| /* |
| * st_spi_fsm.c - ST Fast Sequence Mode (FSM) Serial Flash Controller |
| * |
| * Author: Angus Clark <angus.clark@st.com> |
| * |
| * Copyright (C) 2010-2014 STMicroelectronics Limited |
| * |
| * JEDEC probe based on drivers/mtd/devices/m25p80.c |
| * |
| * This code is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| */ |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/regmap.h> |
| #include <linux/platform_device.h> |
| #include <linux/mfd/syscon.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/partitions.h> |
| #include <linux/mtd/spi-nor.h> |
| #include <linux/sched.h> |
| #include <linux/delay.h> |
| #include <linux/io.h> |
| #include <linux/of.h> |
| #include <linux/clk.h> |
| |
| #include "serial_flash_cmds.h" |
| |
| /* |
| * FSM SPI Controller Registers |
| */ |
| #define SPI_CLOCKDIV 0x0010 |
| #define SPI_MODESELECT 0x0018 |
| #define SPI_CONFIGDATA 0x0020 |
| #define SPI_STA_MODE_CHANGE 0x0028 |
| #define SPI_FAST_SEQ_TRANSFER_SIZE 0x0100 |
| #define SPI_FAST_SEQ_ADD1 0x0104 |
| #define SPI_FAST_SEQ_ADD2 0x0108 |
| #define SPI_FAST_SEQ_ADD_CFG 0x010c |
| #define SPI_FAST_SEQ_OPC1 0x0110 |
| #define SPI_FAST_SEQ_OPC2 0x0114 |
| #define SPI_FAST_SEQ_OPC3 0x0118 |
| #define SPI_FAST_SEQ_OPC4 0x011c |
| #define SPI_FAST_SEQ_OPC5 0x0120 |
| #define SPI_MODE_BITS 0x0124 |
| #define SPI_DUMMY_BITS 0x0128 |
| #define SPI_FAST_SEQ_FLASH_STA_DATA 0x012c |
| #define SPI_FAST_SEQ_1 0x0130 |
| #define SPI_FAST_SEQ_2 0x0134 |
| #define SPI_FAST_SEQ_3 0x0138 |
| #define SPI_FAST_SEQ_4 0x013c |
| #define SPI_FAST_SEQ_CFG 0x0140 |
| #define SPI_FAST_SEQ_STA 0x0144 |
| #define SPI_QUAD_BOOT_SEQ_INIT_1 0x0148 |
| #define SPI_QUAD_BOOT_SEQ_INIT_2 0x014c |
| #define SPI_QUAD_BOOT_READ_SEQ_1 0x0150 |
| #define SPI_QUAD_BOOT_READ_SEQ_2 0x0154 |
| #define SPI_PROGRAM_ERASE_TIME 0x0158 |
| #define SPI_MULT_PAGE_REPEAT_SEQ_1 0x015c |
| #define SPI_MULT_PAGE_REPEAT_SEQ_2 0x0160 |
| #define SPI_STATUS_WR_TIME_REG 0x0164 |
| #define SPI_FAST_SEQ_DATA_REG 0x0300 |
| |
| /* |
| * Register: SPI_MODESELECT |
| */ |
| #define SPI_MODESELECT_CONTIG 0x01 |
| #define SPI_MODESELECT_FASTREAD 0x02 |
| #define SPI_MODESELECT_DUALIO 0x04 |
| #define SPI_MODESELECT_FSM 0x08 |
| #define SPI_MODESELECT_QUADBOOT 0x10 |
| |
| /* |
| * Register: SPI_CONFIGDATA |
| */ |
| #define SPI_CFG_DEVICE_ST 0x1 |
| #define SPI_CFG_DEVICE_ATMEL 0x4 |
| #define SPI_CFG_MIN_CS_HIGH(x) (((x) & 0xfff) << 4) |
| #define SPI_CFG_CS_SETUPHOLD(x) (((x) & 0xff) << 16) |
| #define SPI_CFG_DATA_HOLD(x) (((x) & 0xff) << 24) |
| |
| #define SPI_CFG_DEFAULT_MIN_CS_HIGH SPI_CFG_MIN_CS_HIGH(0x0AA) |
| #define SPI_CFG_DEFAULT_CS_SETUPHOLD SPI_CFG_CS_SETUPHOLD(0xA0) |
| #define SPI_CFG_DEFAULT_DATA_HOLD SPI_CFG_DATA_HOLD(0x00) |
| |
| /* |
| * Register: SPI_FAST_SEQ_TRANSFER_SIZE |
| */ |
| #define TRANSFER_SIZE(x) ((x) * 8) |
| |
| /* |
| * Register: SPI_FAST_SEQ_ADD_CFG |
| */ |
| #define ADR_CFG_CYCLES_ADD1(x) ((x) << 0) |
| #define ADR_CFG_PADS_1_ADD1 (0x0 << 6) |
| #define ADR_CFG_PADS_2_ADD1 (0x1 << 6) |
| #define ADR_CFG_PADS_4_ADD1 (0x3 << 6) |
| #define ADR_CFG_CSDEASSERT_ADD1 (1 << 8) |
| #define ADR_CFG_CYCLES_ADD2(x) ((x) << (0+16)) |
| #define ADR_CFG_PADS_1_ADD2 (0x0 << (6+16)) |
| #define ADR_CFG_PADS_2_ADD2 (0x1 << (6+16)) |
| #define ADR_CFG_PADS_4_ADD2 (0x3 << (6+16)) |
| #define ADR_CFG_CSDEASSERT_ADD2 (1 << (8+16)) |
| |
| /* |
| * Register: SPI_FAST_SEQ_n |
| */ |
| #define SEQ_OPC_OPCODE(x) ((x) << 0) |
| #define SEQ_OPC_CYCLES(x) ((x) << 8) |
| #define SEQ_OPC_PADS_1 (0x0 << 14) |
| #define SEQ_OPC_PADS_2 (0x1 << 14) |
| #define SEQ_OPC_PADS_4 (0x3 << 14) |
| #define SEQ_OPC_CSDEASSERT (1 << 16) |
| |
| /* |
| * Register: SPI_FAST_SEQ_CFG |
| */ |
| #define SEQ_CFG_STARTSEQ (1 << 0) |
| #define SEQ_CFG_SWRESET (1 << 5) |
| #define SEQ_CFG_CSDEASSERT (1 << 6) |
| #define SEQ_CFG_READNOTWRITE (1 << 7) |
| #define SEQ_CFG_ERASE (1 << 8) |
| #define SEQ_CFG_PADS_1 (0x0 << 16) |
| #define SEQ_CFG_PADS_2 (0x1 << 16) |
| #define SEQ_CFG_PADS_4 (0x3 << 16) |
| |
| /* |
| * Register: SPI_MODE_BITS |
| */ |
| #define MODE_DATA(x) (x & 0xff) |
| #define MODE_CYCLES(x) ((x & 0x3f) << 16) |
| #define MODE_PADS_1 (0x0 << 22) |
| #define MODE_PADS_2 (0x1 << 22) |
| #define MODE_PADS_4 (0x3 << 22) |
| #define DUMMY_CSDEASSERT (1 << 24) |
| |
| /* |
| * Register: SPI_DUMMY_BITS |
| */ |
| #define DUMMY_CYCLES(x) ((x & 0x3f) << 16) |
| #define DUMMY_PADS_1 (0x0 << 22) |
| #define DUMMY_PADS_2 (0x1 << 22) |
| #define DUMMY_PADS_4 (0x3 << 22) |
| #define DUMMY_CSDEASSERT (1 << 24) |
| |
| /* |
| * Register: SPI_FAST_SEQ_FLASH_STA_DATA |
| */ |
| #define STA_DATA_BYTE1(x) ((x & 0xff) << 0) |
| #define STA_DATA_BYTE2(x) ((x & 0xff) << 8) |
| #define STA_PADS_1 (0x0 << 16) |
| #define STA_PADS_2 (0x1 << 16) |
| #define STA_PADS_4 (0x3 << 16) |
| #define STA_CSDEASSERT (0x1 << 20) |
| #define STA_RDNOTWR (0x1 << 21) |
| |
| /* |
| * FSM SPI Instruction Opcodes |
| */ |
| #define STFSM_OPC_CMD 0x1 |
| #define STFSM_OPC_ADD 0x2 |
| #define STFSM_OPC_STA 0x3 |
| #define STFSM_OPC_MODE 0x4 |
| #define STFSM_OPC_DUMMY 0x5 |
| #define STFSM_OPC_DATA 0x6 |
| #define STFSM_OPC_WAIT 0x7 |
| #define STFSM_OPC_JUMP 0x8 |
| #define STFSM_OPC_GOTO 0x9 |
| #define STFSM_OPC_STOP 0xF |
| |
| /* |
| * FSM SPI Instructions (== opcode + operand). |
| */ |
| #define STFSM_INSTR(cmd, op) ((cmd) | ((op) << 4)) |
| |
| #define STFSM_INST_CMD1 STFSM_INSTR(STFSM_OPC_CMD, 1) |
| #define STFSM_INST_CMD2 STFSM_INSTR(STFSM_OPC_CMD, 2) |
| #define STFSM_INST_CMD3 STFSM_INSTR(STFSM_OPC_CMD, 3) |
| #define STFSM_INST_CMD4 STFSM_INSTR(STFSM_OPC_CMD, 4) |
| #define STFSM_INST_CMD5 STFSM_INSTR(STFSM_OPC_CMD, 5) |
| #define STFSM_INST_ADD1 STFSM_INSTR(STFSM_OPC_ADD, 1) |
| #define STFSM_INST_ADD2 STFSM_INSTR(STFSM_OPC_ADD, 2) |
| |
| #define STFSM_INST_DATA_WRITE STFSM_INSTR(STFSM_OPC_DATA, 1) |
| #define STFSM_INST_DATA_READ STFSM_INSTR(STFSM_OPC_DATA, 2) |
| |
| #define STFSM_INST_STA_RD1 STFSM_INSTR(STFSM_OPC_STA, 0x1) |
| #define STFSM_INST_STA_WR1 STFSM_INSTR(STFSM_OPC_STA, 0x1) |
| #define STFSM_INST_STA_RD2 STFSM_INSTR(STFSM_OPC_STA, 0x2) |
| #define STFSM_INST_STA_WR1_2 STFSM_INSTR(STFSM_OPC_STA, 0x3) |
| |
| #define STFSM_INST_MODE STFSM_INSTR(STFSM_OPC_MODE, 0) |
| #define STFSM_INST_DUMMY STFSM_INSTR(STFSM_OPC_DUMMY, 0) |
| #define STFSM_INST_WAIT STFSM_INSTR(STFSM_OPC_WAIT, 0) |
| #define STFSM_INST_STOP STFSM_INSTR(STFSM_OPC_STOP, 0) |
| |
| #define STFSM_DEFAULT_EMI_FREQ 100000000UL /* 100 MHz */ |
| #define STFSM_DEFAULT_WR_TIME (STFSM_DEFAULT_EMI_FREQ * (15/1000)) /* 15ms */ |
| |
| #define STFSM_FLASH_SAFE_FREQ 10000000UL /* 10 MHz */ |
| |
| #define STFSM_MAX_WAIT_SEQ_MS 1000 /* FSM execution time */ |
| |
| /* S25FLxxxS commands */ |
| #define S25FL_CMD_WRITE4_1_1_4 0x34 |
| #define S25FL_CMD_SE4 0xdc |
| #define S25FL_CMD_CLSR 0x30 |
| #define S25FL_CMD_DYBWR 0xe1 |
| #define S25FL_CMD_DYBRD 0xe0 |
| #define S25FL_CMD_WRITE4 0x12 /* Note, opcode clashes with |
| * 'SPINOR_OP_WRITE_1_4_4' |
| * as found on N25Qxxx devices! */ |
| |
| /* Status register */ |
| #define FLASH_STATUS_BUSY 0x01 |
| #define FLASH_STATUS_WEL 0x02 |
| #define FLASH_STATUS_BP0 0x04 |
| #define FLASH_STATUS_BP1 0x08 |
| #define FLASH_STATUS_BP2 0x10 |
| #define FLASH_STATUS_SRWP0 0x80 |
| #define FLASH_STATUS_TIMEOUT 0xff |
| /* S25FL Error Flags */ |
| #define S25FL_STATUS_E_ERR 0x20 |
| #define S25FL_STATUS_P_ERR 0x40 |
| |
| #define N25Q_CMD_WRVCR 0x81 |
| #define N25Q_CMD_RDVCR 0x85 |
| #define N25Q_CMD_RDVECR 0x65 |
| #define N25Q_CMD_RDNVCR 0xb5 |
| #define N25Q_CMD_WRNVCR 0xb1 |
| |
| #define FLASH_PAGESIZE 256 /* In Bytes */ |
| #define FLASH_PAGESIZE_32 (FLASH_PAGESIZE / 4) /* In uint32_t */ |
| #define FLASH_MAX_BUSY_WAIT (300 * HZ) /* Maximum 'CHIPERASE' time */ |
| |
| /* |
| * Flags to tweak operation of default read/write/erase routines |
| */ |
| #define CFG_READ_TOGGLE_32BIT_ADDR 0x00000001 |
| #define CFG_WRITE_TOGGLE_32BIT_ADDR 0x00000002 |
| #define CFG_ERASESEC_TOGGLE_32BIT_ADDR 0x00000008 |
