| /** |
| * IBM Accelerator Family 'GenWQE' |
| * |
| * (C) Copyright IBM Corp. 2013 |
| * |
| * Author: Frank Haverkamp <haver@linux.vnet.ibm.com> |
| * Author: Joerg-Stephan Vogt <jsvogt@de.ibm.com> |
| * Author: Michael Jung <mijung@gmx.net> |
| * Author: Michael Ruettger <michael@ibmra.de> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License (version 2 only) |
| * as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| /* |
| * Device Driver Control Block (DDCB) queue support. Definition of |
| * interrupt handlers for queue support as well as triggering the |
| * health monitor code in case of problems. The current hardware uses |
| * an MSI interrupt which is shared between error handling and |
| * functional code. |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/module.h> |
| #include <linux/sched.h> |
| #include <linux/wait.h> |
| #include <linux/pci.h> |
| #include <linux/string.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/delay.h> |
| #include <linux/module.h> |
| #include <linux/interrupt.h> |
| #include <linux/crc-itu-t.h> |
| |
| #include "card_base.h" |
| #include "card_ddcb.h" |
| |
| /* |
| * N: next DDCB, this is where the next DDCB will be put. |
| * A: active DDCB, this is where the code will look for the next completion. |
| * x: DDCB is enqueued, we are waiting for its completion. |
| |
| * Situation (1): Empty queue |
| * +---+---+---+---+---+---+---+---+ |
| * | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
| * | | | | | | | | | |
| * +---+---+---+---+---+---+---+---+ |
| * A/N |
| * enqueued_ddcbs = A - N = 2 - 2 = 0 |
| * |
| * Situation (2): Wrapped, N > A |
| * +---+---+---+---+---+---+---+---+ |
| * | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
| * | | | x | x | | | | | |
| * +---+---+---+---+---+---+---+---+ |
| * A N |
| * enqueued_ddcbs = N - A = 4 - 2 = 2 |
| * |
| * Situation (3): Queue wrapped, A > N |
| * +---+---+---+---+---+---+---+---+ |
| * | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
| * | x | x | | | x | x | x | x | |
| * +---+---+---+---+---+---+---+---+ |
| * N A |
| * enqueued_ddcbs = queue_max - (A - N) = 8 - (4 - 2) = 6 |
| * |
| * Situation (4a): Queue full N > A |
| * +---+---+---+---+---+---+---+---+ |
| * | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
| * | x | x | x | x | x | x | x | | |
| * +---+---+---+---+---+---+---+---+ |
| * A N |
| * |
| * enqueued_ddcbs = N - A = 7 - 0 = 7 |
| * |
| * Situation (4a): Queue full A > N |
| * +---+---+---+---+---+---+---+---+ |
| * | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
| * | x | x | x | | x | x | x | x | |
| * +---+---+---+---+---+---+---+---+ |
| * N A |
| * enqueued_ddcbs = queue_max - (A - N) = 8 - (4 - 3) = 7 |
| */ |
| |
| static int queue_empty(struct ddcb_queue *queue) |
| { |
| return queue->ddcb_next == queue->ddcb_act; |
| } |
| |
| static int queue_enqueued_ddcbs(struct ddcb_queue *queue) |
| { |
| if (queue->ddcb_next >= queue->ddcb_act) |
