| /* |
| * fs/logfs/inode.c - inode handling code |
| * |
| * As should be obvious for Linux kernel code, license is GPLv2 |
| * |
| * Copyright (c) 2005-2008 Joern Engel <joern@logfs.org> |
| */ |
| #include "logfs.h" |
| #include <linux/slab.h> |
| #include <linux/writeback.h> |
| #include <linux/backing-dev.h> |
| |
| /* |
| * How soon to reuse old inode numbers? LogFS doesn't store deleted inodes |
| * on the medium. It therefore also lacks a method to store the previous |
| * generation number for deleted inodes. Instead a single generation number |
| * is stored which will be used for new inodes. Being just a 32bit counter, |
| * this can obvious wrap relatively quickly. So we only reuse inodes if we |
| * know that a fair number of inodes can be created before we have to increment |
| * the generation again - effectively adding some bits to the counter. |
| * But being too aggressive here means we keep a very large and very sparse |
| * inode file, wasting space on indirect blocks. |
| * So what is a good value? Beats me. 64k seems moderately bad on both |
| * fronts, so let's use that for now... |
| * |
| * NFS sucks, as everyone already knows. |
| */ |
| #define INOS_PER_WRAP (0x10000) |
| |
| /* |
| * Logfs' requirement to read inodes for garbage collection makes life a bit |
| * harder. GC may have to read inodes that are in I_FREEING state, when they |
| * are being written out - and waiting for GC to make progress, naturally. |
| * |
| * So we cannot just call iget() or some variant of it, but first have to check |
| * whether the inode in question might be in I_FREEING state. Therefore we |
| * maintain our own per-sb list of "almost deleted" inodes and check against |
| * that list first. Normally this should be at most 1-2 entries long. |
| * |
| * Also, inodes have logfs-specific reference counting on top of what the vfs |
| * does. When .destroy_inode is called, normally the reference count will drop |
| * to zero and the inode gets deleted. But if GC accessed the inode, its |
| * refcount will remain nonzero and final deletion will have to wait. |
| * |
| * As a result we have two sets of functions to get/put inodes: |
| * logfs_safe_iget/logfs_safe_iput - safe to call from GC context |
| * logfs_iget/iput - normal version |
| */ |
| static struct kmem_cache *logfs_inode_cache; |
| |
| static DEFINE_SPINLOCK(logfs_inode_lock); |
| |
| static void logfs_inode_setops(struct inode *inode) |
| { |
| switch (inode->i_mode & S_IFMT) { |
| case S_IFDIR: |
| inode->i_op = &logfs_dir_iops; |
| inode->i_fop = &logfs_dir_fops; |
| inode->i_mapping->a_ops = &logfs_reg_aops; |
| break; |
| case S_IFREG: |
| inode->i_op = &logfs_reg_iops; |
| inode->i_fop = &logfs_reg_fops; |
| inode->i_mapping->a_ops = &logfs_reg_aops; |
| break; |
| case S_IFLNK: |
| inode->i_op = &page_symlink_inode_operations; |
| inode_nohighmem(inode); |
| inode->i_mapping->a_ops = &logfs_reg_aops; |
| break; |
| case S_IFSOCK: /* fall through */ |
| case S_IFBLK: /* fall through */ |
| case S_IFCHR: /* fall through */ |
| case S_IFIFO: |
| init_special_inode(inode, inode->i_mode, inode->i_rdev); |
| break; |
| default: |
| BUG(); |
| } |
| } |
| |
| static struct inode *__logfs_iget(struct super_block *sb, ino_t ino) |