| #define CFG_S25FL_CHECK_ERROR_FLAGS 0x00000010 |
| |
| struct stfsm_seq { |
| uint32_t data_size; |
| uint32_t addr1; |
| uint32_t addr2; |
| uint32_t addr_cfg; |
| uint32_t seq_opc[5]; |
| uint32_t mode; |
| uint32_t dummy; |
| uint32_t status; |
| uint8_t seq[16]; |
| uint32_t seq_cfg; |
| } __packed __aligned(4); |
| |
| struct stfsm { |
| struct device *dev; |
| void __iomem *base; |
| struct resource *region; |
| struct mtd_info mtd; |
| struct mutex lock; |
| struct flash_info *info; |
| struct clk *clk; |
| |
| uint32_t configuration; |
| uint32_t fifo_dir_delay; |
| bool booted_from_spi; |
| bool reset_signal; |
| bool reset_por; |
| |
| struct stfsm_seq stfsm_seq_read; |
| struct stfsm_seq stfsm_seq_write; |
| struct stfsm_seq stfsm_seq_en_32bit_addr; |
| }; |
| |
| /* Parameters to configure a READ or WRITE FSM sequence */ |
| struct seq_rw_config { |
| uint32_t flags; /* flags to support config */ |
| uint8_t cmd; /* FLASH command */ |
| int write; /* Write Sequence */ |
| uint8_t addr_pads; /* No. of addr pads (MODE & DUMMY) */ |
| uint8_t data_pads; /* No. of data pads */ |
| uint8_t mode_data; /* MODE data */ |
| uint8_t mode_cycles; /* No. of MODE cycles */ |
| uint8_t dummy_cycles; /* No. of DUMMY cycles */ |
| }; |
| |
| /* SPI Flash Device Table */ |
| struct flash_info { |
| char *name; |
| /* |
| * JEDEC id zero means "no ID" (most older chips); otherwise it has |
| * a high byte of zero plus three data bytes: the manufacturer id, |
| * then a two byte device id. |
| */ |
| u32 jedec_id; |
| u16 ext_id; |
| /* |
| * The size listed here is what works with SPINOR_OP_SE, which isn't |
| * necessarily called a "sector" by the vendor. |
| */ |
| unsigned sector_size; |
| u16 n_sectors; |
| u32 flags; |
| /* |
| * Note, where FAST_READ is supported, freq_max specifies the |
| * FAST_READ frequency, not the READ frequency. |
| */ |
| u32 max_freq; |
| int (*config)(struct stfsm *); |
| }; |
| |
| static int stfsm_n25q_config(struct stfsm *fsm); |
| static int stfsm_mx25_config(struct stfsm *fsm); |
| static int stfsm_s25fl_config(struct stfsm *fsm); |
| static int stfsm_w25q_config(struct stfsm *fsm); |
| |
| static struct flash_info flash_types[] = { |
| /* |
| * ST Microelectronics/Numonyx -- |
| * (newer production versions may have feature updates |
| * (eg faster operating frequency) |
| */ |
| #define M25P_FLAG (FLASH_FLAG_READ_WRITE | FLASH_FLAG_READ_FAST) |
| { "m25p40", 0x202013, 0, 64 * 1024, 8, M25P_FLAG, 25, NULL }, |
| { "m25p80", 0x202014, 0, 64 * 1024, 16, M25P_FLAG, 25, NULL }, |
| { "m25p16", 0x202015, 0, 64 * 1024, 32, M25P_FLAG, 25, NULL }, |
| { "m25p32", 0x202016, 0, 64 * 1024, 64, M25P_FLAG, 50, NULL }, |
| { "m25p64", 0x202017, 0, 64 * 1024, 128, M25P_FLAG, 50, NULL }, |
| { "m25p128", 0x202018, 0, 256 * 1024, 64, M25P_FLAG, 50, NULL }, |
| |
| #define M25PX_FLAG (FLASH_FLAG_READ_WRITE | \ |
| FLASH_FLAG_READ_FAST | \ |
| FLASH_FLAG_READ_1_1_2 | \ |
| FLASH_FLAG_WRITE_1_1_2) |
| { "m25px32", 0x207116, 0, 64 * 1024, 64, M25PX_FLAG, 75, NULL }, |
| { "m25px64", 0x207117, 0, 64 * 1024, 128, M25PX_FLAG, 75, NULL }, |
| |
| /* Macronix MX25xxx |
| * - Support for 'FLASH_FLAG_WRITE_1_4_4' is omitted for devices |
| * where operating frequency must be reduced. |
| */ |
| #define MX25_FLAG (FLASH_FLAG_READ_WRITE | \ |
| FLASH_FLAG_READ_FAST | \ |
| FLASH_FLAG_READ_1_1_2 | \ |
| FLASH_FLAG_READ_1_2_2 | \ |
| FLASH_FLAG_READ_1_1_4 | \ |
| FLASH_FLAG_SE_4K | \ |
| FLASH_FLAG_SE_32K) |
| { "mx25l3255e", 0xc29e16, 0, 64 * 1024, 64, |
| (MX25_FLAG | FLASH_FLAG_WRITE_1_4_4), 86, |
| stfsm_mx25_config}, |
| { "mx25l25635e", 0xc22019, 0, 64*1024, 512, |
| (MX25_FLAG | FLASH_FLAG_32BIT_ADDR | FLASH_FLAG_RESET), 70, |
| stfsm_mx25_config }, |
| { "mx25l25655e", 0xc22619, 0, 64*1024, 512, |
| (MX25_FLAG | FLASH_FLAG_32BIT_ADDR | FLASH_FLAG_RESET), 70, |
| stfsm_mx25_config}, |
| |
| #define N25Q_FLAG (FLASH_FLAG_READ_WRITE | \ |
| FLASH_FLAG_READ_FAST | \ |
| FLASH_FLAG_READ_1_1_2 | \ |
| FLASH_FLAG_READ_1_2_2 | \ |
| FLASH_FLAG_READ_1_1_4 | \ |
| FLASH_FLAG_READ_1_4_4 | \ |
| FLASH_FLAG_WRITE_1_1_2 | \ |
| FLASH_FLAG_WRITE_1_2_2 | \ |
| FLASH_FLAG_WRITE_1_1_4 | \ |
| FLASH_FLAG_WRITE_1_4_4) |
| { "n25q128", 0x20ba18, 0, 64 * 1024, 256, N25Q_FLAG, 108, |
| stfsm_n25q_config }, |
| { "n25q256", 0x20ba19, 0, 64 * 1024, 512, |
| N25Q_FLAG | FLASH_FLAG_32BIT_ADDR, 108, stfsm_n25q_config }, |
| |
| /* |
| * Spansion S25FLxxxP |
| * - 256KiB and 64KiB sector variants (identified by ext. JEDEC) |
| */ |
| #define S25FLXXXP_FLAG (FLASH_FLAG_READ_WRITE | \ |
| FLASH_FLAG_READ_1_1_2 | \ |
| FLASH_FLAG_READ_1_2_2 | \ |
| FLASH_FLAG_READ_1_1_4 | \ |
| FLASH_FLAG_READ_1_4_4 | \ |
| FLASH_FLAG_WRITE_1_1_4 | \ |
| FLASH_FLAG_READ_FAST) |
| { "s25fl032p", 0x010215, 0x4d00, 64 * 1024, 64, S25FLXXXP_FLAG, 80, |
| stfsm_s25fl_config}, |
| { "s25fl129p0", 0x012018, 0x4d00, 256 * 1024, 64, S25FLXXXP_FLAG, 80, |
| stfsm_s25fl_config }, |
| { "s25fl129p1", 0x012018, 0x4d01, 64 * 1024, 256, S25FLXXXP_FLAG, 80, |
| stfsm_s25fl_config }, |
| |
| /* |
| * Spansion S25FLxxxS |
| * - 256KiB and 64KiB sector variants (identified by ext. JEDEC) |
| * - RESET# signal supported by die but not bristled out on all |
| * package types. The package type is a function of board design, |
| * so this information is captured in the board's flags. |
| * - Supports 'DYB' sector protection. Depending on variant, sectors |
| * may default to locked state on power-on. |
| */ |
| #define S25FLXXXS_FLAG (S25FLXXXP_FLAG | \ |
| FLASH_FLAG_RESET | \ |
| FLASH_FLAG_DYB_LOCKING) |
| { "s25fl128s0", 0x012018, 0x0300, 256 * 1024, 64, S25FLXXXS_FLAG, 80, |
| stfsm_s25fl_config }, |
| { "s25fl128s1", 0x012018, 0x0301, 64 * 1024, 256, S25FLXXXS_FLAG, 80, |
| stfsm_s25fl_config }, |
| { "s25fl256s0", 0x010219, 0x4d00, 256 * 1024, 128, |
| S25FLXXXS_FLAG | FLASH_FLAG_32BIT_ADDR, 80, stfsm_s25fl_config }, |
| { "s25fl256s1", 0x010219, 0x4d01, 64 * 1024, 512, |
| S25FLXXXS_FLAG | FLASH_FLAG_32BIT_ADDR, 80, stfsm_s25fl_config }, |
| |
| /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */ |
| #define W25X_FLAG (FLASH_FLAG_READ_WRITE | \ |
| FLASH_FLAG_READ_FAST | \ |
| FLASH_FLAG_READ_1_1_2 | \ |
| FLASH_FLAG_WRITE_1_1_2) |
| { "w25x40", 0xef3013, 0, 64 * 1024, 8, W25X_FLAG, 75, NULL }, |
| { "w25x80", 0xef3014, 0, 64 * 1024, 16, W25X_FLAG, 75, NULL }, |
| { "w25x16", 0xef3015, 0, 64 * 1024, 32, W25X_FLAG, 75, NULL }, |
| { "w25x32", 0xef3016, 0, 64 * 1024, 64, W25X_FLAG, 75, NULL }, |
| { "w25x64", 0xef3017, 0, 64 * 1024, 128, W25X_FLAG, 75, NULL }, |
| |
| /* Winbond -- w25q "blocks" are 64K, "sectors" are 4KiB */ |
| #define W25Q_FLAG (FLASH_FLAG_READ_WRITE | \ |
| FLASH_FLAG_READ_FAST | \ |
| FLASH_FLAG_READ_1_1_2 | \ |
| FLASH_FLAG_READ_1_2_2 | \ |
| FLASH_FLAG_READ_1_1_4 | \ |
| FLASH_FLAG_READ_1_4_4 | \ |
| FLASH_FLAG_WRITE_1_1_4) |
| { "w25q80", 0xef4014, 0, 64 * 1024, 16, W25Q_FLAG, 80, |
| stfsm_w25q_config }, |
| { "w25q16", 0xef4015, 0, 64 * 1024, 32, W25Q_FLAG, 80, |
| stfsm_w25q_config }, |
| { "w25q32", 0xef4016, 0, 64 * 1024, 64, W25Q_FLAG, 80, |
| stfsm_w25q_config }, |
| { "w25q64", 0xef4017, 0, 64 * 1024, 128, W25Q_FLAG, 80, |
| stfsm_w25q_config }, |
| |
| /* Sentinel */ |
| { NULL, 0x000000, 0, 0, 0, 0, 0, NULL }, |
| }; |
| |
| /* |
| * FSM message sequence configurations: |
| * |
| * All configs are presented in order of preference |
| */ |
| |
| /* Default READ configurations, in order of preference */ |
| static struct seq_rw_config default_read_configs[] = { |
| {FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ_1_4_4, 0, 4, 4, 0x00, 2, 4}, |
| {FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ_1_1_4, 0, 1, 4, 0x00, 4, 0}, |
| {FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ_1_2_2, 0, 2, 2, 0x00, 4, 0}, |
| {FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ_1_1_2, 0, 1, 2, 0x00, 0, 8}, |
| {FLASH_FLAG_READ_FAST, SPINOR_OP_READ_FAST, 0, 1, 1, 0x00, 0, 8}, |
| {FLASH_FLAG_READ_WRITE, SPINOR_OP_READ, 0, 1, 1, 0x00, 0, 0}, |