| return queue->ddcb_next - queue->ddcb_act; |
| |
| return queue->ddcb_max - (queue->ddcb_act - queue->ddcb_next); |
| } |
| |
| static int queue_free_ddcbs(struct ddcb_queue *queue) |
| { |
| int free_ddcbs = queue->ddcb_max - queue_enqueued_ddcbs(queue) - 1; |
| |
| if (WARN_ON_ONCE(free_ddcbs < 0)) { /* must never ever happen! */ |
| return 0; |
| } |
| return free_ddcbs; |
| } |
| |
| /* |
| * Use of the PRIV field in the DDCB for queue debugging: |
| * |
| * (1) Trying to get rid of a DDCB which saw a timeout: |
| * pddcb->priv[6] = 0xcc; # cleared |
| * |
| * (2) Append a DDCB via NEXT bit: |
| * pddcb->priv[7] = 0xaa; # appended |
| * |
| * (3) DDCB needed tapping: |
| * pddcb->priv[7] = 0xbb; # tapped |
| * |
| * (4) DDCB marked as correctly finished: |
| * pddcb->priv[6] = 0xff; # finished |
| */ |
| |
| static inline void ddcb_mark_tapped(struct ddcb *pddcb) |
| { |
| pddcb->priv[7] = 0xbb; /* tapped */ |
| } |
| |
| static inline void ddcb_mark_appended(struct ddcb *pddcb) |
| { |
| pddcb->priv[7] = 0xaa; /* appended */ |
| } |
| |
| static inline void ddcb_mark_cleared(struct ddcb *pddcb) |
| { |
| pddcb->priv[6] = 0xcc; /* cleared */ |
| } |
| |
| static inline void ddcb_mark_finished(struct ddcb *pddcb) |
| { |
| pddcb->priv[6] = 0xff; /* finished */ |
| } |
| |
| static inline void ddcb_mark_unused(struct ddcb *pddcb) |
| { |
| pddcb->priv_64 = cpu_to_be64(0); /* not tapped */ |
| } |
| |
| /** |
| * genwqe_crc16() - Generate 16-bit crc as required for DDCBs |
| * @buff: pointer to data buffer |
| * @len: length of data for calculation |
| * @init: initial crc (0xffff at start) |
| * |
| * Polynomial = x^16 + x^12 + x^5 + 1 (0x1021) |
| * Example: 4 bytes 0x01 0x02 0x03 0x04 with init = 0xffff |
| * should result in a crc16 of 0x89c3 |
| * |
| * Return: crc16 checksum in big endian format ! |
| */ |
| static inline u16 genwqe_crc16(const u8 *buff, size_t len, u16 init) |
| { |
| return crc_itu_t(init, buff, len); |
| } |
| |
| static void print_ddcb_info(struct genwqe_dev *cd, struct ddcb_queue *queue) |
| { |
| int i; |
| struct ddcb *pddcb; |
| unsigned long flags; |
| struct pci_dev *pci_dev = cd->pci_dev; |
| |
| spin_lock_irqsave(&cd->print_lock, flags); |
| |
| dev_info(&pci_dev->dev, |
| "DDCB list for card #%d (ddcb_act=%d / ddcb_next=%d):\n", |
| cd->card_idx, queue->ddcb_act, queue->ddcb_next); |
| |
| pddcb = queue->ddcb_vaddr; |
| for (i = 0; i < queue->ddcb_max; i++) { |
| dev_err(&pci_dev->dev, |
| " %c %-3d: RETC=%03x SEQ=%04x HSI=%02X SHI=%02x PRIV=%06llx CMD=%03x\n", |
| i == queue->ddcb_act ? '>' : ' ', |
| i, |
| be16_to_cpu(pddcb->retc_16), |
| be16_to_cpu(pddcb->seqnum_16), |
| pddcb->hsi, |
| pddcb->shi, |
| be64_to_cpu(pddcb->priv_64), |
| pddcb->cmd); |
| pddcb++; |
| } |
| spin_unlock_irqrestore(&cd->print_lock, flags); |
| } |
| |
| struct genwqe_ddcb_cmd *ddcb_requ_alloc(void) |
| { |
| struct ddcb_requ *req; |
| |
| req = kzalloc(sizeof(*req), GFP_KERNEL); |
