is always active */
cdev->hwfns[0].b_active = true;
/* set the default cache alignment to 128 */
cdev->cache_shift = 7;
}
static void qed_qm_info_free(struct qed_hwfn *p_hwfn)
{
struct qed_qm_info *qm_info = &p_hwfn->qm_info;
kfree(qm_info->qm_pq_params);
qm_info->qm_pq_params = NULL;
kfree(qm_info->qm_vport_params);
qm_info->qm_vport_params = NULL;
kfree(qm_info->qm_port_params);
qm_info->qm_port_params = NULL;
kfree(qm_info->wfq_data);
qm_info->wfq_data = NULL;
}
void qed_resc_free(struct qed_dev *cdev)
{
int i;
if (IS_VF(cdev))
return;
kfree(cdev->fw_data);
cdev->fw_data = NULL;
kfree(cdev->reset_stats);
for_each_hwfn(cdev, i) {
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
kfree(p_hwfn->p_tx_cids);
p_hwfn->p_tx_cids = NULL;
kfree(p_hwfn->p_rx_cids);
p_hwfn->p_rx_cids = NULL;
}
for_each_hwfn(cdev, i) {
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
qed_cxt_mngr_free(p_hwfn);
qed_qm_info_free(p_hwfn);
qed_spq_free(p_hwfn);
qed_eq_free(p_hwfn, p_hwfn->p_eq);
qed_consq_free(p_hwfn, p_hwfn->p_consq);
qed_int_free(p_hwfn);
qed_iov_free(p_hwfn);
qed_dmae_info_free(p_hwfn);
qed_dcbx_info_free(p_hwfn, p_hwfn->p_dcbx_info);
}
}
static int qed_init_qm_info(struct qed_hwfn *p_hwfn, bool b_sleepable)
{
u8 num_vports, vf_offset = 0, i, vport_id, num_ports, curr_queue = 0;
struct qed_qm_info *qm_info = &p_hwfn->qm_info;
struct init_qm_port_params *p_qm_port;
u16 num_pqs, multi_cos_tcs = 1;
u8 pf_wfq = qm_info->pf_wfq;
u32 pf_rl = qm_info->pf_rl;
u16 num_vfs = 0;
#ifdef CONFIG_QED_SRIOV
if (p_hwfn->cdev->p_iov_info)
num_vfs = p_hwfn->cdev->p_iov_info->total_vfs;
#endif
memset(qm_info, 0, sizeof(*qm_info));
num_pqs = multi_cos_tcs + num_vfs + 1; /* The '1' is for pure-LB */
num_vports = (u8)RESC_NUM(p_hwfn, QED_VPORT);
/* Sanity checking that setup requires legal number of resources */
if (num_pqs > RESC_NUM(p_hwfn, QED_PQ)) {
DP_ERR(p_hwfn,
"Need too many Physical queues - 0x%04x when only %04x are available\n",
num_pqs, RESC_NUM(p_hwfn, QED_PQ));
return -EINVAL;
}
/* PQs will be arranged as follows: First per-TC PQ then pure-LB quete.
*/
qm_info->qm_pq_params = kcalloc(num_pqs,
sizeof(struct init_qm_pq_params),
b_sleepable ? GFP_KERNEL : GFP_ATOMIC);
if (!qm_info->qm_pq_params)
goto alloc_err;
qm_info->qm_vport_params = kcalloc(num_vports,
sizeof(struct init_qm_vport_params),
b_sleepable ? GFP_KERNEL
: GFP_ATOMIC);
if (!qm_info->qm_vport_params)
goto alloc_err;
qm_info->qm_port_params = kcalloc(MAX_NUM_PORTS,
sizeof(struct init_qm_port_params),
b_sleepable ? GFP_KERNEL
: GFP_ATOMIC);
if (!qm_info->qm_port_params)
goto alloc_err;
qm_info->wfq_data = kcalloc(num_vports, sizeof(struct qed_wfq_data),
b_sleepable ? GFP_KERNEL : GFP_ATOMIC);
if (!qm_info->wfq_data)
goto alloc_err;
vport_id = (u8)RESC_START(p_hwfn, QED_VPORT);
/* First init per-TC PQs */
for (i = 0; i < multi_cos_tcs; i++) {
struct init_qm_pq_params *params =
&qm_info->qm_pq_params[curr_queue++];
if (p_hwfn->hw_info.personality == QED_PCI_ETH) {
params->vport_id = vport_id;
params->tc_id = p_hwfn->hw_info.non_offload_tc;
params->wrr_group = 1;
} else {
params->vport_id = vport_id;
params->tc_id = p_hwfn->hw_info.offload_tc;
params->wrr_group = 1;
}
}
/* Then init pure-LB PQ */
qm_info->pure_lb_pq = curr_queue;
qm_info->qm_pq_params[curr_queue].vport_id =
(u8) RESC_START(p_hwfn, QED_VPORT);
qm_info->qm_pq_params[curr_queue].tc_id = PURE_LB_TC;
qm_info->qm_pq_params[curr_queue].wrr_group = 1;
curr_queue++;
qm_info->offload_pq = 0;
/* Then init per-VF PQs */
vf_offset = curr_queue;
for (i = 0; i < num_vfs; i++) {
/* First vport is used by the PF */
qm_info->qm_pq_params[curr_queue].vport_id = vport_id + i + 1;
qm_info->qm_pq_params[curr_queue].tc_id =
p_hwfn->hw_info.non_offload_tc;
qm_info->qm_pq_params[curr_queue].wrr_group = 1;
curr_queue++;
}
qm_info->vf_queues_offset = vf_offset;
qm_info->num_pqs = num_pqs;
qm_info->num_vports = num_vports;
/* Initialize qm port parameters */
num_ports = p_hwfn->cdev->num_ports_in_engines;
for (i = 0; i < num_ports; i++) {
p_qm_port = &qm_info->qm_port_params[i];
p_qm_port->active = 1;
p_qm_port->num_active_phys_tcs = 4;
p_qm_port->num_pbf_cmd_lines = PBF_MAX_CMD_LINES / num_ports;
p_qm_port->num_btb_blocks = BTB_MAX_BLOCKS / num_ports;
}
qm_info->max_phys_tcs_per_port = NUM_OF_PHYS_TCS;
qm_info->start_pq = (u16)RESC_START(p_hwfn, QED_PQ);
qm_info->num_vf_pqs = num_vfs;
qm_info->start_vport = (u8) RESC_START(p_hwfn, QED_VPORT);
for (i = 0; i < qm_info->num_vports; i++)
qm_info->qm_vport_params[i].vport_wfq = 1;
qm_info->vport_rl_en = 1;
qm_info->vport_wfq_en = 1;
qm_info->pf_rl = pf_rl;
qm_info->pf_wfq = pf_wfq;
return 0;
alloc_err:
DP_NOTICE(p_hwfn, "Failed to allocate memory for QM params\n");
qed_qm_info_free(p_hwfn);
return -ENOMEM;
}
/* This function reconfigures the QM pf on the fly.
* For this purpose we:
* 1. reconfigure the QM database
* 2. set new values to runtime arrat
* 3. send an sdm_qm_cmd through the rbc interface to stop the QM
* 4. activate init tool in QM_PF stage
* 5. send an sdm_qm_cmd through rbc interface to release the QM
*/
int qed_qm_reconf(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
{
struct qed_qm_info *qm_info = &p_hwfn->qm_info;
bool b_rc;
int rc;
/* qm_info is allocated in qed_init_qm_info() which is already called
* from qed_resc_alloc() or previous call of qed_qm_reconf().
* The allocated size may change each init, so we free it before next
* allocation.