| { |
| struct inode *inode = iget_locked(sb, ino); |
| int err; |
| |
| if (!inode) |
| return ERR_PTR(-ENOMEM); |
| if (!(inode->i_state & I_NEW)) |
| return inode; |
| |
| err = logfs_read_inode(inode); |
| if (err || inode->i_nlink == 0) { |
| /* inode->i_nlink == 0 can be true when called from |
| * block validator */ |
| /* set i_nlink to 0 to prevent caching */ |
| clear_nlink(inode); |
| logfs_inode(inode)->li_flags |= LOGFS_IF_ZOMBIE; |
| iget_failed(inode); |
| if (!err) |
| err = -ENOENT; |
| return ERR_PTR(err); |
| } |
| |
| logfs_inode_setops(inode); |
| unlock_new_inode(inode); |
| return inode; |
| } |
| |
| struct inode *logfs_iget(struct super_block *sb, ino_t ino) |
| { |
| BUG_ON(ino == LOGFS_INO_MASTER); |
| BUG_ON(ino == LOGFS_INO_SEGFILE); |
| return __logfs_iget(sb, ino); |
| } |
| |
| /* |
| * is_cached is set to 1 if we hand out a cached inode, 0 otherwise. |
| * this allows logfs_iput to do the right thing later |
| */ |
| struct inode *logfs_safe_iget(struct super_block *sb, ino_t ino, int *is_cached) |
| { |
| struct logfs_super *super = logfs_super(sb); |
| struct logfs_inode *li; |
| |
| if (ino == LOGFS_INO_MASTER) |
| return super->s_master_inode; |
| if (ino == LOGFS_INO_SEGFILE) |
| return super->s_segfile_inode; |
| |
| spin_lock(&logfs_inode_lock); |
| list_for_each_entry(li, &super->s_freeing_list, li_freeing_list) |
| if (li->vfs_inode.i_ino == ino) { |
| li->li_refcount++; |
| spin_unlock(&logfs_inode_lock); |
| *is_cached = 1; |
| return &li->vfs_inode; |
| } |
| spin_unlock(&logfs_inode_lock); |
| |
| *is_cached = 0; |
| return __logfs_iget(sb, ino); |
| } |
| |
| static void logfs_i_callback(struct rcu_head *head) |
| { |
| struct inode *inode = container_of(head, struct inode, i_rcu); |
| kmem_cache_free(logfs_inode_cache, logfs_inode(inode)); |
| } |
| |
| static void __logfs_destroy_inode(struct inode *inode) |
| { |
| struct logfs_inode *li = logfs_inode(inode); |
| |
| BUG_ON(li->li_block); |
| list_del(&li->li_freeing_list); |
| call_rcu(&inode->i_rcu, logfs_i_callback); |
| } |
| |
| static void __logfs_destroy_meta_inode(struct inode *inode) |
| { |
| struct logfs_inode *li = logfs_inode(inode); |
| BUG_ON(li->li_block); |
| call_rcu(&inode->i_rcu, logfs_i_callback); |
| } |
| |
| static void logfs_destroy_inode(struct inode *inode) |
| { |
| struct logfs_inode *li = logfs_inode(inode); |
| |
| if (inode->i_ino < LOGFS_RESERVED_INOS) { |
| /* |
| * The reserved inodes are never destroyed unless we are in |
| * unmont path. |
| */ |
| __logfs_destroy_meta_inode(inode); |
| return; |
| } |
| |
| BUG_ON(list_empty(&li->li_freeing_list)); |
| spin_lock(&logfs_inode_lock); |
| li->li_refcount--; |
| if (li->li_refcount == 0) |
| __logfs_destroy_inode(inode); |
| spin_unlock(&logfs_inode_lock); |
| } |
| |
| void logfs_safe_iput(struct inode *inode, int is_cached) |
| { |
| if (inode->i_ino == LOGFS_INO_MASTER) |
| return; |
| if (inode->i_ino == LOGFS_INO_SEGFILE) |
| return; |
| |
| if (is_cached) { |
| logfs_destroy_inode(inode); |
| return; |
| } |
| |
| iput(inode); |
| } |
| |
| static void logfs_init_inode(struct super_block *sb, struct inode *inode) |
| { |