| if (!req) |
| return NULL; |
| |
| return &req->cmd; |
| } |
| |
| void ddcb_requ_free(struct genwqe_ddcb_cmd *cmd) |
| { |
| struct ddcb_requ *req = container_of(cmd, struct ddcb_requ, cmd); |
| |
| kfree(req); |
| } |
| |
| static inline enum genwqe_requ_state ddcb_requ_get_state(struct ddcb_requ *req) |
| { |
| return req->req_state; |
| } |
| |
| static inline void ddcb_requ_set_state(struct ddcb_requ *req, |
| enum genwqe_requ_state new_state) |
| { |
| req->req_state = new_state; |
| } |
| |
| static inline int ddcb_requ_collect_debug_data(struct ddcb_requ *req) |
| { |
| return req->cmd.ddata_addr != 0x0; |
| } |
| |
| /** |
| * ddcb_requ_finished() - Returns the hardware state of the associated DDCB |
| * @cd: pointer to genwqe device descriptor |
| * @req: DDCB work request |
| * |
| * Status of ddcb_requ mirrors this hardware state, but is copied in |
| * the ddcb_requ on interrupt/polling function. The lowlevel code |
| * should check the hardware state directly, the higher level code |
| * should check the copy. |
| * |
| * This function will also return true if the state of the queue is |
| * not GENWQE_CARD_USED. This enables us to purge all DDCBs in the |
| * shutdown case. |
| */ |
| static int ddcb_requ_finished(struct genwqe_dev *cd, struct ddcb_requ *req) |
| { |
| return (ddcb_requ_get_state(req) == GENWQE_REQU_FINISHED) || |
| (cd->card_state != GENWQE_CARD_USED); |
| } |
| |
| /** |
| * enqueue_ddcb() - Enqueue a DDCB |
| * @cd: pointer to genwqe device descriptor |
| * @queue: queue this operation should be done on |
| * @ddcb_no: pointer to ddcb number being tapped |
| * |
| * Start execution of DDCB by tapping or append to queue via NEXT |
| * bit. This is done by an atomic 'compare and swap' instruction and |
| * checking SHI and HSI of the previous DDCB. |
| * |
| * This function must only be called with ddcb_lock held. |
| * |
| * Return: 1 if new DDCB is appended to previous |
| * 2 if DDCB queue is tapped via register/simulation |
| */ |
| #define RET_DDCB_APPENDED 1 |
| #define RET_DDCB_TAPPED 2 |
| |
| static int enqueue_ddcb(struct genwqe_dev *cd, struct ddcb_queue *queue, |
| struct ddcb *pddcb, int ddcb_no) |
| { |
| unsigned int try; |
| int prev_no; |
| struct ddcb *prev_ddcb; |
| __be32 old, new, icrc_hsi_shi; |
| u64 num; |
| |
| /* |
| * For performance checks a Dispatch Timestamp can be put into |
| * DDCB It is supposed to use the SLU's free running counter, |
| * but this requires PCIe cycles. |
| */ |
| ddcb_mark_unused(pddcb); |
| |
| /* check previous DDCB if already fetched */ |
| prev_no = (ddcb_no == 0) ? queue->ddcb_max - 1 : ddcb_no - 1; |
| prev_ddcb = &queue->ddcb_vaddr[prev_no]; |
| |
| /* |
| * It might have happened that the HSI.FETCHED bit is |
| * set. Retry in this case. Therefore I expect maximum 2 times |
| * trying. |
| */ |
| ddcb_mark_appended(pddcb); |
| for (try = 0; try < 2; try++) { |
| old = prev_ddcb->icrc_hsi_shi_32; /* read SHI/HSI in BE32 */ |