| {0x00, 0, 0, 0, 0, 0x00, 0, 0}, |
| }; |
| |
| /* Default WRITE configurations */ |
| static struct seq_rw_config default_write_configs[] = { |
| {FLASH_FLAG_WRITE_1_4_4, SPINOR_OP_WRITE_1_4_4, 1, 4, 4, 0x00, 0, 0}, |
| {FLASH_FLAG_WRITE_1_1_4, SPINOR_OP_WRITE_1_1_4, 1, 1, 4, 0x00, 0, 0}, |
| {FLASH_FLAG_WRITE_1_2_2, SPINOR_OP_WRITE_1_2_2, 1, 2, 2, 0x00, 0, 0}, |
| {FLASH_FLAG_WRITE_1_1_2, SPINOR_OP_WRITE_1_1_2, 1, 1, 2, 0x00, 0, 0}, |
| {FLASH_FLAG_READ_WRITE, SPINOR_OP_WRITE, 1, 1, 1, 0x00, 0, 0}, |
| {0x00, 0, 0, 0, 0, 0x00, 0, 0}, |
| }; |
| |
| /* |
| * [N25Qxxx] Configuration |
| */ |
| #define N25Q_VCR_DUMMY_CYCLES(x) (((x) & 0xf) << 4) |
| #define N25Q_VCR_XIP_DISABLED ((uint8_t)0x1 << 3) |
| #define N25Q_VCR_WRAP_CONT 0x3 |
| |
| /* N25Q 3-byte Address READ configurations |
| * - 'FAST' variants configured for 8 dummy cycles. |
| * |
| * Note, the number of dummy cycles used for 'FAST' READ operations is |
| * configurable and would normally be tuned according to the READ command and |
| * operating frequency. However, this applies universally to all 'FAST' READ |
| * commands, including those used by the SPIBoot controller, and remains in |
| * force until the device is power-cycled. Since the SPIBoot controller is |
| * hard-wired to use 8 dummy cycles, we must configure the device to also use 8 |
| * cycles. |
| */ |
| static struct seq_rw_config n25q_read3_configs[] = { |
| {FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ_1_4_4, 0, 4, 4, 0x00, 0, 8}, |
| {FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ_1_1_4, 0, 1, 4, 0x00, 0, 8}, |
| {FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ_1_2_2, 0, 2, 2, 0x00, 0, 8}, |
| {FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ_1_1_2, 0, 1, 2, 0x00, 0, 8}, |
| {FLASH_FLAG_READ_FAST, SPINOR_OP_READ_FAST, 0, 1, 1, 0x00, 0, 8}, |
| {FLASH_FLAG_READ_WRITE, SPINOR_OP_READ, 0, 1, 1, 0x00, 0, 0}, |
| {0x00, 0, 0, 0, 0, 0x00, 0, 0}, |
| }; |
| |
| /* N25Q 4-byte Address READ configurations |
| * - use special 4-byte address READ commands (reduces overheads, and |
| * reduces risk of hitting watchdog reset issues). |
| * - 'FAST' variants configured for 8 dummy cycles (see note above.) |
| */ |
| static struct seq_rw_config n25q_read4_configs[] = { |
| {FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ4_1_4_4, 0, 4, 4, 0x00, 0, 8}, |
| {FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ4_1_1_4, 0, 1, 4, 0x00, 0, 8}, |
| {FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ4_1_2_2, 0, 2, 2, 0x00, 0, 8}, |
| {FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ4_1_1_2, 0, 1, 2, 0x00, 0, 8}, |
| {FLASH_FLAG_READ_FAST, SPINOR_OP_READ4_FAST, 0, 1, 1, 0x00, 0, 8}, |
| {FLASH_FLAG_READ_WRITE, SPINOR_OP_READ4, 0, 1, 1, 0x00, 0, 0}, |
| {0x00, 0, 0, 0, 0, 0x00, 0, 0}, |
| }; |
| |
| /* |
| * [MX25xxx] Configuration |
| */ |
| #define MX25_STATUS_QE (0x1 << 6) |
| |
| static int stfsm_mx25_en_32bit_addr_seq(struct stfsm_seq *seq) |
| { |
| seq->seq_opc[0] = (SEQ_OPC_PADS_1 | |
| SEQ_OPC_CYCLES(8) | |
| SEQ_OPC_OPCODE(SPINOR_OP_EN4B) | |
| SEQ_OPC_CSDEASSERT); |
| |
| seq->seq[0] = STFSM_INST_CMD1; |
| seq->seq[1] = STFSM_INST_WAIT; |
| seq->seq[2] = STFSM_INST_STOP; |
| |
| seq->seq_cfg = (SEQ_CFG_PADS_1 | |
| SEQ_CFG_ERASE | |
| SEQ_CFG_READNOTWRITE | |
| SEQ_CFG_CSDEASSERT | |
| SEQ_CFG_STARTSEQ); |
| |
| return 0; |
| } |
| |
| /* |
| * [S25FLxxx] Configuration |
| */ |
| #define STFSM_S25FL_CONFIG_QE (0x1 << 1) |
| |
| /* |
| * S25FLxxxS devices provide three ways of supporting 32-bit addressing: Bank |
| * Register, Extended Address Modes, and a 32-bit address command set. The |
| * 32-bit address command set is used here, since it avoids any problems with |
| * entering a state that is incompatible with the SPIBoot Controller. |
| */ |
| static struct seq_rw_config stfsm_s25fl_read4_configs[] = { |
| {FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ4_1_4_4, 0, 4, 4, 0x00, 2, 4}, |
| {FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ4_1_1_4, 0, 1, 4, 0x00, 0, 8}, |
| {FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ4_1_2_2, 0, 2, 2, 0x00, 4, 0}, |
| {FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ4_1_1_2, 0, 1, 2, 0x00, 0, 8}, |
| {FLASH_FLAG_READ_FAST, SPINOR_OP_READ4_FAST, 0, 1, 1, 0x00, 0, 8}, |
| {FLASH_FLAG_READ_WRITE, SPINOR_OP_READ4, 0, 1, 1, 0x00, 0, 0}, |
| {0x00, 0, 0, 0, 0, 0x00, 0, 0}, |
| }; |
| |
| static struct seq_rw_config stfsm_s25fl_write4_configs[] = { |
| {FLASH_FLAG_WRITE_1_1_4, S25FL_CMD_WRITE4_1_1_4, 1, 1, 4, 0x00, 0, 0}, |
| {FLASH_FLAG_READ_WRITE, S25FL_CMD_WRITE4, 1, 1, 1, 0x00, 0, 0}, |
| {0x00, 0, 0, 0, 0, 0x00, 0, 0}, |
| }; |
| |
| /* |
| * [W25Qxxx] Configuration |
| */ |
| #define W25Q_STATUS_QE (0x1 << 1) |
| |
| static struct stfsm_seq stfsm_seq_read_jedec = { |
| .data_size = TRANSFER_SIZE(8), |
| .seq_opc[0] = (SEQ_OPC_PADS_1 | |
| SEQ_OPC_CYCLES(8) | |
| SEQ_OPC_OPCODE(SPINOR_OP_RDID)), |
| .seq = { |
| STFSM_INST_CMD1, |
| STFSM_INST_DATA_READ, |
| STFSM_INST_STOP, |
| }, |
| .seq_cfg = (SEQ_CFG_PADS_1 | |
| SEQ_CFG_READNOTWRITE | |
| SEQ_CFG_CSDEASSERT | |
| SEQ_CFG_STARTSEQ), |
| }; |
| |
| static struct stfsm_seq stfsm_seq_read_status_fifo = { |
| .data_size = TRANSFER_SIZE(4), |
| .seq_opc[0] = (SEQ_OPC_PADS_1 | |
| SEQ_OPC_CYCLES(8) | |
| SEQ_OPC_OPCODE(SPINOR_OP_RDSR)), |
| .seq = { |
| STFSM_INST_CMD1, |
| STFSM_INST_DATA_READ, |
| STFSM_INST_STOP, |
| }, |
| .seq_cfg = (SEQ_CFG_PADS_1 | |
| SEQ_CFG_READNOTWRITE | |
| SEQ_CFG_CSDEASSERT | |
| SEQ_CFG_STARTSEQ), |
| }; |
| |
| static struct stfsm_seq stfsm_seq_erase_sector = { |
| /* 'addr_cfg' configured during initialisation */ |
| .seq_opc = { |
| (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | |
| SEQ_OPC_OPCODE(SPINOR_OP_WREN) | SEQ_OPC_CSDEASSERT), |
| |
| (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | |
| SEQ_OPC_OPCODE(SPINOR_OP_SE)), |
| }, |
| .seq = { |
| STFSM_INST_CMD1, |
| STFSM_INST_CMD2, |
| STFSM_INST_ADD1, |
| STFSM_INST_ADD2, |
| STFSM_INST_STOP, |
| }, |
| .seq_cfg = (SEQ_CFG_PADS_1 | |
| SEQ_CFG_READNOTWRITE | |
| SEQ_CFG_CSDEASSERT | |
| SEQ_CFG_STARTSEQ), |
| }; |
| |
| static struct stfsm_seq stfsm_seq_erase_chip = { |
| .seq_opc = { |
| (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | |
| SEQ_OPC_OPCODE(SPINOR_OP_WREN) | SEQ_OPC_CSDEASSERT), |
| |
| (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | |
| SEQ_OPC_OPCODE(SPINOR_OP_CHIP_ERASE) | SEQ_OPC_CSDEASSERT), |
| }, |
| .seq = { |
| STFSM_INST_CMD1, |
| STFSM_INST_CMD2, |
| STFSM_INST_WAIT, |
| STFSM_INST_STOP, |
| }, |
| .seq_cfg = (SEQ_CFG_PADS_1 | |
| SEQ_CFG_ERASE | |
| SEQ_CFG_READNOTWRITE | |
| SEQ_CFG_CSDEASSERT | |
| SEQ_CFG_STARTSEQ), |
| }; |
| |
| static struct stfsm_seq stfsm_seq_write_status = { |
| .seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | |
| SEQ_OPC_OPCODE(SPINOR_OP_WREN) | SEQ_OPC_CSDEASSERT), |
| .seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | |
| SEQ_OPC_OPCODE(SPINOR_OP_WRSR)), |
| .seq = { |
| STFSM_INST_CMD1, |
| STFSM_INST_CMD2, |
| STFSM_INST_STA_WR1, |
| STFSM_INST_STOP, |
| }, |
| .seq_cfg = (SEQ_CFG_PADS_1 | |
| SEQ_CFG_READNOTWRITE | |
| SEQ_CFG_CSDEASSERT | |
| SEQ_CFG_STARTSEQ), |
| }; |
| |
| /* Dummy sequence to read one byte of data from flash into the FIFO */ |
| static const struct stfsm_seq stfsm_seq_load_fifo_byte = { |
| .data_size = TRANSFER_SIZE(1), |
| .seq_opc[0] = (SEQ_OPC_PADS_1 | |
| SEQ_OPC_CYCLES(8) | |
| SEQ_OPC_OPCODE(SPINOR_OP_RDID)), |
| .seq = { |
| STFSM_INST_CMD1, |
| STFSM_INST_DATA_READ, |
| STFSM_INST_STOP, |
| }, |
| .seq_cfg = (SEQ_CFG_PADS_1 | |
| SEQ_CFG_READNOTWRITE | |
| SEQ_CFG_CSDEASSERT | |
| SEQ_CFG_STARTSEQ), |
| }; |
| |
| static int stfsm_n25q_en_32bit_addr_seq(struct stfsm_seq *seq) |
| { |
| seq->seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | |
| SEQ_OPC_OPCODE(SPINOR_OP_EN4B)); |
| seq->seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | |
| SEQ_OPC_OPCODE(SPINOR_OP_WREN) | |