| struct logfs_inode *li = logfs_inode(inode); |
| int i; |
| |
| li->li_flags = 0; |
| li->li_height = 0; |
| li->li_used_bytes = 0; |
| li->li_block = NULL; |
| i_uid_write(inode, 0); |
| i_gid_write(inode, 0); |
| inode->i_size = 0; |
| inode->i_blocks = 0; |
| inode->i_ctime = CURRENT_TIME; |
| inode->i_mtime = CURRENT_TIME; |
| li->li_refcount = 1; |
| INIT_LIST_HEAD(&li->li_freeing_list); |
| |
| for (i = 0; i < LOGFS_EMBEDDED_FIELDS; i++) |
| li->li_data[i] = 0; |
| |
| return; |
| } |
| |
| static struct inode *logfs_alloc_inode(struct super_block *sb) |
| { |
| struct logfs_inode *li; |
| |
| li = kmem_cache_alloc(logfs_inode_cache, GFP_NOFS); |
| if (!li) |
| return NULL; |
| logfs_init_inode(sb, &li->vfs_inode); |
| return &li->vfs_inode; |
| } |
| |
| /* |
| * In logfs inodes are written to an inode file. The inode file, like any |
| * other file, is managed with a inode. The inode file's inode, aka master |
| * inode, requires special handling in several respects. First, it cannot be |
| * written to the inode file, so it is stored in the journal instead. |
| * |
| * Secondly, this inode cannot be written back and destroyed before all other |
| * inodes have been written. The ordering is important. Linux' VFS is happily |
| * unaware of the ordering constraint and would ordinarily destroy the master |
| * inode at umount time while other inodes are still in use and dirty. Not |
| * good. |
| * |
| * So logfs makes sure the master inode is not written until all other inodes |
| * have been destroyed. Sadly, this method has another side-effect. The VFS |
| * will notice one remaining inode and print a frightening warning message. |
| * Worse, it is impossible to judge whether such a warning was caused by the |
| * master inode or any other inodes have leaked as well. |
| * |
| * Our attempt of solving this is with logfs_new_meta_inode() below. Its |
| * purpose is to create a new inode that will not trigger the warning if such |
| * an inode is still in use. An ugly hack, no doubt. Suggections for |
| * improvement are welcome. |
| * |
| * AV: that's what ->put_super() is for... |
| */ |
| struct inode *logfs_new_meta_inode(struct super_block *sb, u64 ino) |
| { |
| struct inode *inode; |
| |
| inode = new_inode(sb); |
| if (!inode) |
| return ERR_PTR(-ENOMEM); |
| |
| inode->i_mode = S_IFREG; |
| inode->i_ino = ino; |
| inode->i_data.a_ops = &logfs_reg_aops; |
| mapping_set_gfp_mask(&inode->i_data, GFP_NOFS); |
| |
| return inode; |
| } |
| |
| struct inode *logfs_read_meta_inode(struct super_block *sb, u64 ino) |
| { |
| struct inode *inode; |
| int err; |
| |
| inode = logfs_new_meta_inode(sb, ino); |
| if (IS_ERR(inode)) |
| return inode; |
| |
| err = logfs_read_inode(inode); |
| if (err) { |
| iput(inode); |
| return ERR_PTR(err); |
| } |
| logfs_inode_setops(inode); |
| return inode; |
| } |
| |
| static int logfs_write_inode(struct inode *inode, struct writeback_control *wbc) |
| { |
| int ret; |
| long flags = WF_LOCK; |
| |
| /* Can only happen if creat() failed. Safe to skip. */ |
| if (logfs_inode(inode)->li_flags & LOGFS_IF_STILLBORN) |
| return 0; |
| |
| ret = __logfs_write_inode(inode, NULL, flags); |
| LOGFS_BUG_ON(ret, inode->i_sb); |
| return ret; |
| } |