| |
| /* try to append via NEXT bit if prev DDCB is not completed */ |
| if ((old & DDCB_COMPLETED_BE32) != 0x00000000) |
| break; |
| |
| new = (old | DDCB_NEXT_BE32); |
| |
| wmb(); /* need to ensure write ordering */ |
| icrc_hsi_shi = cmpxchg(&prev_ddcb->icrc_hsi_shi_32, old, new); |
| |
| if (icrc_hsi_shi == old) |
| return RET_DDCB_APPENDED; /* appended to queue */ |
| } |
| |
| /* Queue must be re-started by updating QUEUE_OFFSET */ |
| ddcb_mark_tapped(pddcb); |
| num = (u64)ddcb_no << 8; |
| |
| wmb(); /* need to ensure write ordering */ |
| __genwqe_writeq(cd, queue->IO_QUEUE_OFFSET, num); /* start queue */ |
| |
| return RET_DDCB_TAPPED; |
| } |
| |
| /** |
| * copy_ddcb_results() - Copy output state from real DDCB to request |
| * |
| * Copy DDCB ASV to request struct. There is no endian |
| * conversion made, since data structure in ASV is still |
| * unknown here. |
| * |
| * This is needed by: |
| * - genwqe_purge_ddcb() |
| * - genwqe_check_ddcb_queue() |
| */ |
| static void copy_ddcb_results(struct ddcb_requ *req, int ddcb_no) |
| { |
| struct ddcb_queue *queue = req->queue; |
| struct ddcb *pddcb = &queue->ddcb_vaddr[req->num]; |
| |
| memcpy(&req->cmd.asv[0], &pddcb->asv[0], DDCB_ASV_LENGTH); |
| |
| /* copy status flags of the variant part */ |
| req->cmd.vcrc = be16_to_cpu(pddcb->vcrc_16); |
| req->cmd.deque_ts = be64_to_cpu(pddcb->deque_ts_64); |
| req->cmd.cmplt_ts = be64_to_cpu(pddcb->cmplt_ts_64); |
| |
| req->cmd.attn = be16_to_cpu(pddcb->attn_16); |
| req->cmd.progress = be32_to_cpu(pddcb->progress_32); |
| req->cmd.retc = be16_to_cpu(pddcb->retc_16); |
| |
| if (ddcb_requ_collect_debug_data(req)) { |
| int prev_no = (ddcb_no == 0) ? |
| queue->ddcb_max - 1 : ddcb_no - 1; |
| struct ddcb *prev_pddcb = &queue->ddcb_vaddr[prev_no]; |
| |
| memcpy(&req->debug_data.ddcb_finished, pddcb, |
| sizeof(req->debug_data.ddcb_finished)); |
| memcpy(&req->debug_data.ddcb_prev, prev_pddcb, |
| sizeof(req->debug_data.ddcb_prev)); |
| } |
| } |
| |
| /** |
| * genwqe_check_ddcb_queue() - Checks DDCB queue for completed work equests. |
| * @cd: pointer to genwqe device descriptor |
| * |
| * Return: Number of DDCBs which were finished |
| */ |
| static int genwqe_check_ddcb_queue(struct genwqe_dev *cd, |
| struct ddcb_queue *queue) |
| { |
| unsigned long flags; |
| int ddcbs_finished = 0; |
| struct pci_dev *pci_dev = cd->pci_dev; |
| |
| spin_lock_irqsave(&queue->ddcb_lock, flags); |
| |
| /* FIXME avoid soft locking CPU */ |
| while (!queue_empty(queue) && (ddcbs_finished < queue->ddcb_max)) { |
| |
| struct ddcb *pddcb; |
| struct ddcb_requ *req; |
| u16 vcrc, vcrc_16, retc_16; |
| |
| pddcb = &queue->ddcb_vaddr[queue->ddcb_act]; |
| |
| if ((pddcb->icrc_hsi_shi_32 & DDCB_COMPLETED_BE32) == |
| 0x00000000) |
| goto go_home; /* not completed, continue waiting */ |
| |
| wmb(); /* Add sync to decouple prev. read operations */ |
| |
| /* Note: DDCB could be purged */ |