| SEQ_OPC_CSDEASSERT); |
| |
| seq->seq[0] = STFSM_INST_CMD2; |
| seq->seq[1] = STFSM_INST_CMD1; |
| seq->seq[2] = STFSM_INST_WAIT; |
| seq->seq[3] = STFSM_INST_STOP; |
| |
| seq->seq_cfg = (SEQ_CFG_PADS_1 | |
| SEQ_CFG_ERASE | |
| SEQ_CFG_READNOTWRITE | |
| SEQ_CFG_CSDEASSERT | |
| SEQ_CFG_STARTSEQ); |
| |
| return 0; |
| } |
| |
| static inline int stfsm_is_idle(struct stfsm *fsm) |
| { |
| return readl(fsm->base + SPI_FAST_SEQ_STA) & 0x10; |
| } |
| |
| static inline uint32_t stfsm_fifo_available(struct stfsm *fsm) |
| { |
| return (readl(fsm->base + SPI_FAST_SEQ_STA) >> 5) & 0x7f; |
| } |
| |
| static inline void stfsm_load_seq(struct stfsm *fsm, |
| const struct stfsm_seq *seq) |
| { |
| void __iomem *dst = fsm->base + SPI_FAST_SEQ_TRANSFER_SIZE; |
| const uint32_t *src = (const uint32_t *)seq; |
| int words = sizeof(*seq) / sizeof(*src); |
| |
| BUG_ON(!stfsm_is_idle(fsm)); |
| |
| while (words--) { |
| writel(*src, dst); |
| src++; |
| dst += 4; |
| } |
| } |
| |
| static void stfsm_wait_seq(struct stfsm *fsm) |
| { |
| unsigned long deadline; |
| int timeout = 0; |
| |
| deadline = jiffies + msecs_to_jiffies(STFSM_MAX_WAIT_SEQ_MS); |
| |
| while (!timeout) { |
| if (time_after_eq(jiffies, deadline)) |
| timeout = 1; |
| |
| if (stfsm_is_idle(fsm)) |
| return; |
| |
| cond_resched(); |
| } |
| |
| dev_err(fsm->dev, "timeout on sequence completion\n"); |
| } |
| |
| static void stfsm_read_fifo(struct stfsm *fsm, uint32_t *buf, uint32_t size) |
| { |
| uint32_t remaining = size >> 2; |
| uint32_t avail; |
| uint32_t words; |
| |
| dev_dbg(fsm->dev, "Reading %d bytes from FIFO\n", size); |
| |
| BUG_ON((((uintptr_t)buf) & 0x3) || (size & 0x3)); |
| |
| while (remaining) { |
| for (;;) { |
| avail = stfsm_fifo_available(fsm); |
| if (avail) |
| break; |
| udelay(1); |
| } |
| words = min(avail, remaining); |
| remaining -= words; |
| |
| readsl(fsm->base + SPI_FAST_SEQ_DATA_REG, buf, words); |
| buf += words; |
| } |
| } |
| |
| /* |
| * Clear the data FIFO |
| * |
| * Typically, this is only required during driver initialisation, where no |
| * assumptions can be made regarding the state of the FIFO. |
| * |
| * The process of clearing the FIFO is complicated by fact that while it is |
| * possible for the FIFO to contain an arbitrary number of bytes [1], the |
| * SPI_FAST_SEQ_STA register only reports the number of complete 32-bit words |
| * present. Furthermore, data can only be drained from the FIFO by reading |
| * complete 32-bit words. |
| * |
| * With this in mind, a two stage process is used to the clear the FIFO: |
| * |
| * 1. Read any complete 32-bit words from the FIFO, as reported by the |
| * SPI_FAST_SEQ_STA register. |
| * |
| * 2. Mop up any remaining bytes. At this point, it is not known if there |
| * are 0, 1, 2, or 3 bytes in the FIFO. To handle all cases, a dummy FSM |
| * sequence is used to load one byte at a time, until a complete 32-bit |
| * word is formed; at most, 4 bytes will need to be loaded. |
| * |
| * [1] It is theoretically possible for the FIFO to contain an arbitrary number |
| * of bits. However, since there are no known use-cases that leave |
| * incomplete bytes in the FIFO, only words and bytes are considered here. |
| */ |
| static void stfsm_clear_fifo(struct stfsm *fsm) |
| { |
| const struct stfsm_seq *seq = &stfsm_seq_load_fifo_byte; |
| uint32_t words, i; |
| |
| /* 1. Clear any 32-bit words */ |
| words = stfsm_fifo_available(fsm); |
| if (words) { |
| for (i = 0; i < words; i++) |
| readl(fsm->base + SPI_FAST_SEQ_DATA_REG); |
| dev_dbg(fsm->dev, "cleared %d words from FIFO\n", words); |
| } |
| |
| /* |
| * 2. Clear any remaining bytes |
| * - Load the FIFO, one byte at a time, until a complete 32-bit word |
| * is available. |
| */ |
| for (i = 0, words = 0; i < 4 && !words; i++) { |
| stfsm_load_seq(fsm, seq); |
| stfsm_wait_seq(fsm); |
| words = stfsm_fifo_available(fsm); |
| } |
| |
| /* - A single word must be available now */ |
| if (words != 1) { |
| dev_err(fsm->dev, "failed to clear bytes from the data FIFO\n"); |
| return; |
| } |
| |
| /* - Read the 32-bit word */ |
| readl(fsm->base + SPI_FAST_SEQ_DATA_REG); |
| |
| dev_dbg(fsm->dev, "cleared %d byte(s) from the data FIFO\n", 4 - i); |
| } |
| |
| static int stfsm_write_fifo(struct stfsm *fsm, const uint32_t *buf, |
| uint32_t size) |
| { |
| uint32_t words = size >> 2; |
| |
| dev_dbg(fsm->dev, "writing %d bytes to FIFO\n", size); |
| |
| BUG_ON((((uintptr_t)buf) & 0x3) || (size & 0x3)); |
| |
| writesl(fsm->base + SPI_FAST_SEQ_DATA_REG, buf, words); |
| |
| return size; |
| } |
| |
| static int stfsm_enter_32bit_addr(struct stfsm *fsm, int enter) |
| { |
| struct stfsm_seq *seq = &fsm->stfsm_seq_en_32bit_addr; |
| uint32_t cmd = enter ? SPINOR_OP_EN4B : SPINOR_OP_EX4B; |
| |
| seq->seq_opc[0] = (SEQ_OPC_PADS_1 | |
| SEQ_OPC_CYCLES(8) | |
| SEQ_OPC_OPCODE(cmd) | |
| SEQ_OPC_CSDEASSERT); |
| |
| stfsm_load_seq(fsm, seq); |
| |
| stfsm_wait_seq(fsm); |
| |
| return 0; |
| } |
| |
| static uint8_t stfsm_wait_busy(struct stfsm *fsm) |
| { |
| struct stfsm_seq *seq = &stfsm_seq_read_status_fifo; |
| unsigned long deadline; |
| uint32_t status; |
| int timeout = 0; |
| |
| /* Use RDRS1 */ |
| seq->seq_opc[0] = (SEQ_OPC_PADS_1 | |
| SEQ_OPC_CYCLES(8) | |
| SEQ_OPC_OPCODE(SPINOR_OP_RDSR)); |
| |
| /* Load read_status sequence */ |
| stfsm_load_seq(fsm, seq); |
| |
| /* |
| * Repeat until busy bit is deasserted, or timeout, or error (S25FLxxxS) |
| */ |
| deadline = jiffies + FLASH_MAX_BUSY_WAIT; |
| while (!timeout) { |
| if (time_after_eq(jiffies, deadline)) |
| timeout = 1; |
| |
| stfsm_wait_seq(fsm); |
| |
| stfsm_read_fifo(fsm, &status, 4); |
| |
| if ((status & FLASH_STATUS_BUSY) == 0) |
| return 0; |
| |
| if ((fsm->configuration & CFG_S25FL_CHECK_ERROR_FLAGS) && |
| ((status & S25FL_STATUS_P_ERR) || |
| (status & S25FL_STATUS_E_ERR))) |
| return (uint8_t)(status & 0xff); |
| |
| if (!timeout) |
| /* Restart */ |
| writel(seq->seq_cfg, fsm->base + SPI_FAST_SEQ_CFG); |
| |
| cond_resched(); |
| } |
| |
| dev_err(fsm->dev, "timeout on wait_busy\n"); |
| |
| return FLASH_STATUS_TIMEOUT; |
| } |
| |
| static int stfsm_read_status(struct stfsm *fsm, uint8_t cmd, |
| uint8_t *data, int bytes) |
| { |
| struct stfsm_seq *seq = &stfsm_seq_read_status_fifo; |
| uint32_t tmp; |
| uint8_t *t = (uint8_t *)&tmp; |
| int i; |
| |
| dev_dbg(fsm->dev, "read 'status' register [0x%02x], %d byte(s)\n", |
| cmd, bytes); |
| |
| BUG_ON(bytes != 1 && bytes != 2); |
| |
| seq->seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | |
| SEQ_OPC_OPCODE(cmd)), |
| |
| stfsm_load_seq(fsm, seq); |
| |
| stfsm_read_fifo(fsm, &tmp, 4); |
| |
| for (i = 0; i < bytes; i++) |
| data[i] = t[i]; |
| |
| stfsm_wait_seq(fsm); |
| |
| return 0; |
| } |
| |
| static int stfsm_write_status(struct stfsm *fsm, uint8_t cmd, |
| uint16_t data, int bytes, int wait_busy) |
| { |
| struct stfsm_seq *seq = &stfsm_seq_write_status; |
| |
| dev_dbg(fsm->dev, |
| "write 'status' register [0x%02x], %d byte(s), 0x%04x\n" |
| " %s wait-busy\n", cmd, bytes, data, wait_busy ? "with" : "no"); |
| |
| BUG_ON(bytes != 1 && bytes != 2); |
| |
| seq->seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | |
| SEQ_OPC_OPCODE(cmd)); |
| |
| seq->status = (uint32_t)data | STA_PADS_1 | STA_CSDEASSERT; |
| seq->seq[2] = (bytes == 1) ? STFSM_INST_STA_WR1 : STFSM_INST_STA_WR1_2; |
| |
| stfsm_load_seq(fsm, seq); |
| |
| stfsm_wait_seq(fsm); |
| |
| if (wait_busy) |
| stfsm_wait_busy(fsm); |
| |
| return 0; |
| } |
| |
| /* |
| * SoC reset on 'boot-from-spi' systems |
| * |
| * Certain modes of operation cause the Flash device to enter a particular state |
| * for a period of time (e.g. 'Erase Sector', 'Quad Enable', and 'Enter 32-bit |
| * Addr' commands). On boot-from-spi systems, it is important to consider what |
| * happens if a warm reset occurs during this period. The SPIBoot controller |
| * assumes that Flash device is in its default reset state, 24-bit address mode, |