*/
qed_qm_info_free(p_hwfn);
/* initialize qed's qm data structure */
rc = qed_init_qm_info(p_hwfn, false);
if (rc)
return rc;
/* stop PF's qm queues */
spin_lock_bh(&qm_lock);
b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, false, true,
qm_info->start_pq, qm_info->num_pqs);
spin_unlock_bh(&qm_lock);
if (!b_rc)
return -EINVAL;
/* clear the QM_PF runtime phase leftovers from previous init */
qed_init_clear_rt_data(p_hwfn);
/* prepare QM portion of runtime array */
qed_qm_init_pf(p_hwfn);
/* activate init tool on runtime array */
rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id,
p_hwfn->hw_info.hw_mode);
if (rc)
return rc;
/* start PF's qm queues */
spin_lock_bh(&qm_lock);
b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, true, true,
qm_info->start_pq, qm_info->num_pqs);
spin_unlock_bh(&qm_lock);
if (!b_rc)
return -EINVAL;
return 0;
}
int qed_resc_alloc(struct qed_dev *cdev)
{
struct qed_consq *p_consq;
struct qed_eq *p_eq;
int i, rc = 0;
if (IS_VF(cdev))
return rc;
cdev->fw_data = kzalloc(sizeof(*cdev->fw_data), GFP_KERNEL);
if (!cdev->fw_data)
return -ENOMEM;
/* Allocate Memory for the Queue->CID mapping */
for_each_hwfn(cdev, i) {
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
int tx_size = sizeof(struct qed_hw_cid_data) *
RESC_NUM(p_hwfn, QED_L2_QUEUE);
int rx_size = sizeof(struct qed_hw_cid_data) *
RESC_NUM(p_hwfn, QED_L2_QUEUE);
p_hwfn->p_tx_cids = kzalloc(tx_size, GFP_KERNEL);
if (!p_hwfn->p_tx_cids) {
DP_NOTICE(p_hwfn,
"Failed to allocate memory for Tx Cids\n");
rc = -ENOMEM;
goto alloc_err;
}
p_hwfn->p_rx_cids = kzalloc(rx_size, GFP_KERNEL);
if (!p_hwfn->p_rx_cids) {
DP_NOTICE(p_hwfn,
"Failed to allocate memory for Rx Cids\n");
rc = -ENOMEM;
goto alloc_err;
}
}
for_each_hwfn(cdev, i) {
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
/* First allocate the context manager structure */
rc = qed_cxt_mngr_alloc(p_hwfn);
if (rc)
goto alloc_err;
/* Set the HW cid/tid numbers (in the contest manager)
* Must be done prior to any further computations.
*/
rc = qed_cxt_set_pf_params(p_hwfn);
if (rc)
goto alloc_err;
/* Prepare and process QM requirements */
rc = qed_init_qm_info(p_hwfn, true);
if (rc)
goto alloc_err;
/* Compute the ILT client partition */
rc = qed_cxt_cfg_ilt_compute(p_hwfn);
if (rc)
goto alloc_err;
/* CID map / ILT shadow table / T2
* The talbes sizes are determined by the computations above
*/
rc = qed_cxt_tables_alloc(p_hwfn);
if (rc)
goto alloc_err;
/* SPQ, must follow ILT because initializes SPQ context */
rc = qed_spq_alloc(p_hwfn);
if (rc)
goto alloc_err;
/* SP status block allocation */
p_hwfn->p_dpc_ptt = qed_get_reserved_ptt(p_hwfn,
RESERVED_PTT_DPC);
rc = qed_int_alloc(p_hwfn, p_hwfn->p_main_ptt);
if (rc)
goto alloc_err;
rc = qed_iov_alloc(p_hwfn);
if (rc)
goto alloc_err;
/* EQ */
p_eq = qed_eq_alloc(p_hwfn, 256);
if (!p_eq) {
rc = -ENOMEM;
goto alloc_err;
}
p_hwfn->p_eq = p_eq;
p_consq = qed_consq_alloc(p_hwfn);
if (!p_consq) {
rc = -ENOMEM;
goto alloc_err;
}
p_hwfn->p_consq = p_consq;
/* DMA info initialization */
rc = qed_dmae_info_alloc(p_hwfn);
if (rc) {
DP_NOTICE(p_hwfn,
"Failed to allocate memory for dmae_info structure\n");
goto alloc_err;
}
/* DCBX initialization */
rc = qed_dcbx_info_alloc(p_hwfn);
if (rc) {
DP_NOTICE(p_hwfn,
"Failed to allocate memory for dcbx structure\n");
goto alloc_err;
}
}
cdev->reset_stats = kzalloc(sizeof(*cdev->reset_stats), GFP_KERNEL);
if (!cdev->reset_stats) {
DP_NOTICE(cdev, "Failed to allocate reset statistics\n");
rc = -ENOMEM;
goto alloc_err;
}
return 0;
alloc_err:
qed_resc_free(cdev);
return rc;
}
void qed_resc_setup(struct qed_dev *cdev)
{
int i;
if (IS_VF(cdev))
return;
for_each_hwfn(cdev, i) {
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
qed_cxt_mngr_setup(p_hwfn);
qed_spq_setup(p_hwfn);
qed_eq_setup(p_hwfn, p_hwfn->p_eq);
qed_consq_setup(p_hwfn, p_hwfn->p_consq);
/* Read shadow of current MFW mailbox */
qed_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt);
memcpy(p_hwfn->mcp_info->mfw_mb_shadow,
p_hwfn->mcp_info->mfw_mb_cur,
p_hwfn->mcp_info->mfw_mb_length);
qed_int_setup(p_hwfn, p_hwfn->p_main_ptt);
qed_iov_setup(p_hwfn, p_hwfn->p_main_ptt);
}
}
#define FINAL_CLEANUP_POLL_CNT (100)
#define FINAL_CLEANUP_POLL_TIME (10)
int qed_final_cleanup(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt, u16 id, bool is_vf)
{
u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT;
int rc = -EBUSY;
addr = GTT_BAR0_MAP_REG_USDM_RAM +
USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id);
if (is_vf)
id += 0x10;
command |= X_FINAL_CLEANUP_AGG_INT <<
SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT;
command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT;
command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT;
command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT;
/* Make sure notification is not set before initiating final cleanup */
if (REG_RD(p_hwfn, addr)) {
DP_NOTICE(
p_hwfn,
"Unexpected; Found final cleanup notification before initiating final cleanup\n");
REG_WR(p_hwfn, addr, 0);
}
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"Sending final cleanup for PFVF[%d] [Command %08x\n]",
id, command);
qed_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN, command);
/* Poll until completion */
while (!REG_RD(p_hwfn, addr) && count--)
msleep(FINAL_CLEANUP_POLL_TIME);
if (REG_RD(p_hwfn, addr))
rc = 0;
else
DP_NOTICE(p_hwfn,
"Failed to receive FW final cleanup notification\n");
/* Cleanup afterwards */
REG_WR(p_hwfn, addr, 0);
return rc;
}
static void qed_calc_hw_mode(struct qed_hwfn *p_hwfn)
{
int hw_mode = 0;
hw_mode = (1 << MODE_BB_B0);
switch (p_hwfn->cdev->num_ports_in_engines) {
case 1:
hw_mode |= 1 << MODE_PORTS_PER_ENG_1;
break;
case 2:
hw_mode |= 1 << MODE_PORTS_PER_ENG_2;
break;
case 4:
hw_mode |= 1 << MODE_PORTS_PER_ENG_4;
break;
default:
DP_NOTICE(p_hwfn, "num_ports_in_engine = %d not supported\n",
p_hwfn->cdev->num_ports_in_engines);
return;
}
switch (p_hwfn->cdev->mf_mode) {
case QED_MF_DEFAULT:
case QED_MF_NPAR:
hw_mode |= 1 << MODE_MF_SI;
break;
case QED_MF_OVLAN:
hw_mode |= 1 << MODE_MF_SD;
break;
default:
DP_NOTICE(p_hwfn, "Unsupported MF mode, init as DEFAULT\n");
hw_mode |= 1 << MODE_MF_SI;
}
hw_mode |= 1 << MODE_ASIC;
if (p_hwfn->cdev->num_hwfns > 1)
hw_mode |= 1 << MODE_100G;
p_hwfn->hw_info.hw_mode = hw_mode;
DP_VERBOSE(p_hwfn, (NETIF_MSG_PROBE | NETIF_MSG_IFUP),
"Configuring function for hw_mode: 0x%08x\n",
p_hwfn->hw_info.hw_mode);
}
/* Init run time data for all PFs on an engine. */
static void qed_init_cau_rt_data(struct qed_dev *cdev)
{
u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET;
int i, sb_id;
for_each_hwfn(cdev, i) {
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
struct qed_igu_info *p_igu_info;
struct qed_igu_block *p_block;
struct cau_sb_entry sb_entry;
p_igu_info = p_hwfn->hw_info.p_igu_info;
for (sb_id = 0; sb_id < QED_MAPPING_MEMORY_SIZE(cdev);
sb_id++) {
p_block = &p_igu_info->igu_map.igu_blocks[sb_id];
if (!p_block->is_pf)
continue;
qed_init_cau_sb_entry(p_hwfn, &sb_entry,
p_block->function_id,
0, 0);
STORE_RT_REG_AGG(p_hwfn, offset + sb_id * 2,
sb_entry);
}
}
}
static int qed_hw_init_common(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
int hw_mode)
{
struct qed_qm_info *qm_info = &p_hwfn->qm_info;
struct qed_qm_common_rt_init_params params;
struct qed_dev *cdev = p_hwfn->cdev;
u32 concrete_fid;
int rc = 0;
u8 vf_id;
qed_init_cau_rt_data(cdev);
/* Program GTT windows */
qed_gtt_init(p_hwfn);
if (p_hwfn->mcp_info) {
if (p_hwfn->mcp_info->func_info.bandwidth_max)
qm_info->pf_rl_en = 1;
if (p_hwfn->mcp_info->func_info.bandwidth_min)
qm_info->pf_wfq_en = 1;
}
memset(&params, 0, sizeof(params));
params.max_ports_per_engine = p_hwfn->cdev->num_ports_in_engines;
params.max_phys_tcs_per_port = qm_info->max_phys_tcs_per_port;
params.pf_rl_en = qm_info->pf_rl_en;
params.pf_wfq_en = qm_info->pf_wfq_en;
params.vport_rl_en = qm_info->vport_rl_en;
params.vport_wfq_en = qm_info->vport_wfq_en;
params.port_params = qm_info->qm_port_params;
qed_qm_common_rt_init(p_hwfn, &params);
qed_cxt_hw_init_common(p_hwfn);
/* Close gate from NIG to BRB/Storm; By default they are open, but
* we close them to prevent NIG from passing data to reset blocks.