| req = queue->ddcb_req[queue->ddcb_act]; |
| if (req == NULL) { |
| /* this occurs if DDCB is purged, not an error */ |
| /* Move active DDCB further; Nothing to do anymore. */ |
| goto pick_next_one; |
| } |
| |
| /* |
| * HSI=0x44 (fetched and completed), but RETC is |
| * 0x101, or even worse 0x000. |
| * |
| * In case of seeing the queue in inconsistent state |
| * we read the errcnts and the queue status to provide |
| * a trigger for our PCIe analyzer stop capturing. |
| */ |
| retc_16 = be16_to_cpu(pddcb->retc_16); |
| if ((pddcb->hsi == 0x44) && (retc_16 <= 0x101)) { |
| u64 errcnts, status; |
| u64 ddcb_offs = (u64)pddcb - (u64)queue->ddcb_vaddr; |
| |
| errcnts = __genwqe_readq(cd, queue->IO_QUEUE_ERRCNTS); |
| status = __genwqe_readq(cd, queue->IO_QUEUE_STATUS); |
| |
| dev_err(&pci_dev->dev, |
| "[%s] SEQN=%04x HSI=%02x RETC=%03x Q_ERRCNTS=%016llx Q_STATUS=%016llx DDCB_DMA_ADDR=%016llx\n", |
| __func__, be16_to_cpu(pddcb->seqnum_16), |
| pddcb->hsi, retc_16, errcnts, status, |
| queue->ddcb_daddr + ddcb_offs); |
| } |
| |
| copy_ddcb_results(req, queue->ddcb_act); |
| queue->ddcb_req[queue->ddcb_act] = NULL; /* take from queue */ |
| |
| dev_dbg(&pci_dev->dev, "FINISHED DDCB#%d\n", req->num); |
| genwqe_hexdump(pci_dev, pddcb, sizeof(*pddcb)); |
| |
| ddcb_mark_finished(pddcb); |
| |
| /* calculate CRC_16 to see if VCRC is correct */ |
| vcrc = genwqe_crc16(pddcb->asv, |
| VCRC_LENGTH(req->cmd.asv_length), |
| 0xffff); |
| vcrc_16 = be16_to_cpu(pddcb->vcrc_16); |
| if (vcrc != vcrc_16) { |
| printk_ratelimited(KERN_ERR |
| "%s %s: err: wrong VCRC pre=%02x vcrc_len=%d bytes vcrc_data=%04x is not vcrc_card=%04x\n", |
| GENWQE_DEVNAME, dev_name(&pci_dev->dev), |
| pddcb->pre, VCRC_LENGTH(req->cmd.asv_length), |
| vcrc, vcrc_16); |
| } |
| |
| ddcb_requ_set_state(req, GENWQE_REQU_FINISHED); |
| queue->ddcbs_completed++; |
| queue->ddcbs_in_flight--; |
| |
| /* wake up process waiting for this DDCB, and |
| processes on the busy queue */ |
| wake_up_interruptible(&queue->ddcb_waitqs[queue->ddcb_act]); |
| wake_up_interruptible(&queue->busy_waitq); |
| |
| pick_next_one: |
| queue->ddcb_act = (queue->ddcb_act + 1) % queue->ddcb_max; |
| ddcbs_finished++; |
| } |
| |
| go_home: |
| spin_unlock_irqrestore(&queue->ddcb_lock, flags); |
| return ddcbs_finished; |
| } |
| |
| /** |
| * __genwqe_wait_ddcb(): Waits until DDCB is completed |
| * @cd: pointer to genwqe device descriptor |
| * @req: pointer to requsted DDCB parameters |
| * |
| * The Service Layer will update the RETC in DDCB when processing is |
| * pending or done. |
| * |
| * Return: > 0 remaining jiffies, DDCB completed |
| * -ETIMEDOUT when timeout |
| * -ERESTARTSYS when ^C |
| * -EINVAL when unknown error condition |
| * |
| * When an error is returned the called needs to ensure that |
| * purge_ddcb() is being called to get the &req removed from the |
| * queue. |
| */ |
| int __genwqe_wait_ddcb(struct genwqe_dev *cd, struct ddcb_requ *req) |