| * and ready to accept commands. This can be achieved using some form of |
| * on-board logic/controller to force a device POR in response to a SoC-level |
| * reset or by making use of the device reset signal if available (limited |
| * number of devices only). |
| * |
| * Failure to take such precautions can cause problems following a warm reset. |
| * For some operations (e.g. ERASE), there is little that can be done. For |
| * other modes of operation (e.g. 32-bit addressing), options are often |
| * available that can help minimise the window in which a reset could cause a |
| * problem. |
| * |
| */ |
| static bool stfsm_can_handle_soc_reset(struct stfsm *fsm) |
| { |
| /* Reset signal is available on the board and supported by the device */ |
| if (fsm->reset_signal && fsm->info->flags & FLASH_FLAG_RESET) |
| return true; |
| |
| /* Board-level logic forces a power-on-reset */ |
| if (fsm->reset_por) |
| return true; |
| |
| /* Reset is not properly handled and may result in failure to reboot */ |
| return false; |
| } |
| |
| /* Configure 'addr_cfg' according to addressing mode */ |
| static void stfsm_prepare_erasesec_seq(struct stfsm *fsm, |
| struct stfsm_seq *seq) |
| { |
| int addr1_cycles = fsm->info->flags & FLASH_FLAG_32BIT_ADDR ? 16 : 8; |
| |
| seq->addr_cfg = (ADR_CFG_CYCLES_ADD1(addr1_cycles) | |
| ADR_CFG_PADS_1_ADD1 | |
| ADR_CFG_CYCLES_ADD2(16) | |
| ADR_CFG_PADS_1_ADD2 | |
| ADR_CFG_CSDEASSERT_ADD2); |
| } |
| |
| /* Search for preferred configuration based on available flags */ |
| static struct seq_rw_config * |
| stfsm_search_seq_rw_configs(struct stfsm *fsm, |
| struct seq_rw_config cfgs[]) |
| { |
| struct seq_rw_config *config; |
| int flags = fsm->info->flags; |
| |
| for (config = cfgs; config->cmd != 0; config++) |
| if ((config->flags & flags) == config->flags) |
| return config; |
| |
| return NULL; |
| } |
| |
| /* Prepare a READ/WRITE sequence according to configuration parameters */ |
| static void stfsm_prepare_rw_seq(struct stfsm *fsm, |
| struct stfsm_seq *seq, |
| struct seq_rw_config *cfg) |
| { |
| int addr1_cycles, addr2_cycles; |
| int i = 0; |
| |
| memset(seq, 0, sizeof(*seq)); |
| |
| /* Add READ/WRITE OPC */ |
| seq->seq_opc[i++] = (SEQ_OPC_PADS_1 | |
| SEQ_OPC_CYCLES(8) | |
| SEQ_OPC_OPCODE(cfg->cmd)); |
| |
| /* Add WREN OPC for a WRITE sequence */ |
| if (cfg->write) |
| seq->seq_opc[i++] = (SEQ_OPC_PADS_1 | |
| SEQ_OPC_CYCLES(8) | |
| SEQ_OPC_OPCODE(SPINOR_OP_WREN) | |
| SEQ_OPC_CSDEASSERT); |
| |
| /* Address configuration (24 or 32-bit addresses) */ |
| addr1_cycles = (fsm->info->flags & FLASH_FLAG_32BIT_ADDR) ? 16 : 8; |
| addr1_cycles /= cfg->addr_pads; |
| addr2_cycles = 16 / cfg->addr_pads; |
| seq->addr_cfg = ((addr1_cycles & 0x3f) << 0 | /* ADD1 cycles */ |
| (cfg->addr_pads - 1) << 6 | /* ADD1 pads */ |
| (addr2_cycles & 0x3f) << 16 | /* ADD2 cycles */ |
| ((cfg->addr_pads - 1) << 22)); /* ADD2 pads */ |
| |
| /* Data/Sequence configuration */ |
| seq->seq_cfg = ((cfg->data_pads - 1) << 16 | |
| SEQ_CFG_STARTSEQ | |
| SEQ_CFG_CSDEASSERT); |
| if (!cfg->write) |
| seq->seq_cfg |= SEQ_CFG_READNOTWRITE; |
| |
| /* Mode configuration (no. of pads taken from addr cfg) */ |
| seq->mode = ((cfg->mode_data & 0xff) << 0 | /* data */ |
| (cfg->mode_cycles & 0x3f) << 16 | /* cycles */ |
| (cfg->addr_pads - 1) << 22); /* pads */ |
| |
| /* Dummy configuration (no. of pads taken from addr cfg) */ |
| seq->dummy = ((cfg->dummy_cycles & 0x3f) << 16 | /* cycles */ |
| (cfg->addr_pads - 1) << 22); /* pads */ |
| |
| |
| /* Instruction sequence */ |
| i = 0; |
| if (cfg->write) |
| seq->seq[i++] = STFSM_INST_CMD2; |
| |
| seq->seq[i++] = STFSM_INST_CMD1; |
| |
| seq->seq[i++] = STFSM_INST_ADD1; |
| seq->seq[i++] = STFSM_INST_ADD2; |
| |
| if (cfg->mode_cycles) |
| seq->seq[i++] = STFSM_INST_MODE; |
| |
| if (cfg->dummy_cycles) |
| seq->seq[i++] = STFSM_INST_DUMMY; |
| |
| seq->seq[i++] = |
| cfg->write ? STFSM_INST_DATA_WRITE : STFSM_INST_DATA_READ; |
| seq->seq[i++] = STFSM_INST_STOP; |
| } |
| |
| static int stfsm_search_prepare_rw_seq(struct stfsm *fsm, |
| struct stfsm_seq *seq, |
| struct seq_rw_config *cfgs) |
| { |
| struct seq_rw_config *config; |
| |
| config = stfsm_search_seq_rw_configs(fsm, cfgs); |
| if (!config) { |
| dev_err(fsm->dev, "failed to find suitable config\n"); |
| return -EINVAL; |
| } |
| |
| stfsm_prepare_rw_seq(fsm, seq, config); |
| |
| return 0; |
| } |
| |
| /* Prepare a READ/WRITE/ERASE 'default' sequences */ |
| static int stfsm_prepare_rwe_seqs_default(struct stfsm *fsm) |
| { |
| uint32_t flags = fsm->info->flags; |
| int ret; |
| |
| /* Configure 'READ' sequence */ |
| ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read, |
| default_read_configs); |
| if (ret) { |
| dev_err(fsm->dev, |
| "failed to prep READ sequence with flags [0x%08x]\n", |
| flags); |
| return ret; |
| } |
| |
| /* Configure 'WRITE' sequence */ |
| ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_write, |
| default_write_configs); |
| if (ret) { |
| dev_err(fsm->dev, |
| "failed to prep WRITE sequence with flags [0x%08x]\n", |
| flags); |
| return ret; |
| } |
| |
| /* Configure 'ERASE_SECTOR' sequence */ |
| stfsm_prepare_erasesec_seq(fsm, &stfsm_seq_erase_sector); |
| |
| return 0; |
| } |
| |
| static int stfsm_mx25_config(struct stfsm *fsm) |
| { |
| uint32_t flags = fsm->info->flags; |
| uint32_t data_pads; |
| uint8_t sta; |
| int ret; |
| bool soc_reset; |
| |
| /* |
| * Use default READ/WRITE sequences |
| */ |
| ret = stfsm_prepare_rwe_seqs_default(fsm); |
| if (ret) |
| return ret; |
| |
| /* |
| * Configure 32-bit Address Support |
| */ |
| if (flags & FLASH_FLAG_32BIT_ADDR) { |
| /* Configure 'enter_32bitaddr' FSM sequence */ |
| stfsm_mx25_en_32bit_addr_seq(&fsm->stfsm_seq_en_32bit_addr); |
| |
| soc_reset = stfsm_can_handle_soc_reset(fsm); |
| if (soc_reset || !fsm->booted_from_spi) |
| /* If we can handle SoC resets, we enable 32-bit address |
| * mode pervasively */ |
| stfsm_enter_32bit_addr(fsm, 1); |
| |
| else |
| /* Else, enable/disable 32-bit addressing before/after |
| * each operation */ |
| fsm->configuration = (CFG_READ_TOGGLE_32BIT_ADDR | |
| CFG_WRITE_TOGGLE_32BIT_ADDR | |
| CFG_ERASESEC_TOGGLE_32BIT_ADDR); |
| } |
| |
| /* Check status of 'QE' bit, update if required. */ |
| stfsm_read_status(fsm, SPINOR_OP_RDSR, &sta, 1); |
| data_pads = ((fsm->stfsm_seq_read.seq_cfg >> 16) & 0x3) + 1; |
| if (data_pads == 4) { |
| if (!(sta & MX25_STATUS_QE)) { |
| /* Set 'QE' */ |
| sta |= MX25_STATUS_QE; |
| |
| stfsm_write_status(fsm, SPINOR_OP_WRSR, sta, 1, 1); |
| } |
| } else { |
| if (sta & MX25_STATUS_QE) { |
| /* Clear 'QE' */ |
| sta &= ~MX25_STATUS_QE; |
| |
| stfsm_write_status(fsm, SPINOR_OP_WRSR, sta, 1, 1); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int stfsm_n25q_config(struct stfsm *fsm) |
| { |
| uint32_t flags = fsm->info->flags; |
| uint8_t vcr; |
| int ret = 0; |
| bool soc_reset; |
| |
| /* Configure 'READ' sequence */ |
| if (flags & FLASH_FLAG_32BIT_ADDR) |
| ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read, |
| n25q_read4_configs); |
| else |
| ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read, |
| n25q_read3_configs); |
| if (ret) { |
| dev_err(fsm->dev, |
| "failed to prepare READ sequence with flags [0x%08x]\n", |
| flags); |
| return ret; |
| } |
| |
| /* Configure 'WRITE' sequence (default configs) */ |
| ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_write, |
| default_write_configs); |
| if (ret) { |
| dev_err(fsm->dev, |
| "preparing WRITE sequence using flags [0x%08x] failed\n", |
| flags); |
| return ret; |
| } |
| |
| /* * Configure 'ERASE_SECTOR' sequence */ |
| stfsm_prepare_erasesec_seq(fsm, &stfsm_seq_erase_sector); |
| |
| /* Configure 32-bit address support */ |
| if (flags & FLASH_FLAG_32BIT_ADDR) { |
| stfsm_n25q_en_32bit_addr_seq(&fsm->stfsm_seq_en_32bit_addr); |
| |
| soc_reset = stfsm_can_handle_soc_reset(fsm); |
| if (soc_reset || !fsm->booted_from_spi) { |