| |
| /* called with inode->i_lock held */ |
| static int logfs_drop_inode(struct inode *inode) |
| { |
| struct logfs_super *super = logfs_super(inode->i_sb); |
| struct logfs_inode *li = logfs_inode(inode); |
| |
| spin_lock(&logfs_inode_lock); |
| list_move(&li->li_freeing_list, &super->s_freeing_list); |
| spin_unlock(&logfs_inode_lock); |
| return generic_drop_inode(inode); |
| } |
| |
| static void logfs_set_ino_generation(struct super_block *sb, |
| struct inode *inode) |
| { |
| struct logfs_super *super = logfs_super(sb); |
| u64 ino; |
| |
| mutex_lock(&super->s_journal_mutex); |
| ino = logfs_seek_hole(super->s_master_inode, super->s_last_ino + 1); |
| super->s_last_ino = ino; |
| super->s_inos_till_wrap--; |
| if (super->s_inos_till_wrap < 0) { |
| super->s_last_ino = LOGFS_RESERVED_INOS; |
| super->s_generation++; |
| super->s_inos_till_wrap = INOS_PER_WRAP; |
| } |
| inode->i_ino = ino; |
| inode->i_generation = super->s_generation; |
| mutex_unlock(&super->s_journal_mutex); |
| } |
| |
| struct inode *logfs_new_inode(struct inode *dir, umode_t mode) |
| { |
| struct super_block *sb = dir->i_sb; |
| struct inode *inode; |
| |
| inode = new_inode(sb); |
| if (!inode) |
| return ERR_PTR(-ENOMEM); |
| |
| logfs_init_inode(sb, inode); |
| |
| /* inherit parent flags */ |
| logfs_inode(inode)->li_flags |= |
| logfs_inode(dir)->li_flags & LOGFS_FL_INHERITED; |
| |
| inode->i_mode = mode; |
| logfs_set_ino_generation(sb, inode); |
| |
| inode_init_owner(inode, dir, mode); |
| logfs_inode_setops(inode); |
| insert_inode_hash(inode); |
| |
| return inode; |
| } |
| |
| static void logfs_init_once(void *_li) |
| { |
| struct logfs_inode *li = _li; |
| int i; |
| |
| li->li_flags = 0; |
| li->li_used_bytes = 0; |
| li->li_refcount = 1; |
| for (i = 0; i < LOGFS_EMBEDDED_FIELDS; i++) |
| li->li_data[i] = 0; |
| inode_init_once(&li->vfs_inode); |
| } |
| |
| static int logfs_sync_fs(struct super_block *sb, int wait) |
| { |
| logfs_get_wblocks(sb, NULL, WF_LOCK); |
| logfs_write_anchor(sb); |
| logfs_put_wblocks(sb, NULL, WF_LOCK); |
| return 0; |
| } |
| |
| static void logfs_put_super(struct super_block *sb) |
| { |
| struct logfs_super *super = logfs_super(sb); |
| /* kill the meta-inodes */ |
| iput(super->s_segfile_inode); |
| iput(super->s_master_inode); |
| iput(super->s_mapping_inode); |
| } |
| |
| const struct super_operations logfs_super_operations = { |
| .alloc_inode = logfs_alloc_inode, |
| .destroy_inode = logfs_destroy_inode, |
| .evict_inode = logfs_evict_inode, |
| .drop_inode = logfs_drop_inode, |
| .put_super = logfs_put_super, |
| .write_inode = logfs_write_inode, |
| .statfs = logfs_statfs, |
| .sync_fs = logfs_sync_fs, |
| }; |
| |
| int logfs_init_inode_cache(void) |
| { |
| logfs_inode_cache = kmem_cache_create("logfs_inode_cache", |
| sizeof(struct logfs_inode), 0, |
| SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, |
| logfs_init_once); |
| if (!logfs_inode_cache) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| void logfs_destroy_inode_cache(void) |
| { |
| /* |
| * Make sure all delayed rcu free inodes are flushed before we |
| * destroy cache. |
| */ |
| rcu_barrier(); |
| kmem_cache_destroy(logfs_inode_cache); |
| } |