* Should have been done in the ENGINE phase, but init-tool lacks
* proper port-pretend capabilities.
*/
qed_wr(p_hwfn, p_ptt, NIG_REG_RX_BRB_OUT_EN, 0);
qed_wr(p_hwfn, p_ptt, NIG_REG_STORM_OUT_EN, 0);
qed_port_pretend(p_hwfn, p_ptt, p_hwfn->port_id ^ 1);
qed_wr(p_hwfn, p_ptt, NIG_REG_RX_BRB_OUT_EN, 0);
qed_wr(p_hwfn, p_ptt, NIG_REG_STORM_OUT_EN, 0);
qed_port_unpretend(p_hwfn, p_ptt);
rc = qed_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ANY_PHASE_ID, hw_mode);
if (rc != 0)
return rc;
qed_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0);
qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1);
/* Disable relaxed ordering in the PCI config space */
qed_wr(p_hwfn, p_ptt, 0x20b4,
qed_rd(p_hwfn, p_ptt, 0x20b4) & ~0x10);
for (vf_id = 0; vf_id < MAX_NUM_VFS_BB; vf_id++) {
concrete_fid = qed_vfid_to_concrete(p_hwfn, vf_id);
qed_fid_pretend(p_hwfn, p_ptt, (u16) concrete_fid);
qed_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1);
}
/* pretend to original PF */
qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
return rc;
}
static int qed_hw_init_port(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
int hw_mode)
{
int rc = 0;
rc = qed_init_run(p_hwfn, p_ptt, PHASE_PORT, p_hwfn->port_id,
hw_mode);
return rc;
}
static int qed_hw_init_pf(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_tunn_start_params *p_tunn,
int hw_mode,
bool b_hw_start,
enum qed_int_mode int_mode,
bool allow_npar_tx_switch)
{
u8 rel_pf_id = p_hwfn->rel_pf_id;
int rc = 0;
if (p_hwfn->mcp_info) {
struct qed_mcp_function_info *p_info;
p_info = &p_hwfn->mcp_info->func_info;
if (p_info->bandwidth_min)
p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min;
/* Update rate limit once we'll actually have a link */
p_hwfn->qm_info.pf_rl = 100000;
}
qed_cxt_hw_init_pf(p_hwfn);
qed_int_igu_init_rt(p_hwfn);
/* Set VLAN in NIG if needed */
if (hw_mode & (1 << MODE_MF_SD)) {
DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "Configuring LLH_FUNC_TAG\n");
STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1);
STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET,
p_hwfn->hw_info.ovlan);
}
/* Enable classification by MAC if needed */
if (hw_mode & (1 << MODE_MF_SI)) {
DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
"Configuring TAGMAC_CLS_TYPE\n");
STORE_RT_REG(p_hwfn,
NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET, 1);
}
/* Protocl Configuration */
STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET, 0);
STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET, 0);
STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0);
/* Cleanup chip from previous driver if such remains exist */
rc = qed_final_cleanup(p_hwfn, p_ptt, rel_pf_id, false);
if (rc != 0)
return rc;
/* PF Init sequence */
rc = qed_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode);
if (rc)
return rc;
/* QM_PF Init sequence (may be invoked separately e.g. for DCB) */
rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode);
if (rc)
return rc;
/* Pure runtime initializations - directly to the HW */
qed_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true);
if (b_hw_start) {
/* enable interrupts */
qed_int_igu_enable(p_hwfn, p_ptt, int_mode);
/* send function start command */
rc = qed_sp_pf_start(p_hwfn, p_tunn, p_hwfn->cdev->mf_mode,
allow_npar_tx_switch);
if (rc)
DP_NOTICE(p_hwfn, "Function start ramrod failed\n");
}
return rc;
}
static int qed_change_pci_hwfn(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
u8 enable)
{
u32 delay_idx = 0, val, set_val = enable ? 1 : 0;
/* Change PF in PXP */
qed_wr(p_hwfn, p_ptt,
PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val);
/* wait until value is set - try for 1 second every 50us */
for (delay_idx = 0; delay_idx < 20000; delay_idx++) {
val = qed_rd(p_hwfn, p_ptt,
PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
if (val == set_val)
break;
usleep_range(50, 60);
}
if (val != set_val) {
DP_NOTICE(p_hwfn,
"PFID_ENABLE_MASTER wasn't changed after a second\n");
return -EAGAIN;
}
return 0;
}
static void qed_reset_mb_shadow(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_main_ptt)
{
/* Read shadow of current MFW mailbox */
qed_mcp_read_mb(p_hwfn, p_main_ptt);
memcpy(p_hwfn->mcp_info->mfw_mb_shadow,
p_hwfn->mcp_info->mfw_mb_cur,
p_hwfn->mcp_info->mfw_mb_length);
}
int qed_hw_init(struct qed_dev *cdev,
struct qed_tunn_start_params *p_tunn,
bool b_hw_start,
enum qed_int_mode int_mode,
bool allow_npar_tx_switch,
const u8 *bin_fw_data)
{
u32 load_code, param;
int rc, mfw_rc, i;
if ((int_mode == QED_INT_MODE_MSI) && (cdev->num_hwfns > 1)) {
DP_NOTICE(cdev, "MSI mode is not supported for CMT devices\n");
return -EINVAL;
}
if (IS_PF(cdev)) {
rc = qed_init_fw_data(cdev, bin_fw_data);
if (rc != 0)
return rc;
}
for_each_hwfn(cdev, i) {
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
if (IS_VF(cdev)) {
p_hwfn->b_int_enabled = 1;
continue;
}
/* Enable DMAE in PXP */
rc = qed_change_pci_hwfn(p_hwfn, p_hwfn->p_main_ptt, true);
qed_calc_hw_mode(p_hwfn);
rc = qed_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt,
&load_code);
if (rc) {
DP_NOTICE(p_hwfn, "Failed sending LOAD_REQ command\n");
return rc;
}
qed_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt);
DP_VERBOSE(p_hwfn, QED_MSG_SP,
"Load request was sent. Resp:0x%x, Load code: 0x%x\n",
rc, load_code);
p_hwfn->first_on_engine = (load_code ==
FW_MSG_CODE_DRV_LOAD_ENGINE);
if (!qm_lock_init) {
spin_lock_init(&qm_lock);
qm_lock_init = true;
}
switch (load_code) {
case FW_MSG_CODE_DRV_LOAD_ENGINE:
rc = qed_hw_init_common(p_hwfn, p_hwfn->p_main_ptt,
p_hwfn->hw_info.hw_mode);
if (rc)
break;
/* Fall into */
case FW_MSG_CODE_DRV_LOAD_PORT:
rc = qed_hw_init_port(p_hwfn, p_hwfn->p_main_ptt,
p_hwfn->hw_info.hw_mode);
if (rc)
break;
/* Fall into */
case FW_MSG_CODE_DRV_LOAD_FUNCTION:
rc = qed_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt,
p_tunn, p_hwfn->hw_info.hw_mode,
b_hw_start, int_mode,
allow_npar_tx_switch);
break;
default:
rc = -EINVAL;
break;
}
if (rc)
DP_NOTICE(p_hwfn,
"init phase failed for loadcode 0x%x (rc %d)\n",
load_code, rc);
/* ACK mfw regardless of success or failure of initialization */
mfw_rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
DRV_MSG_CODE_LOAD_DONE,
0, &load_code, &param);
if (rc)
return rc;
if (mfw_rc) {
DP_NOTICE(p_hwfn, "Failed sending LOAD_DONE command\n");
return mfw_rc;
}
/* send DCBX attention request command */
DP_VERBOSE(p_hwfn,
QED_MSG_DCB,
"sending phony dcbx set command to trigger DCBx attention handling\n");
mfw_rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
DRV_MSG_CODE_SET_DCBX,
1 << DRV_MB_PARAM_DCBX_NOTIFY_SHIFT,
&load_code, &param);
if (mfw_rc) {
DP_NOTICE(p_hwfn,
"Failed to send DCBX attention request\n");
return mfw_rc;
}
p_hwfn->hw_init_done = true;
}
return 0;
}
#define QED_HW_STOP_RETRY_LIMIT (10)