| /* |
| * If we can handle SoC resets, we enable 32-bit |
| * address mode pervasively |
| */ |
| stfsm_enter_32bit_addr(fsm, 1); |
| } else { |
| /* |
| * If not, enable/disable for WRITE and ERASE |
| * operations (READ uses special commands) |
| */ |
| fsm->configuration = (CFG_WRITE_TOGGLE_32BIT_ADDR | |
| CFG_ERASESEC_TOGGLE_32BIT_ADDR); |
| } |
| } |
| |
| /* |
| * Configure device to use 8 dummy cycles |
| */ |
| vcr = (N25Q_VCR_DUMMY_CYCLES(8) | N25Q_VCR_XIP_DISABLED | |
| N25Q_VCR_WRAP_CONT); |
| stfsm_write_status(fsm, N25Q_CMD_WRVCR, vcr, 1, 0); |
| |
| return 0; |
| } |
| |
| static void stfsm_s25fl_prepare_erasesec_seq_32(struct stfsm_seq *seq) |
| { |
| seq->seq_opc[1] = (SEQ_OPC_PADS_1 | |
| SEQ_OPC_CYCLES(8) | |
| SEQ_OPC_OPCODE(S25FL_CMD_SE4)); |
| |
| seq->addr_cfg = (ADR_CFG_CYCLES_ADD1(16) | |
| ADR_CFG_PADS_1_ADD1 | |
| ADR_CFG_CYCLES_ADD2(16) | |
| ADR_CFG_PADS_1_ADD2 | |
| ADR_CFG_CSDEASSERT_ADD2); |
| } |
| |
| static void stfsm_s25fl_read_dyb(struct stfsm *fsm, uint32_t offs, uint8_t *dby) |
| { |
| uint32_t tmp; |
| struct stfsm_seq seq = { |
| .data_size = TRANSFER_SIZE(4), |
| .seq_opc[0] = (SEQ_OPC_PADS_1 | |
| SEQ_OPC_CYCLES(8) | |
| SEQ_OPC_OPCODE(S25FL_CMD_DYBRD)), |
| .addr_cfg = (ADR_CFG_CYCLES_ADD1(16) | |
| ADR_CFG_PADS_1_ADD1 | |
| ADR_CFG_CYCLES_ADD2(16) | |
| ADR_CFG_PADS_1_ADD2), |
| .addr1 = (offs >> 16) & 0xffff, |
| .addr2 = offs & 0xffff, |
| .seq = { |
| STFSM_INST_CMD1, |
| STFSM_INST_ADD1, |
| STFSM_INST_ADD2, |
| STFSM_INST_DATA_READ, |
| STFSM_INST_STOP, |
| }, |
| .seq_cfg = (SEQ_CFG_PADS_1 | |
| SEQ_CFG_READNOTWRITE | |
| SEQ_CFG_CSDEASSERT | |
| SEQ_CFG_STARTSEQ), |
| }; |
| |
| stfsm_load_seq(fsm, &seq); |
| |
| stfsm_read_fifo(fsm, &tmp, 4); |
| |
| *dby = (uint8_t)(tmp >> 24); |
| |
| stfsm_wait_seq(fsm); |
| } |
| |
| static void stfsm_s25fl_write_dyb(struct stfsm *fsm, uint32_t offs, uint8_t dby) |
| { |
| struct stfsm_seq seq = { |
| .seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | |
| SEQ_OPC_OPCODE(SPINOR_OP_WREN) | |
| SEQ_OPC_CSDEASSERT), |
| .seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) | |
| SEQ_OPC_OPCODE(S25FL_CMD_DYBWR)), |
| .addr_cfg = (ADR_CFG_CYCLES_ADD1(16) | |
| ADR_CFG_PADS_1_ADD1 | |
| ADR_CFG_CYCLES_ADD2(16) | |
| ADR_CFG_PADS_1_ADD2), |
| .status = (uint32_t)dby | STA_PADS_1 | STA_CSDEASSERT, |
| .addr1 = (offs >> 16) & 0xffff, |
| .addr2 = offs & 0xffff, |
| .seq = { |
| STFSM_INST_CMD1, |
| STFSM_INST_CMD2, |
| STFSM_INST_ADD1, |
| STFSM_INST_ADD2, |
| STFSM_INST_STA_WR1, |
| STFSM_INST_STOP, |
| }, |
| .seq_cfg = (SEQ_CFG_PADS_1 | |
| SEQ_CFG_READNOTWRITE | |
| SEQ_CFG_CSDEASSERT | |
| SEQ_CFG_STARTSEQ), |
| }; |
| |
| stfsm_load_seq(fsm, &seq); |
| stfsm_wait_seq(fsm); |
| |
| stfsm_wait_busy(fsm); |
| } |
| |
| static int stfsm_s25fl_clear_status_reg(struct stfsm *fsm) |
| { |
| struct stfsm_seq seq = { |
| .seq_opc[0] = (SEQ_OPC_PADS_1 | |
| SEQ_OPC_CYCLES(8) | |
| SEQ_OPC_OPCODE(S25FL_CMD_CLSR) | |
| SEQ_OPC_CSDEASSERT), |
| .seq_opc[1] = (SEQ_OPC_PADS_1 | |
| SEQ_OPC_CYCLES(8) | |
| SEQ_OPC_OPCODE(SPINOR_OP_WRDI) | |
| SEQ_OPC_CSDEASSERT), |
| .seq = { |
| STFSM_INST_CMD1, |
| STFSM_INST_CMD2, |
| STFSM_INST_WAIT, |
| STFSM_INST_STOP, |
| }, |
| .seq_cfg = (SEQ_CFG_PADS_1 | |
| SEQ_CFG_ERASE | |
| SEQ_CFG_READNOTWRITE | |
| SEQ_CFG_CSDEASSERT | |
| SEQ_CFG_STARTSEQ), |
| }; |
| |
| stfsm_load_seq(fsm, &seq); |
| |
| stfsm_wait_seq(fsm); |
| |
| return 0; |
| } |
| |
| static int stfsm_s25fl_config(struct stfsm *fsm) |
| { |
| struct flash_info *info = fsm->info; |
| uint32_t flags = info->flags; |
| uint32_t data_pads; |
| uint32_t offs; |
| uint16_t sta_wr; |
| uint8_t sr1, cr1, dyb; |
| int update_sr = 0; |
| int ret; |
| |
| if (flags & FLASH_FLAG_32BIT_ADDR) { |
| /* |
| * Prepare Read/Write/Erase sequences according to S25FLxxx |
| * 32-bit address command set |
| */ |
| ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_read, |
| stfsm_s25fl_read4_configs); |
| if (ret) |
| return ret; |
| |
| ret = stfsm_search_prepare_rw_seq(fsm, &fsm->stfsm_seq_write, |
| stfsm_s25fl_write4_configs); |
| if (ret) |
| return ret; |
| |
| stfsm_s25fl_prepare_erasesec_seq_32(&stfsm_seq_erase_sector); |
| |
| } else { |
| /* Use default configurations for 24-bit addressing */ |
| ret = stfsm_prepare_rwe_seqs_default(fsm); |
| if (ret) |
| return ret; |
| } |
| |
| /* |
| * For devices that support 'DYB' sector locking, check lock status and |
| * unlock sectors if necessary (some variants power-on with sectors |
| * locked by default) |
| */ |
| if (flags & FLASH_FLAG_DYB_LOCKING) { |
| offs = 0; |
| for (offs = 0; offs < info->sector_size * info->n_sectors;) { |
| stfsm_s25fl_read_dyb(fsm, offs, &dyb); |
| if (dyb == 0x00) |
| stfsm_s25fl_write_dyb(fsm, offs, 0xff); |
| |
| /* Handle bottom/top 4KiB parameter sectors */ |
| if ((offs < info->sector_size * 2) || |
| (offs >= (info->sector_size - info->n_sectors * 4))) |
| offs += 0x1000; |
| else |
| offs += 0x10000; |
| } |
| } |
| |
| /* Check status of 'QE' bit, update if required. */ |
| stfsm_read_status(fsm, SPINOR_OP_RDSR2, &cr1, 1); |
| data_pads = ((fsm->stfsm_seq_read.seq_cfg >> 16) & 0x3) + 1; |
| if (data_pads == 4) { |
| if (!(cr1 & STFSM_S25FL_CONFIG_QE)) { |
| /* Set 'QE' */ |
| cr1 |= STFSM_S25FL_CONFIG_QE; |
| |
| update_sr = 1; |
| } |
| } else { |
| if (cr1 & STFSM_S25FL_CONFIG_QE) { |
| /* Clear 'QE' */ |
| cr1 &= ~STFSM_S25FL_CONFIG_QE; |
| |
| update_sr = 1; |
| } |
| } |
| if (update_sr) { |
| stfsm_read_status(fsm, SPINOR_OP_RDSR, &sr1, 1); |
| sta_wr = ((uint16_t)cr1 << 8) | sr1; |
| stfsm_write_status(fsm, SPINOR_OP_WRSR, sta_wr, 2, 1); |
| } |
| |
| /* |
| * S25FLxxx devices support Program and Error error flags. |
| * Configure driver to check flags and clear if necessary. |
| */ |
| fsm->configuration |= CFG_S25FL_CHECK_ERROR_FLAGS; |
| |
| return 0; |
| } |
| |
| static int stfsm_w25q_config(struct stfsm *fsm) |
| { |
| uint32_t data_pads; |
| uint8_t sr1, sr2; |
| uint16_t sr_wr; |
| int update_sr = 0; |
| int ret; |
| |
| ret = stfsm_prepare_rwe_seqs_default(fsm); |
| if (ret) |
| return ret; |
| |
| /* Check status of 'QE' bit, update if required. */ |
| stfsm_read_status(fsm, SPINOR_OP_RDSR2, &sr2, 1); |
| data_pads = ((fsm->stfsm_seq_read.seq_cfg >> 16) & 0x3) + 1; |
| if (data_pads == 4) { |
| if (!(sr2 & W25Q_STATUS_QE)) { |
| /* Set 'QE' */ |
| sr2 |= W25Q_STATUS_QE; |
| update_sr = 1; |
| } |
| } else { |
| if (sr2 & W25Q_STATUS_QE) { |
| /* Clear 'QE' */ |
| sr2 &= ~W25Q_STATUS_QE; |
| update_sr = 1; |
| } |
| } |
| if (update_sr) { |
| /* Write status register */ |
| stfsm_read_status(fsm, SPINOR_OP_RDSR, &sr1, 1); |
| sr_wr = ((uint16_t)sr2 << 8) | sr1; |
| stfsm_write_status(fsm, SPINOR_OP_WRSR, sr_wr, 2, 1); |
| } |
| |
| return 0; |
| } |
| |
| static int stfsm_read(struct stfsm *fsm, uint8_t *buf, uint32_t size, |
| uint32_t offset) |
| { |
| struct stfsm_seq *seq = &fsm->stfsm_seq_read; |
| uint32_t data_pads; |
| uint32_t read_mask; |
| uint32_t size_ub; |
| uint32_t size_lb; |
| uint32_t size_mop; |
| uint32_t tmp[4]; |
| uint32_t page_buf[FLASH_PAGESIZE_32]; |
| uint8_t *p; |
| |
| dev_dbg(fsm->dev, "reading %d bytes from 0x%08x\n", size, offset); |
| |
| /* Enter 32-bit address mode, if required */ |
| if (fsm->configuration & CFG_READ_TOGGLE_32BIT_ADDR) |
| stfsm_enter_32bit_addr(fsm, 1); |
| |
| /* Must read in multiples of 32 cycles (or 32*pads/8 Bytes) */ |
| data_pads = ((seq->seq_cfg >> 16) & 0x3) + 1; |
| read_mask = (data_pads << 2) - 1; |
| |
| /* Handle non-aligned buf */ |
| p = ((uintptr_t)buf & 0x3) ? (uint8_t *)page_buf : buf; |
| |
| /* Handle non-aligned size */ |
| size_ub = (size + read_mask) & ~read_mask; |
| size_lb = size & ~read_mask; |
| size_mop = size & read_mask; |
| |
| seq->data_size = TRANSFER_SIZE(size_ub); |
| seq->addr1 = (offset >> 16) & 0xffff; |
| seq->addr2 = offset & 0xffff; |
| |
| stfsm_load_seq(fsm, seq); |
| |
| if (size_lb) |
| stfsm_read_fifo(fsm, (uint32_t *)p, size_lb); |