static inline void qed_hw_timers_stop(struct qed_dev *cdev,
struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt)
{
int i;
/* close timers */
qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0);
qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0);
for (i = 0; i < QED_HW_STOP_RETRY_LIMIT; i++) {
if ((!qed_rd(p_hwfn, p_ptt,
TM_REG_PF_SCAN_ACTIVE_CONN)) &&
(!qed_rd(p_hwfn, p_ptt,
TM_REG_PF_SCAN_ACTIVE_TASK)))
break;
/* Dependent on number of connection/tasks, possibly
* 1ms sleep is required between polls
*/
usleep_range(1000, 2000);
}
if (i < QED_HW_STOP_RETRY_LIMIT)
return;
DP_NOTICE(p_hwfn,
"Timers linear scans are not over [Connection %02x Tasks %02x]\n",
(u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN),
(u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK));
}
void qed_hw_timers_stop_all(struct qed_dev *cdev)
{
int j;
for_each_hwfn(cdev, j) {
struct qed_hwfn *p_hwfn = &cdev->hwfns[j];
struct qed_ptt *p_ptt = p_hwfn->p_main_ptt;
qed_hw_timers_stop(cdev, p_hwfn, p_ptt);
}
}
int qed_hw_stop(struct qed_dev *cdev)
{
int rc = 0, t_rc;
int j;
for_each_hwfn(cdev, j) {
struct qed_hwfn *p_hwfn = &cdev->hwfns[j];
struct qed_ptt *p_ptt = p_hwfn->p_main_ptt;
DP_VERBOSE(p_hwfn, NETIF_MSG_IFDOWN, "Stopping hw/fw\n");
if (IS_VF(cdev)) {
qed_vf_pf_int_cleanup(p_hwfn);
continue;
}
/* mark the hw as uninitialized... */
p_hwfn->hw_init_done = false;
rc = qed_sp_pf_stop(p_hwfn);
if (rc)
DP_NOTICE(p_hwfn,
"Failed to close PF against FW. Continue to stop HW to prevent illegal host access by the device\n");
qed_wr(p_hwfn, p_ptt,
NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
qed_hw_timers_stop(cdev, p_hwfn, p_ptt);
/* Disable Attention Generation */
qed_int_igu_disable_int(p_hwfn, p_ptt);
qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0);
qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0);
qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true);
/* Need to wait 1ms to guarantee SBs are cleared */
usleep_range(1000, 2000);
}
if (IS_PF(cdev)) {
/* Disable DMAE in PXP - in CMT, this should only be done for
* first hw-function, and only after all transactions have
* stopped for all active hw-functions.
*/
t_rc = qed_change_pci_hwfn(&cdev->hwfns[0],
cdev->hwfns[0].p_main_ptt, false);
if (t_rc != 0)
rc = t_rc;
}
return rc;
}
void qed_hw_stop_fastpath(struct qed_dev *cdev)
{
int j;
for_each_hwfn(cdev, j) {
struct qed_hwfn *p_hwfn = &cdev->hwfns[j];
struct qed_ptt *p_ptt = p_hwfn->p_main_ptt;
if (IS_VF(cdev)) {
qed_vf_pf_int_cleanup(p_hwfn);
continue;
}
DP_VERBOSE(p_hwfn,
NETIF_MSG_IFDOWN,
"Shutting down the fastpath\n");
qed_wr(p_hwfn, p_ptt,
NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false);
/* Need to wait 1ms to guarantee SBs are cleared */
usleep_range(1000, 2000);
}
}
void qed_hw_start_fastpath(struct qed_hwfn *p_hwfn)
{
if (IS_VF(p_hwfn->cdev))
return;
/* Re-open incoming traffic */
qed_wr(p_hwfn, p_hwfn->p_main_ptt,
NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0);
}
static int qed_reg_assert(struct qed_hwfn *hwfn,
struct qed_ptt *ptt, u32 reg,
bool expected)
{
u32 assert_val = qed_rd(hwfn, ptt, reg);
if (assert_val != expected) {
DP_NOTICE(hwfn, "Value at address 0x%x != 0x%08x\n",
reg, expected);
return -EINVAL;
}
return 0;
}
int qed_hw_reset(struct qed_dev *cdev)
{
int rc = 0;
u32 unload_resp, unload_param;
int i;
for_each_hwfn(cdev, i) {
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
if (IS_VF(cdev)) {
rc = qed_vf_pf_reset(p_hwfn);
if (rc)
return rc;
continue;
}
DP_VERBOSE(p_hwfn, NETIF_MSG_IFDOWN, "Resetting hw/fw\n");
/* Check for incorrect states */
qed_reg_assert(p_hwfn, p_hwfn->p_main_ptt,
QM_REG_USG_CNT_PF_TX, 0);
qed_reg_assert(p_hwfn, p_hwfn->p_main_ptt,
QM_REG_USG_CNT_PF_OTHER, 0);
/* Disable PF in HW blocks */
qed_wr(p_hwfn, p_hwfn->p_main_ptt, DORQ_REG_PF_DB_ENABLE, 0);
qed_wr(p_hwfn, p_hwfn->p_main_ptt, QM_REG_PF_EN, 0);
qed_wr(p_hwfn, p_hwfn->p_main_ptt,
TCFC_REG_STRONG_ENABLE_PF, 0);
qed_wr(p_hwfn, p_hwfn->p_main_ptt,
CCFC_REG_STRONG_ENABLE_PF, 0);
/* Send unload command to MCP */
rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
DRV_MSG_CODE_UNLOAD_REQ,
DRV_MB_PARAM_UNLOAD_WOL_MCP,
&unload_resp, &unload_param);
if (rc) {
DP_NOTICE(p_hwfn, "qed_hw_reset: UNLOAD_REQ failed\n");
unload_resp = FW_MSG_CODE_DRV_UNLOAD_ENGINE;
}
rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
DRV_MSG_CODE_UNLOAD_DONE,
0, &unload_resp, &unload_param);
if (rc) {
DP_NOTICE(p_hwfn, "qed_hw_reset: UNLOAD_DONE failed\n");
return rc;
}
}
return rc;
}
/* Free hwfn memory and resources acquired in hw_hwfn_prepare */
static void qed_hw_hwfn_free(struct qed_hwfn *p_hwfn)
{
qed_ptt_pool_free(p_hwfn);
kfree(p_hwfn->hw_info.p_igu_info);
}
/* Setup bar access */
static void qed_hw_hwfn_prepare(struct qed_hwfn *p_hwfn)
{
/* clear indirect access */
qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_88_F0, 0);
qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_8C_F0, 0);
qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_90_F0, 0);
qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_94_F0, 0);
/* Clean Previous errors if such exist */
qed_wr(p_hwfn, p_hwfn->p_main_ptt,
PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR,
1 << p_hwfn->abs_pf_id);
/* enable internal target-read */
qed_wr(p_hwfn, p_hwfn->p_main_ptt,
PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
}
static void get_function_id(struct qed_hwfn *p_hwfn)
{
/* ME Register */
p_hwfn->hw_info.opaque_fid = (u16)REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR);
p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR);
p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf;
p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
PXP_CONCRETE_FID_PFID);
p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
PXP_CONCRETE_FID_PORT);
}
static void qed_hw_set_feat(struct qed_hwfn *p_hwfn)
{
u32 *feat_num = p_hwfn->hw_info.feat_num;
int num_features = 1;
feat_num[QED_PF_L2_QUE] = min_t(u32, RESC_NUM(p_hwfn, QED_SB) /
num_features,
RESC_NUM(p_hwfn, QED_L2_QUEUE));
DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE,
"#PF_L2_QUEUES=%d #SBS=%d num_features=%d\n",
feat_num[QED_PF_L2_QUE], RESC_NUM(p_hwfn, QED_SB),
num_features);
}
static void qed_hw_get_resc(struct qed_hwfn *p_hwfn)
{
u32 *resc_start = p_hwfn->hw_info.resc_start;
u8 num_funcs = p_hwfn->num_funcs_on_engine;
u32 *resc_num = p_hwfn->hw_info.resc_num;
struct qed_sb_cnt_info sb_cnt_info;
int i, max_vf_vlan_filters;
memset(&sb_cnt_info, 0, sizeof(sb_cnt_info));
#ifdef CONFIG_QED_SRIOV
max_vf_vlan_filters = QED_ETH_MAX_VF_NUM_VLAN_FILTERS;
#else
max_vf_vlan_filters = 0;
#endif
qed_int_get_num_sbs(p_hwfn, &sb_cnt_info);
resc_num[QED_SB] = min_t(u32,
(MAX_SB_PER_PATH_BB / num_funcs),
sb_cnt_info.sb_cnt);
resc_num[QED_L2_QUEUE] = MAX_NUM_L2_QUEUES_BB / num_funcs;
resc_num[QED_VPORT] = MAX_NUM_VPORTS_BB / num_funcs;
resc_num[QED_RSS_ENG] = ETH_RSS_ENGINE_NUM_BB / num_funcs;
resc_num[QED_PQ] = MAX_QM_TX_QUEUES_BB / num_funcs;
resc_num[QED_RL] = 8;
resc_num[QED_MAC] = ETH_NUM_MAC_FILTERS / num_funcs;
resc_num[QED_VLAN] = (ETH_NUM_VLAN_FILTERS - 1 /*For vlan0*/) /
num_funcs;
resc_num[QED_ILT] = 950;
for (i = 0; i < QED_MAX_RESC; i++)
resc_start[i] = resc_num[i] * p_hwfn->rel_pf_id;
qed_hw_set_feat(p_hwfn);
DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE,
"The numbers for each resource are:\n"
"SB = %d start = %d\n"
"L2_QUEUE = %d start = %d\n"
"VPORT = %d start = %d\n"
"PQ = %d start = %d\n"
"RL = %d start = %d\n"
"MAC = %d start = %d\n"
"VLAN = %d start = %d\n"
"ILT = %d start = %d\n",
p_hwfn->hw_info.resc_num[QED_SB],
p_hwfn->hw_info.resc_start[QED_SB],
p_hwfn->hw_info.resc_num[QED_L2_QUEUE],
p_hwfn->hw_info.resc_start[QED_L2_QUEUE],
p_hwfn->hw_info.resc_num[QED_VPORT],
p_hwfn->hw_info.resc_start[QED_VPORT],
p_hwfn->hw_info.resc_num[QED_PQ],
p_hwfn->hw_info.resc_start[QED_PQ],
p_hwfn->hw_info.resc_num[QED_RL],
p_hwfn->hw_info.resc_start[QED_RL],
p_hwfn->hw_info.resc_num[QED_MAC],
p_hwfn->hw_info.resc_start[QED_MAC],
p_hwfn->hw_info.resc_num[QED_VLAN],
p_hwfn->hw_info.resc_start[QED_VLAN],
p_hwfn->hw_info.resc_num[QED_ILT],
p_hwfn->hw_info.resc_start[QED_ILT]);
}
static int qed_hw_get_nvm_info(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt)
{
u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg;
u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities;
struct qed_mcp_link_params *link;
/* Read global nvm_cfg address */
nvm_cfg_addr = qed_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
/* Verify MCP has initialized it */
if (!nvm_cfg_addr) {
DP_NOTICE(p_hwfn, "Shared memory not initialized\n");
return -EINVAL;
}
/* Read nvm_cfg1 (Notice this is just offset, and not offsize (TBD) */
nvm_cfg1_offset = qed_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
offsetof(struct nvm_cfg1, glob) +
offsetof(struct nvm_cfg1_glob, core_cfg);
core_cfg = qed_rd(p_hwfn, p_ptt, addr);
switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >>
NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) {
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_DE_2X40G:
p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X40G;
break;
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_DE_2X50G:
p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X50G;
break;
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_DE_1X100G:
p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X100G;
break;
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_DE_4X10G_F:
p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_F;
break;
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_DE_4X10G_E:
p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_E;
break;
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_DE_4X20G:
p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X20G;
break;
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_DE_1X40G:
p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X40G;
break;
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_DE_2X25G:
p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X25G;
break;
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_DE_1X25G:
p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X25G;
break;
default:
DP_NOTICE(p_hwfn, "Unknown port mode in 0x%08x\n",
core_cfg);
break;
}
/* Read default link configuration */
link = &p_hwfn->mcp_info->link_input;
port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
offsetof(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
link_temp = qed_rd(p_hwfn, p_ptt,
port_cfg_addr +
offsetof(struct nvm_cfg1_port, speed_cap_mask));
link->speed.advertised_speeds =
link_temp & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK;
p_hwfn->mcp_info->link_capabilities.speed_capabilities =
link->speed.advertised_speeds;
link_temp = qed_rd(p_hwfn, p_ptt,
port_cfg_addr +
offsetof(struct nvm_cfg1_port, link_settings));
switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >>
NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) {
case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG:
link->speed.autoneg = true;
break;
case NVM_CFG1_PORT_DRV_LINK_SPEED_1G:
link->speed.forced_speed = 1000;
break;
case NVM_CFG1_PORT_DRV_LINK_SPEED_10G:
link->speed.forced_speed = 10000;
break;
case NVM_CFG1_PORT_DRV_LINK_SPEED_25G:
link->speed.forced_speed = 25000;
break;
case NVM_CFG1_PORT_DRV_LINK_SPEED_40G:
link->speed.forced_speed = 40000;
break;
case NVM_CFG1_PORT_DRV_LINK_SPEED_50G:
link->speed.forced_speed = 50000;
break;
case NVM_CFG1_PORT_DRV_LINK_SPEED_100G:
link->speed.forced_speed = 100000;
break;
default:
DP_NOTICE(p_hwfn, "Unknown Speed in 0x%08x\n",
link_temp);
}
link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK;
link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET;
link->pause.autoneg = !!(link_temp &
NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG);
link->pause.forced_rx = !!(link_temp &
NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX);
link->pause.forced_tx = !!(link_temp &
NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX);
link->loopback_mode = 0;
DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
"Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x\n",
link->speed.forced_speed, link->speed.advertised_speeds,
link->speed.autoneg, link->pause.autoneg);
/* Read Multi-function information from shmem */
addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
offsetof(struct nvm_cfg1, glob) +
offsetof(struct nvm_cfg1_glob, generic_cont0);
generic_cont0 = qed_rd(p_hwfn, p_ptt, addr);
mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >>
NVM_CFG1_GLOB_MF_MODE_OFFSET;
switch (mf_mode) {
case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
p_hwfn->cdev->mf_mode = QED_MF_OVLAN;
break;
case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
p_hwfn->cdev->mf_mode = QED_MF_NPAR;
break;
case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
p_hwfn->cdev->mf_mode = QED_MF_DEFAULT;
break;
}
DP_INFO(p_hwfn, "Multi function mode is %08x\n",
p_hwfn->cdev->mf_mode);
/* Read Multi-function information from shmem */
addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
offsetof(struct nvm_cfg1, glob) +
offsetof(struct nvm_cfg1_glob, device_capabilities);
device_capabilities = qed_rd(p_hwfn, p_ptt, addr);
if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET)
__set_bit(QED_DEV_CAP_ETH,
&p_hwfn->hw_info.device_capabilities);
return qed_mcp_fill_shmem_func_info(p_hwfn, p_ptt);
}
static void qed_get_num_funcs(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
{
u32 reg_function_hide, tmp, eng_mask;
u8 num_funcs;
num_funcs = MAX_NUM_PFS_BB;
/* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values
* in the other bits are selected.