| |
| if (size_mop) { |
| stfsm_read_fifo(fsm, tmp, read_mask + 1); |
| memcpy(p + size_lb, &tmp, size_mop); |
| } |
| |
| /* Handle non-aligned buf */ |
| if ((uintptr_t)buf & 0x3) |
| memcpy(buf, page_buf, size); |
| |
| /* Wait for sequence to finish */ |
| stfsm_wait_seq(fsm); |
| |
| stfsm_clear_fifo(fsm); |
| |
| /* Exit 32-bit address mode, if required */ |
| if (fsm->configuration & CFG_READ_TOGGLE_32BIT_ADDR) |
| stfsm_enter_32bit_addr(fsm, 0); |
| |
| return 0; |
| } |
| |
| static int stfsm_write(struct stfsm *fsm, const uint8_t *buf, |
| uint32_t size, uint32_t offset) |
| { |
| struct stfsm_seq *seq = &fsm->stfsm_seq_write; |
| uint32_t data_pads; |
| uint32_t write_mask; |
| uint32_t size_ub; |
| uint32_t size_lb; |
| uint32_t size_mop; |
| uint32_t tmp[4]; |
| uint32_t i; |
| uint32_t page_buf[FLASH_PAGESIZE_32]; |
| uint8_t *t = (uint8_t *)&tmp; |
| const uint8_t *p; |
| int ret; |
| |
| dev_dbg(fsm->dev, "writing %d bytes to 0x%08x\n", size, offset); |
| |
| /* Enter 32-bit address mode, if required */ |
| if (fsm->configuration & CFG_WRITE_TOGGLE_32BIT_ADDR) |
| stfsm_enter_32bit_addr(fsm, 1); |
| |
| /* Must write in multiples of 32 cycles (or 32*pads/8 bytes) */ |
| data_pads = ((seq->seq_cfg >> 16) & 0x3) + 1; |
| write_mask = (data_pads << 2) - 1; |
| |
| /* Handle non-aligned buf */ |
| if ((uintptr_t)buf & 0x3) { |
| memcpy(page_buf, buf, size); |
| p = (uint8_t *)page_buf; |
| } else { |
| p = buf; |
| } |
| |
| /* Handle non-aligned size */ |
| size_ub = (size + write_mask) & ~write_mask; |
| size_lb = size & ~write_mask; |
| size_mop = size & write_mask; |
| |
| seq->data_size = TRANSFER_SIZE(size_ub); |
| seq->addr1 = (offset >> 16) & 0xffff; |
| seq->addr2 = offset & 0xffff; |
| |
| /* Need to set FIFO to write mode, before writing data to FIFO (see |
| * GNBvb79594) |
| */ |
| writel(0x00040000, fsm->base + SPI_FAST_SEQ_CFG); |
| |
| /* |
| * Before writing data to the FIFO, apply a small delay to allow a |
| * potential change of FIFO direction to complete. |
| */ |
| if (fsm->fifo_dir_delay == 0) |
| readl(fsm->base + SPI_FAST_SEQ_CFG); |
| else |
| udelay(fsm->fifo_dir_delay); |
| |
| |
| /* Write data to FIFO, before starting sequence (see GNBvd79593) */ |
| if (size_lb) { |
| stfsm_write_fifo(fsm, (uint32_t *)p, size_lb); |
| p += size_lb; |
| } |
| |
| /* Handle non-aligned size */ |
| if (size_mop) { |
| memset(t, 0xff, write_mask + 1); /* fill with 0xff's */ |
| for (i = 0; i < size_mop; i++) |
| t[i] = *p++; |
| |
| stfsm_write_fifo(fsm, tmp, write_mask + 1); |
| } |
| |
| /* Start sequence */ |
| stfsm_load_seq(fsm, seq); |
| |
| /* Wait for sequence to finish */ |
| stfsm_wait_seq(fsm); |
| |
| /* Wait for completion */ |
| ret = stfsm_wait_busy(fsm); |
| if (ret && fsm->configuration & CFG_S25FL_CHECK_ERROR_FLAGS) |
| stfsm_s25fl_clear_status_reg(fsm); |
| |
| /* Exit 32-bit address mode, if required */ |
| if (fsm->configuration & CFG_WRITE_TOGGLE_32BIT_ADDR) |
| stfsm_enter_32bit_addr(fsm, 0); |
| |
| return 0; |
| } |
| |
| /* |
| * Read an address range from the flash chip. The address range |
| * may be any size provided it is within the physical boundaries. |
| */ |
| static int stfsm_mtd_read(struct mtd_info *mtd, loff_t from, size_t len, |
| size_t *retlen, u_char *buf) |
| { |
| struct stfsm *fsm = dev_get_drvdata(mtd->dev.parent); |
| uint32_t bytes; |
| |
| dev_dbg(fsm->dev, "%s from 0x%08x, len %zd\n", |
| __func__, (u32)from, len); |
| |
| mutex_lock(&fsm->lock); |
| |
| while (len > 0) { |
| bytes = min_t(size_t, len, FLASH_PAGESIZE); |
| |
| stfsm_read(fsm, buf, bytes, from); |
| |
| buf += bytes; |
| from += bytes; |
| len -= bytes; |
| |
| *retlen += bytes; |
| } |
| |
| mutex_unlock(&fsm->lock); |
| |
| return 0; |
| } |
| |
| static int stfsm_erase_sector(struct stfsm *fsm, uint32_t offset) |
| { |
| struct stfsm_seq *seq = &stfsm_seq_erase_sector; |
| int ret; |
| |
| dev_dbg(fsm->dev, "erasing sector at 0x%08x\n", offset); |
| |
| /* Enter 32-bit address mode, if required */ |
| if (fsm->configuration & CFG_ERASESEC_TOGGLE_32BIT_ADDR) |
| stfsm_enter_32bit_addr(fsm, 1); |
| |
| seq->addr1 = (offset >> 16) & 0xffff; |
| seq->addr2 = offset & 0xffff; |
| |
| stfsm_load_seq(fsm, seq); |
| |
| stfsm_wait_seq(fsm); |
| |
| /* Wait for completion */ |
| ret = stfsm_wait_busy(fsm); |
| if (ret && fsm->configuration & CFG_S25FL_CHECK_ERROR_FLAGS) |
| stfsm_s25fl_clear_status_reg(fsm); |
| |
| /* Exit 32-bit address mode, if required */ |
| if (fsm->configuration & CFG_ERASESEC_TOGGLE_32BIT_ADDR) |
| stfsm_enter_32bit_addr(fsm, 0); |
| |
| return ret; |
| } |
| |
| static int stfsm_erase_chip(struct stfsm *fsm) |
| { |
| const struct stfsm_seq *seq = &stfsm_seq_erase_chip; |
| |
| dev_dbg(fsm->dev, "erasing chip\n"); |
| |
| stfsm_load_seq(fsm, seq); |
| |
| stfsm_wait_seq(fsm); |
| |
| return stfsm_wait_busy(fsm); |
| } |
| |
| /* |
| * Write an address range to the flash chip. Data must be written in |
| * FLASH_PAGESIZE chunks. The address range may be any size provided |
| * it is within the physical boundaries. |
| */ |
| static int stfsm_mtd_write(struct mtd_info *mtd, loff_t to, size_t len, |
| size_t *retlen, const u_char *buf) |
| { |
| struct stfsm *fsm = dev_get_drvdata(mtd->dev.parent); |
| |
| u32 page_offs; |
| u32 bytes; |
| uint8_t *b = (uint8_t *)buf; |
| int ret = 0; |
| |
| dev_dbg(fsm->dev, "%s to 0x%08x, len %zd\n", __func__, (u32)to, len); |
| |
| /* Offset within page */ |
| page_offs = to % FLASH_PAGESIZE; |
| |
| mutex_lock(&fsm->lock); |
| |
| while (len) { |
| /* Write up to page boundary */ |
| bytes = min_t(size_t, FLASH_PAGESIZE - page_offs, len); |
| |
| ret = stfsm_write(fsm, b, bytes, to); |
| if (ret) |
| goto out1; |
| |
| b += bytes; |
| len -= bytes; |
| to += bytes; |
| |
| /* We are now page-aligned */ |
| page_offs = 0; |
| |
| *retlen += bytes; |
| |
| } |
| |
| out1: |
| mutex_unlock(&fsm->lock); |
| |
| return ret; |
| } |
| |
| /* |
| * Erase an address range on the flash chip. The address range may extend |
| * one or more erase sectors. Return an error is there is a problem erasing. |
| */ |
| static int stfsm_mtd_erase(struct mtd_info *mtd, struct erase_info *instr) |
| { |
| struct stfsm *fsm = dev_get_drvdata(mtd->dev.parent); |
| u32 addr, len; |
| int ret; |
| |
| dev_dbg(fsm->dev, "%s at 0x%llx, len %lld\n", __func__, |
| (long long)instr->addr, (long long)instr->len); |
| |
| addr = instr->addr; |
| len = instr->len; |
| |
| mutex_lock(&fsm->lock); |
| |
| /* Whole-chip erase? */ |
| if (len == mtd->size) { |
| ret = stfsm_erase_chip(fsm); |
| if (ret) |
| goto out1; |
| } else { |
| while (len) { |
| ret = stfsm_erase_sector(fsm, addr); |
| if (ret) |
| goto out1; |
| |
| addr += mtd->erasesize; |
| len -= mtd->erasesize; |
| } |
| } |
| |
| mutex_unlock(&fsm->lock); |
| |
| instr->state = MTD_ERASE_DONE; |
| mtd_erase_callback(instr); |
| |
| return 0; |
| |
| out1: |
| instr->state = MTD_ERASE_FAILED; |
| mutex_unlock(&fsm->lock); |
| |
| return ret; |
| } |
| |
| static void stfsm_read_jedec(struct stfsm *fsm, uint8_t *jedec) |
| { |
| const struct stfsm_seq *seq = &stfsm_seq_read_jedec; |
| uint32_t tmp[2]; |
| |
| stfsm_load_seq(fsm, seq); |
| |
| stfsm_read_fifo(fsm, tmp, 8); |
| |
| memcpy(jedec, tmp, 5); |
| |
| stfsm_wait_seq(fsm); |
| } |
| |
| static struct flash_info *stfsm_jedec_probe(struct stfsm *fsm) |
| { |
| struct flash_info *info; |
| u16 ext_jedec; |
| u32 jedec; |
| u8 id[5]; |
| |
| stfsm_read_jedec(fsm, id); |
| |
| jedec = id[0] << 16 | id[1] << 8 | id[2]; |
| /* |
| * JEDEC also defines an optional "extended device information" |
| * string for after vendor-specific data, after the three bytes |
| * we use here. Supporting some chips might require using it. |
| */ |
| ext_jedec = id[3] << 8 | id[4]; |
| |
| dev_dbg(fsm->dev, "JEDEC = 0x%08x [%02x %02x %02x %02x %02x]\n", |
| jedec, id[0], id[1], id[2], id[3], id[4]); |
| |
| for (info = flash_types; info->name; info++) { |