* Bits 1-15 are for functions 1-15, respectively, and their value is
* '0' only for enabled functions (function 0 always exists and
* enabled).
* In case of CMT, only the "even" functions are enabled, and thus the
* number of functions for both hwfns is learnt from the same bits.
*/
reg_function_hide = qed_rd(p_hwfn, p_ptt, MISCS_REG_FUNCTION_HIDE);
if (reg_function_hide & 0x1) {
if (QED_PATH_ID(p_hwfn) && p_hwfn->cdev->num_hwfns == 1) {
num_funcs = 0;
eng_mask = 0xaaaa;
} else {
num_funcs = 1;
eng_mask = 0x5554;
}
/* Get the number of the enabled functions on the engine */
tmp = (reg_function_hide ^ 0xffffffff) & eng_mask;
while (tmp) {
if (tmp & 0x1)
num_funcs++;
tmp >>= 0x1;
}
}
p_hwfn->num_funcs_on_engine = num_funcs;
DP_VERBOSE(p_hwfn,
NETIF_MSG_PROBE,
"PF [rel_id %d, abs_id %d] within the %d enabled functions on the engine\n",
p_hwfn->rel_pf_id,
p_hwfn->abs_pf_id,
p_hwfn->num_funcs_on_engine);
}
static int
qed_get_hw_info(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
enum qed_pci_personality personality)
{
u32 port_mode;
int rc;
/* Since all information is common, only first hwfns should do this */
if (IS_LEAD_HWFN(p_hwfn)) {
rc = qed_iov_hw_info(p_hwfn);
if (rc)
return rc;
}
/* Read the port mode */
port_mode = qed_rd(p_hwfn, p_ptt,
CNIG_REG_NW_PORT_MODE_BB_B0);
if (port_mode < 3) {
p_hwfn->cdev->num_ports_in_engines = 1;
} else if (port_mode <= 5) {
p_hwfn->cdev->num_ports_in_engines = 2;
} else {
DP_NOTICE(p_hwfn, "PORT MODE: %d not supported\n",
p_hwfn->cdev->num_ports_in_engines);
/* Default num_ports_in_engines to something */
p_hwfn->cdev->num_ports_in_engines = 1;
}
qed_hw_get_nvm_info(p_hwfn, p_ptt);
rc = qed_int_igu_read_cam(p_hwfn, p_ptt);
if (rc)
return rc;
if (qed_mcp_is_init(p_hwfn))
ether_addr_copy(p_hwfn->hw_info.hw_mac_addr,
p_hwfn->mcp_info->func_info.mac);
else
eth_random_addr(p_hwfn->hw_info.hw_mac_addr);
if (qed_mcp_is_init(p_hwfn)) {
if (p_hwfn->mcp_info->func_info.ovlan != QED_MCP_VLAN_UNSET)
p_hwfn->hw_info.ovlan =
p_hwfn->mcp_info->func_info.ovlan;
qed_mcp_cmd_port_init(p_hwfn, p_ptt);
}
if (qed_mcp_is_init(p_hwfn)) {
enum qed_pci_personality protocol;
protocol = p_hwfn->mcp_info->func_info.protocol;
p_hwfn->hw_info.personality = protocol;
}
qed_get_num_funcs(p_hwfn, p_ptt);
qed_hw_get_resc(p_hwfn);
return rc;
}
static int qed_get_dev_info(struct qed_dev *cdev)
{
struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
u32 tmp;
/* Read Vendor Id / Device Id */
pci_read_config_word(cdev->pdev, PCI_VENDOR_ID,
&cdev->vendor_id);
pci_read_config_word(cdev->pdev, PCI_DEVICE_ID,
&cdev->device_id);
cdev->chip_num = (u16)qed_rd(p_hwfn, p_hwfn->p_main_ptt,
MISCS_REG_CHIP_NUM);
cdev->chip_rev = (u16)qed_rd(p_hwfn, p_hwfn->p_main_ptt,
MISCS_REG_CHIP_REV);
MASK_FIELD(CHIP_REV, cdev->chip_rev);
cdev->type = QED_DEV_TYPE_BB;
/* Learn number of HW-functions */
tmp = qed_rd(p_hwfn, p_hwfn->p_main_ptt,
MISCS_REG_CMT_ENABLED_FOR_PAIR);
if (tmp & (1 << p_hwfn->rel_pf_id)) {
DP_NOTICE(cdev->hwfns, "device in CMT mode\n");
cdev->num_hwfns = 2;
} else {
cdev->num_hwfns = 1;
}
cdev->chip_bond_id = qed_rd(p_hwfn, p_hwfn->p_main_ptt,
MISCS_REG_CHIP_TEST_REG) >> 4;
MASK_FIELD(CHIP_BOND_ID, cdev->chip_bond_id);
cdev->chip_metal = (u16)qed_rd(p_hwfn, p_hwfn->p_main_ptt,
MISCS_REG_CHIP_METAL);
MASK_FIELD(CHIP_METAL, cdev->chip_metal);
DP_INFO(cdev->hwfns,
"Chip details - Num: %04x Rev: %04x Bond id: %04x Metal: %04x\n",
cdev->chip_num, cdev->chip_rev,
cdev->chip_bond_id, cdev->chip_metal);
if (QED_IS_BB(cdev) && CHIP_REV_IS_A0(cdev)) {
DP_NOTICE(cdev->hwfns,
"The chip type/rev (BB A0) is not supported!\n");
return -EINVAL;
}
return 0;
}
static int qed_hw_prepare_single(struct qed_hwfn *p_hwfn,
void __iomem *p_regview,
void __iomem *p_doorbells,
enum qed_pci_personality personality)
{
int rc = 0;
/* Split PCI bars evenly between hwfns */
p_hwfn->regview = p_regview;
p_hwfn->doorbells = p_doorbells;
if (IS_VF(p_hwfn->cdev))
return qed_vf_hw_prepare(p_hwfn);
/* Validate that chip access is feasible */
if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) {
DP_ERR(p_hwfn,
"Reading the ME register returns all Fs; Preventing further chip access\n");
return -EINVAL;
}
get_function_id(p_hwfn);
/* Allocate PTT pool */
rc = qed_ptt_pool_alloc(p_hwfn);
if (rc) {
DP_NOTICE(p_hwfn, "Failed to prepare hwfn's hw\n");
goto err0;
}
/* Allocate the main PTT */
p_hwfn->p_main_ptt = qed_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN);
/* First hwfn learns basic information, e.g., number of hwfns */
if (!p_hwfn->my_id) {
rc = qed_get_dev_info(p_hwfn->cdev);
if (rc != 0)
goto err1;
}
qed_hw_hwfn_prepare(p_hwfn);
/* Initialize MCP structure */
rc = qed_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt);
if (rc) {
DP_NOTICE(p_hwfn, "Failed initializing mcp command\n");
goto err1;
}
/* Read the device configuration information from the HW and SHMEM */
rc = qed_get_hw_info(p_hwfn, p_hwfn->p_main_ptt, personality);
if (rc) {
DP_NOTICE(p_hwfn, "Failed to get HW information\n");
goto err2;
}
/* Allocate the init RT array and initialize the init-ops engine */
rc = qed_init_alloc(p_hwfn);
if (rc) {
DP_NOTICE(p_hwfn, "Failed to allocate the init array\n");
goto err2;
}
return rc;
err2:
if (IS_LEAD_HWFN(p_hwfn))
qed_iov_free_hw_info(p_hwfn->cdev);
qed_mcp_free(p_hwfn);
err1:
qed_hw_hwfn_free(p_hwfn);
err0:
return rc;
}
int qed_hw_prepare(struct qed_dev *cdev,
int personality)
{
struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
int rc;
/* Store the precompiled init data ptrs */
if (IS_PF(cdev))
qed_init_iro_array(cdev);
/* Initialize the first hwfn - will learn number of hwfns */
rc = qed_hw_prepare_single(p_hwfn,
cdev->regview,
cdev->doorbells, personality);
if (rc)
return rc;
personality = p_hwfn->hw_info.personality;
/* Initialize the rest of the hwfns */
if (cdev->num_hwfns > 1) {
void __iomem *p_regview, *p_doorbell;
u8 __iomem *addr;
/* adjust bar offset for second engine */
addr = cdev->regview + qed_hw_bar_size(p_hwfn, BAR_ID_0) / 2;
p_regview = addr;
/* adjust doorbell bar offset for second engine */
addr = cdev->doorbells + qed_hw_bar_size(p_hwfn, BAR_ID_1) / 2;
p_doorbell = addr;
/* prepare second hw function */
rc = qed_hw_prepare_single(&cdev->hwfns[1], p_regview,
p_doorbell, personality);
/* in case of error, need to free the previously
* initiliazed hwfn 0.
*/
if (rc) {
if (IS_PF(cdev)) {
qed_init_free(p_hwfn);
qed_mcp_free(p_hwfn);
qed_hw_hwfn_free(p_hwfn);
}
}
}
return rc;
}
void qed_hw_remove(struct qed_dev *cdev)
{
int i;
for_each_hwfn(cdev, i) {
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
if (IS_VF(cdev)) {
qed_vf_pf_release(p_hwfn);
continue;
}
qed_init_free(p_hwfn);
qed_hw_hwfn_free(p_hwfn);
qed_mcp_free(p_hwfn);
}
qed_iov_free_hw_info(cdev);
}
int qed_chain_alloc(struct qed_dev *cdev,
enum qed_chain_use_mode intended_use,
enum qed_chain_mode mode,
u16 num_elems,
size_t elem_size,
struct qed_chain *p_chain)
{
dma_addr_t p_pbl_phys = 0;
void *p_pbl_virt = NULL;
dma_addr_t p_phys = 0;
void *p_virt = NULL;
u16 page_cnt = 0;
size_t size;
if (mode == QED_CHAIN_MODE_SINGLE)
page_cnt = 1;
else
page_cnt = QED_CHAIN_PAGE_CNT(num_elems, elem_size, mode);
size = page_cnt * QED_CHAIN_PAGE_SIZE;
p_virt = dma_alloc_coherent(&cdev->pdev->dev,
size, &p_phys, GFP_KERNEL);
if (!p_virt) {
DP_NOTICE(cdev, "Failed to allocate chain mem\n");
goto nomem;
}
if (mode == QED_CHAIN_MODE_PBL) {
size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE;
p_pbl_virt = dma_alloc_coherent(&cdev->pdev->dev,
size, &p_pbl_phys,
GFP_KERNEL);
if (!p_pbl_virt) {
DP_NOTICE(cdev, "Failed to allocate chain pbl mem\n");
goto nomem;
}
qed_chain_pbl_init(p_chain, p_virt, p_phys, page_cnt,
(u8)elem_size, intended_use,
p_pbl_phys, p_pbl_virt);
} else {
qed_chain_init(p_chain, p_virt, p_phys, page_cnt,
(u8)elem_size, intended_use, mode);
}
return 0;
nomem:
dma_free_coherent(&cdev->pdev->dev,
page_cnt * QED_CHAIN_PAGE_SIZE,
p_virt, p_phys);
dma_free_coherent(&cdev->pdev->dev,
page_cnt * QED_CHAIN_PBL_ENTRY_SIZE,
p_pbl_virt, p_pbl_phys);
return -ENOMEM;
}
void qed_chain_free(struct qed_dev *cdev,
struct qed_chain *p_chain)
{
size_t size;
if (!p_chain->p_virt_addr)
return;
if (p_chain->mode == QED_CHAIN_MODE_PBL) {
size = p_chain->page_cnt * QED_CHAIN_PBL_ENTRY_SIZE;
dma_free_coherent(&cdev->pdev->dev, size,
p_chain->pbl.p_virt_table,
p_chain->pbl.p_phys_table);
}
size = p_chain->page_cnt * QED_CHAIN_PAGE_SIZE;
dma_free_coherent(&cdev->pdev->dev, size,
p_chain->p_virt_addr,
p_chain->p_phys_addr);
}
int qed_fw_l2_queue(struct qed_hwfn *p_hwfn,
u16 src_id, u16 *dst_id)
{
if (src_id >= RESC_NUM(p_hwfn, QED_L2_QUEUE)) {
u16 min, max;
min = (u16)RESC_START(p_hwfn, QED_L2_QUEUE);
max = min + RESC_NUM(p_hwfn, QED_L2_QUEUE);
DP_NOTICE(p_hwfn,
"l2_queue id [%d] is not valid, available indices [%d - %d]\n",
src_id, min, max);
return -EINVAL;
}
*dst_id = RESC_START(p_hwfn, QED_L2_QUEUE) + src_id;
return 0;
}
int qed_fw_vport(struct qed_hwfn *p_hwfn,
u8 src_id, u8 *dst_id)
{
if (src_id >= RESC_NUM(p_hwfn, QED_VPORT)) {
u8 min, max;
min = (u8)RESC_START(p_hwfn, QED_VPORT);
max = min + RESC_NUM(p_hwfn, QED_VPORT);
DP_NOTICE(p_hwfn,
"vport id [%d] is not valid, available indices [%d - %d]\n",
src_id, min, max);
return -EINVAL;
}
*dst_id = RESC_START(p_hwfn, QED_VPORT) + src_id;
return 0;
}
int qed_fw_rss_eng(struct qed_hwfn *p_hwfn,
u8 src_id, u8 *dst_id)
{
if (src_id >= RESC_NUM(p_hwfn, QED_RSS_ENG)) {
u8 min, max;
min = (u8)RESC_START(p_hwfn, QED_RSS_ENG);
max = min + RESC_NUM(p_hwfn, QED_RSS_ENG);
DP_NOTICE(p_hwfn,
"rss_eng id [%d] is not valid, available indices [%d - %d]\n",
src_id, min, max);
return -EINVAL;
}
*dst_id = RESC_START(p_hwfn, QED_RSS_ENG) + src_id;
return 0;
}
/* Calculate final WFQ values for all vports and configure them.
* After this configuration each vport will have
* approx min rate = min_pf_rate * (vport_wfq / QED_WFQ_UNIT)
*/
static void qed_configure_wfq_for_all_vports(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
u32 min_pf_rate)
{
struct init_qm_vport_params *vport_params;
int i;
vport_params = p_hwfn->qm_info.qm_vport_params;
for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
vport_params[i].vport_wfq = (wfq_speed * QED_WFQ_UNIT) /
min_pf_rate;
qed_init_vport_wfq(p_hwfn, p_ptt,
vport_params[i].first_tx_pq_id,
vport_params[i].vport_wfq);
}
}
static void qed_init_wfq_default_param(struct qed_hwfn *p_hwfn,
u32 min_pf_rate)
{
int i;
for (i = 0; i < p_hwfn->qm_info.num_vports; i++)
p_hwfn->qm_info.qm_vport_params[i].vport_wfq = 1;
}
static void qed_disable_wfq_for_all_vports(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
u32 min_pf_rate)
{
struct init_qm_vport_params *vport_params;
int i;
vport_params = p_hwfn->qm_info.qm_vport_params;
for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
qed_init_wfq_default_param(p_hwfn, min_pf_rate);
qed_init_vport_wfq(p_hwfn, p_ptt,
vport_params[i].first_tx_pq_id,
vport_params[i].vport_wfq);
}
}
/* This function performs several validations for WFQ
* configuration and required min rate for a given vport
* 1. req_rate must be greater than one percent of min_pf_rate.
* 2. req_rate should not cause other vports [not configured for WFQ explicitly]
* rates to get less than one percent of min_pf_rate.
* 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate.