| if (info->jedec_id == jedec) { |
| if (info->ext_id && info->ext_id != ext_jedec) |
| continue; |
| return info; |
| } |
| } |
| dev_err(fsm->dev, "Unrecognized JEDEC id %06x\n", jedec); |
| |
| return NULL; |
| } |
| |
| static int stfsm_set_mode(struct stfsm *fsm, uint32_t mode) |
| { |
| int ret, timeout = 10; |
| |
| /* Wait for controller to accept mode change */ |
| while (--timeout) { |
| ret = readl(fsm->base + SPI_STA_MODE_CHANGE); |
| if (ret & 0x1) |
| break; |
| udelay(1); |
| } |
| |
| if (!timeout) |
| return -EBUSY; |
| |
| writel(mode, fsm->base + SPI_MODESELECT); |
| |
| return 0; |
| } |
| |
| static void stfsm_set_freq(struct stfsm *fsm, uint32_t spi_freq) |
| { |
| uint32_t emi_freq; |
| uint32_t clk_div; |
| |
| emi_freq = clk_get_rate(fsm->clk); |
| |
| /* |
| * Calculate clk_div - values between 2 and 128 |
| * Multiple of 2, rounded up |
| */ |
| clk_div = 2 * DIV_ROUND_UP(emi_freq, 2 * spi_freq); |
| if (clk_div < 2) |
| clk_div = 2; |
| else if (clk_div > 128) |
| clk_div = 128; |
| |
| /* |
| * Determine a suitable delay for the IP to complete a change of |
| * direction of the FIFO. The required delay is related to the clock |
| * divider used. The following heuristics are based on empirical tests, |
| * using a 100MHz EMI clock. |
| */ |
| if (clk_div <= 4) |
| fsm->fifo_dir_delay = 0; |
| else if (clk_div <= 10) |
| fsm->fifo_dir_delay = 1; |
| else |
| fsm->fifo_dir_delay = DIV_ROUND_UP(clk_div, 10); |
| |
| dev_dbg(fsm->dev, "emi_clk = %uHZ, spi_freq = %uHZ, clk_div = %u\n", |
| emi_freq, spi_freq, clk_div); |
| |
| writel(clk_div, fsm->base + SPI_CLOCKDIV); |
| } |
| |
| static int stfsm_init(struct stfsm *fsm) |
| { |
| int ret; |
| |
| /* Perform a soft reset of the FSM controller */ |
| writel(SEQ_CFG_SWRESET, fsm->base + SPI_FAST_SEQ_CFG); |
| udelay(1); |
| writel(0, fsm->base + SPI_FAST_SEQ_CFG); |
| |
| /* Set clock to 'safe' frequency initially */ |
| stfsm_set_freq(fsm, STFSM_FLASH_SAFE_FREQ); |
| |
| /* Switch to FSM */ |
| ret = stfsm_set_mode(fsm, SPI_MODESELECT_FSM); |
| if (ret) |
| return ret; |
| |
| /* Set timing parameters */ |
| writel(SPI_CFG_DEVICE_ST | |
| SPI_CFG_DEFAULT_MIN_CS_HIGH | |
| SPI_CFG_DEFAULT_CS_SETUPHOLD | |
| SPI_CFG_DEFAULT_DATA_HOLD, |
| fsm->base + SPI_CONFIGDATA); |
| writel(STFSM_DEFAULT_WR_TIME, fsm->base + SPI_STATUS_WR_TIME_REG); |
| |
| /* |
| * Set the FSM 'WAIT' delay to the minimum workable value. Note, for |
| * our purposes, the WAIT instruction is used purely to achieve |
| * "sequence validity" rather than actually implement a delay. |
| */ |
| writel(0x00000001, fsm->base + SPI_PROGRAM_ERASE_TIME); |
| |
| /* Clear FIFO, just in case */ |
| stfsm_clear_fifo(fsm); |
| |
| return 0; |
| } |
| |
| static void stfsm_fetch_platform_configs(struct platform_device *pdev) |
| { |
| struct stfsm *fsm = platform_get_drvdata(pdev); |
| struct device_node *np = pdev->dev.of_node; |
| struct regmap *regmap; |
| uint32_t boot_device_reg; |
| uint32_t boot_device_spi; |
| uint32_t boot_device; /* Value we read from *boot_device_reg */ |
| int ret; |
| |
| /* Booting from SPI NOR Flash is the default */ |
| fsm->booted_from_spi = true; |
| |
| regmap = syscon_regmap_lookup_by_phandle(np, "st,syscfg"); |
| if (IS_ERR(regmap)) |
| goto boot_device_fail; |
| |
| fsm->reset_signal = of_property_read_bool(np, "st,reset-signal"); |
| |
| fsm->reset_por = of_property_read_bool(np, "st,reset-por"); |
| |
| /* Where in the syscon the boot device information lives */ |
| ret = of_property_read_u32(np, "st,boot-device-reg", &boot_device_reg); |
| if (ret) |
| goto boot_device_fail; |
| |
| /* Boot device value when booted from SPI NOR */ |
| ret = of_property_read_u32(np, "st,boot-device-spi", &boot_device_spi); |
| if (ret) |
| goto boot_device_fail; |
| |
| ret = regmap_read(regmap, boot_device_reg, &boot_device); |
| if (ret) |
| goto boot_device_fail; |
| |
| if (boot_device != boot_device_spi) |
| fsm->booted_from_spi = false; |
| |
| return; |
| |
| boot_device_fail: |
| dev_warn(&pdev->dev, |
| "failed to fetch boot device, assuming boot from SPI\n"); |
| } |
| |
| static int stfsm_probe(struct platform_device *pdev) |
| { |
| struct device_node *np = pdev->dev.of_node; |
| struct flash_info *info; |
| struct resource *res; |
| struct stfsm *fsm; |
| int ret; |
| |
| if (!np) { |
| dev_err(&pdev->dev, "No DT found\n"); |
| return -EINVAL; |
| } |
| |
| fsm = devm_kzalloc(&pdev->dev, sizeof(*fsm), GFP_KERNEL); |
| if (!fsm) |
| return -ENOMEM; |
| |
| fsm->dev = &pdev->dev; |
| |
| platform_set_drvdata(pdev, fsm); |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| if (!res) { |
| dev_err(&pdev->dev, "Resource not found\n"); |
| return -ENODEV; |
| } |
| |
| fsm->base = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(fsm->base)) { |
| dev_err(&pdev->dev, |
| "Failed to reserve memory region %pR\n", res); |
| return PTR_ERR(fsm->base); |
| } |
| |
| fsm->clk = devm_clk_get(&pdev->dev, NULL); |
| if (IS_ERR(fsm->clk)) { |
| dev_err(fsm->dev, "Couldn't find EMI clock.\n"); |
| return PTR_ERR(fsm->clk); |
| } |
| |
| ret = clk_prepare_enable(fsm->clk); |
| if (ret) { |
| dev_err(fsm->dev, "Failed to enable EMI clock.\n"); |
| return ret; |
| } |
| |
| mutex_init(&fsm->lock); |
| |
| ret = stfsm_init(fsm); |
| if (ret) { |
| dev_err(&pdev->dev, "Failed to initialise FSM Controller\n"); |
| return ret; |
| } |
| |
| stfsm_fetch_platform_configs(pdev); |
| |
| /* Detect SPI FLASH device */ |
| info = stfsm_jedec_probe(fsm); |
| if (!info) |
| return -ENODEV; |
| fsm->info = info; |
| |
| /* Use device size to determine address width */ |
| if (info->sector_size * info->n_sectors > 0x1000000) |
| info->flags |= FLASH_FLAG_32BIT_ADDR; |
| |
| /* |
| * Configure READ/WRITE/ERASE sequences according to platform and |
| * device flags. |
| */ |
| if (info->config) { |
| ret = info->config(fsm); |
| if (ret) |
| return ret; |
| } else { |
| ret = stfsm_prepare_rwe_seqs_default(fsm); |
| if (ret) |
| return ret; |
| } |
| |
| fsm->mtd.name = info->name; |
| fsm->mtd.dev.parent = &pdev->dev; |
| mtd_set_of_node(&fsm->mtd, np); |
| fsm->mtd.type = MTD_NORFLASH; |
| fsm->mtd.writesize = 4; |
| fsm->mtd.writebufsize = fsm->mtd.writesize; |
| fsm->mtd.flags = MTD_CAP_NORFLASH; |
| fsm->mtd.size = info->sector_size * info->n_sectors; |
| fsm->mtd.erasesize = info->sector_size; |
| |
| fsm->mtd._read = stfsm_mtd_read; |
| fsm->mtd._write = stfsm_mtd_write; |
| fsm->mtd._erase = stfsm_mtd_erase; |
| |
| dev_info(&pdev->dev, |
| "Found serial flash device: %s\n" |
| " size = %llx (%lldMiB) erasesize = 0x%08x (%uKiB)\n", |
| info->name, |
| (long long)fsm->mtd.size, (long long)(fsm->mtd.size >> 20), |
| fsm->mtd.erasesize, (fsm->mtd.erasesize >> 10)); |
| |
| return mtd_device_register(&fsm->mtd, NULL, 0); |
| } |
| |
| static int stfsm_remove(struct platform_device *pdev) |
| { |
| struct stfsm *fsm = platform_get_drvdata(pdev); |
| |
| return mtd_device_unregister(&fsm->mtd); |
| } |
| |
| #ifdef CONFIG_PM_SLEEP |
| static int stfsmfsm_suspend(struct device *dev) |
| { |
| struct stfsm *fsm = dev_get_drvdata(dev); |
| |
| clk_disable_unprepare(fsm->clk); |
| |
| return 0; |
| } |
| |
| static int stfsmfsm_resume(struct device *dev) |
| { |
| struct stfsm *fsm = dev_get_drvdata(dev); |
| |
| clk_prepare_enable(fsm->clk); |
| |
| return 0; |
| } |
| #endif |
| |
| static SIMPLE_DEV_PM_OPS(stfsm_pm_ops, stfsmfsm_suspend, stfsmfsm_resume); |
| |
| static const struct of_device_id stfsm_match[] = { |
| { .compatible = "st,spi-fsm", }, |
| {}, |
| }; |
| MODULE_DEVICE_TABLE(of, stfsm_match); |
| |
| static struct platform_driver stfsm_driver = { |
| .probe = stfsm_probe, |
| .remove = stfsm_remove, |
| .driver = { |
| .name = "st-spi-fsm", |
| .of_match_table = stfsm_match, |
| .pm = &stfsm_pm_ops, |
| }, |
| }; |
| module_platform_driver(stfsm_driver); |
| |
| MODULE_AUTHOR("Angus Clark <angus.clark@st.com>"); |
| MODULE_DESCRIPTION("ST SPI FSM driver"); |
| MODULE_LICENSE("GPL"); |