*/
static int qed_init_wfq_param(struct qed_hwfn *p_hwfn,
u16 vport_id, u32 req_rate,
u32 min_pf_rate)
{
u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0;
int non_requested_count = 0, req_count = 0, i, num_vports;
num_vports = p_hwfn->qm_info.num_vports;
/* Accounting for the vports which are configured for WFQ explicitly */
for (i = 0; i < num_vports; i++) {
u32 tmp_speed;
if ((i != vport_id) &&
p_hwfn->qm_info.wfq_data[i].configured) {
req_count++;
tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
total_req_min_rate += tmp_speed;
}
}
/* Include current vport data as well */
req_count++;
total_req_min_rate += req_rate;
non_requested_count = num_vports - req_count;
if (req_rate < min_pf_rate / QED_WFQ_UNIT) {
DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
"Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
vport_id, req_rate, min_pf_rate);
return -EINVAL;
}
if (num_vports > QED_WFQ_UNIT) {
DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
"Number of vports is greater than %d\n",
QED_WFQ_UNIT);
return -EINVAL;
}
if (total_req_min_rate > min_pf_rate) {
DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
"Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
total_req_min_rate, min_pf_rate);
return -EINVAL;
}
total_left_rate = min_pf_rate - total_req_min_rate;
left_rate_per_vp = total_left_rate / non_requested_count;
if (left_rate_per_vp < min_pf_rate / QED_WFQ_UNIT) {
DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
"Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
left_rate_per_vp, min_pf_rate);
return -EINVAL;
}
p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate;
p_hwfn->qm_info.wfq_data[vport_id].configured = true;
for (i = 0; i < num_vports; i++) {
if (p_hwfn->qm_info.wfq_data[i].configured)
continue;
p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp;
}
return 0;
}
static int __qed_configure_vport_wfq(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt, u16 vp_id, u32 rate)
{
struct qed_mcp_link_state *p_link;
int rc = 0;
p_link = &p_hwfn->cdev->hwfns[0].mcp_info->link_output;
if (!p_link->min_pf_rate) {
p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate;
p_hwfn->qm_info.wfq_data[vp_id].configured = true;
return rc;
}
rc = qed_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate);
if (rc == 0)
qed_configure_wfq_for_all_vports(p_hwfn, p_ptt,
p_link->min_pf_rate);
else
DP_NOTICE(p_hwfn,
"Validation failed while configuring min rate\n");
return rc;
}
static int __qed_configure_vp_wfq_on_link_change(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
u32 min_pf_rate)
{
bool use_wfq = false;
int rc = 0;
u16 i;
/* Validate all pre configured vports for wfq */
for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
u32 rate;
if (!p_hwfn->qm_info.wfq_data[i].configured)
continue;
rate = p_hwfn->qm_info.wfq_data[i].min_speed;
use_wfq = true;
rc = qed_init_wfq_param(p_hwfn, i, rate, min_pf_rate);
if (rc) {
DP_NOTICE(p_hwfn,
"WFQ validation failed while configuring min rate\n");
break;
}
}
if (!rc && use_wfq)
qed_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
else
qed_disable_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
return rc;
}
/* Main API for qed clients to configure vport min rate.
* vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)]
* rate - Speed in Mbps needs to be assigned to a given vport.
*/
int qed_configure_vport_wfq(struct qed_dev *cdev, u16 vp_id, u32 rate)
{
int i, rc = -EINVAL;
/* Currently not supported; Might change in future */
if (cdev->num_hwfns > 1) {
DP_NOTICE(cdev,
"WFQ configuration is not supported for this device\n");
return rc;
}
for_each_hwfn(cdev, i) {
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
struct qed_ptt *p_ptt;
p_ptt = qed_ptt_acquire(p_hwfn);
if (!p_ptt)
return -EBUSY;
rc = __qed_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate);
if (!rc) {
qed_ptt_release(p_hwfn, p_ptt);
return rc;
}
qed_ptt_release(p_hwfn, p_ptt);
}
return rc;
}
/* API to configure WFQ from mcp link change */
void qed_configure_vp_wfq_on_link_change(struct qed_dev *cdev, u32 min_pf_rate)
{
int i;
if (cdev->num_hwfns > 1) {
DP_VERBOSE(cdev,
NETIF_MSG_LINK,
"WFQ configuration is not supported for this device\n");
return;
}
for_each_hwfn(cdev, i) {
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
__qed_configure_vp_wfq_on_link_change(p_hwfn,
p_hwfn->p_dpc_ptt,
min_pf_rate);
}
}
int __qed_configure_pf_max_bandwidth(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_mcp_link_state *p_link,
u8 max_bw)
{
int rc = 0;
p_hwfn->mcp_info->func_info.bandwidth_max = max_bw;
if (!p_link->line_speed && (max_bw != 100))
return rc;
p_link->speed = (p_link->line_speed * max_bw) / 100;
p_hwfn->qm_info.pf_rl = p_link->speed;
/* Since the limiter also affects Tx-switched traffic, we don't want it
* to limit such traffic in case there's no actual limit.
* In that case, set limit to imaginary high boundary.
*/
if (max_bw == 100)
p_hwfn->qm_info.pf_rl = 100000;
rc = qed_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id,
p_hwfn->qm_info.pf_rl);
DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
"Configured MAX bandwidth to be %08x Mb/sec\n",
p_link->speed);
return rc;
}
/* Main API to configure PF max bandwidth where bw range is [1 - 100] */
int qed_configure_pf_max_bandwidth(struct qed_dev *cdev, u8 max_bw)
{
int i, rc = -EINVAL;
if (max_bw < 1 || max_bw > 100) {
DP_NOTICE(cdev, "PF max bw valid range is [1-100]\n");
return rc;
}
for_each_hwfn(cdev, i) {
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev);
struct qed_mcp_link_state *p_link;
struct qed_ptt *p_ptt;
p_link = &p_lead->mcp_info->link_output;
p_ptt = qed_ptt_acquire(p_hwfn);
if (!p_ptt)
return -EBUSY;
rc = __qed_configure_pf_max_bandwidth(p_hwfn, p_ptt,
p_link, max_bw);
qed_ptt_release(p_hwfn, p_ptt);
if (rc)
break;
}
return rc;
}
int __qed_configure_pf_min_bandwidth(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_mcp_link_state *p_link,
u8 min_bw)
{
int rc = 0;
p_hwfn->mcp_info->func_info.bandwidth_min = min_bw;
p_hwfn->qm_info.pf_wfq = min_bw;
if (!p_link->line_speed)
return rc;
p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100;
rc = qed_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw);
DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
"Configured MIN bandwidth to be %d Mb/sec\n",
p_link->min_pf_rate);
return rc;
}
/* Main API to configure PF min bandwidth where bw range is [1-100] */
int qed_configure_pf_min_bandwidth(struct qed_dev *cdev, u8 min_bw)
{
int i, rc = -EINVAL;
if (min_bw < 1 || min_bw > 100) {
DP_NOTICE(cdev, "PF min bw valid range is [1-100]\n");
return rc;
}
for_each_hwfn(cdev, i) {
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev);
struct qed_mcp_link_state *p_link;
struct qed_ptt *p_ptt;
p_link = &p_lead->mcp_info->link_output;
p_ptt = qed_ptt_acquire(p_hwfn);
if (!p_ptt)
return -EBUSY;
rc = __qed_configure_pf_min_bandwidth(p_hwfn, p_ptt,
p_link, min_bw);
if (rc) {
qed_ptt_release(p_hwfn, p_ptt);
return rc;
}
if (p_link->min_pf_rate) {
u32 min_rate = p_link->min_pf_rate;
rc = __qed_configure_vp_wfq_on_link_change(p_hwfn,
p_ptt,
min_rate);
}
qed_ptt_release(p_hwfn, p_ptt);
}
return rc;
}
void qed_clean_wfq_db(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
{
struct qed_mcp_link_state *p_link;
p_link = &p_hwfn->mcp_info->link_output;
if (p_link->min_pf_rate)
qed_disable_wfq_for_all_vports(p_hwfn, p_ptt,
p_link->min_pf_rate);
memset(p_hwfn->qm_info.wfq_data, 0,
sizeof(*p_hwfn->qm_info.wfq_data) * p_hwfn->qm_info.num_vports);
}