| { |
| int rc; |
| unsigned int ddcb_no; |
| struct ddcb_queue *queue; |
| struct pci_dev *pci_dev = cd->pci_dev; |
| |
| if (req == NULL) |
| return -EINVAL; |
| |
| queue = req->queue; |
| if (queue == NULL) |
| return -EINVAL; |
| |
| ddcb_no = req->num; |
| if (ddcb_no >= queue->ddcb_max) |
| return -EINVAL; |
| |
| rc = wait_event_interruptible_timeout(queue->ddcb_waitqs[ddcb_no], |
| ddcb_requ_finished(cd, req), |
| genwqe_ddcb_software_timeout * HZ); |
| |
| /* |
| * We need to distinguish 3 cases here: |
| * 1. rc == 0 timeout occured |
| * 2. rc == -ERESTARTSYS signal received |
| * 3. rc > 0 remaining jiffies condition is true |
| */ |
| if (rc == 0) { |
| struct ddcb_queue *queue = req->queue; |
| struct ddcb *pddcb; |
| |
| /* |
| * Timeout may be caused by long task switching time. |
| * When timeout happens, check if the request has |
| * meanwhile completed. |
| */ |
| genwqe_check_ddcb_queue(cd, req->queue); |
| if (ddcb_requ_finished(cd, req)) |
| return rc; |
| |
| dev_err(&pci_dev->dev, |
| "[%s] err: DDCB#%d timeout rc=%d state=%d req @ %p\n", |
| __func__, req->num, rc, ddcb_requ_get_state(req), |
| req); |
| dev_err(&pci_dev->dev, |
| "[%s] IO_QUEUE_STATUS=0x%016llx\n", __func__, |
| __genwqe_readq(cd, queue->IO_QUEUE_STATUS)); |
| |
| pddcb = &queue->ddcb_vaddr[req->num]; |
| genwqe_hexdump(pci_dev, pddcb, sizeof(*pddcb)); |
| |
| print_ddcb_info(cd, req->queue); |
| return -ETIMEDOUT; |
| |
| } else if (rc == -ERESTARTSYS) { |
| return rc; |
| /* |
| * EINTR: Stops the application |
| * ERESTARTSYS: Restartable systemcall; called again |
| */ |
| |
| } else if (rc < 0) { |
| dev_err(&pci_dev->dev, |
| "[%s] err: DDCB#%d unknown result (rc=%d) %d!\n", |
| __func__, req->num, rc, ddcb_requ_get_state(req)); |
| return -EINVAL; |
| } |
| |
| /* Severe error occured. Driver is forced to stop operation */ |
| if (cd->card_state != GENWQE_CARD_USED) { |
| dev_err(&pci_dev->dev, |
| "[%s] err: DDCB#%d forced to stop (rc=%d)\n", |
| __func__, req->num, rc); |
| return -EIO; |
| } |
| return rc; |
| } |
| |
| /** |
| * get_next_ddcb() - Get next available DDCB |
| * @cd: pointer to genwqe device descriptor |
| * |
| * DDCB's content is completely cleared but presets for PRE and |
| * SEQNUM. This function must only be called when ddcb_lock is held. |
| * |
| * Return: NULL if no empty DDCB available otherwise ptr to next DDCB. |
| */ |
| static struct ddcb *get_next_ddcb(struct genwqe_dev *cd, |
| struct ddcb_queue *queue, |
| int *num) |
| { |
| u64 *pu64; |
| struct ddcb *pddcb; |
| |
| if (queue_free_ddcbs(queue) == 0) /* queue is full */ |
| return NULL; |
| |
| /* find new ddcb */ |
| pddcb = &queue->ddcb_vaddr[queue->ddcb_next]; |
| |
| /* if it is not completed, we are not allowed to use it */ |
| /* barrier(); */ |
| if ((pddcb->icrc_hsi_shi_32 & DDCB_COMPLETED_BE32) == 0x00000000) |
| return NULL; |
| |
| *num = queue->ddcb_next; /* internal DDCB number */ |
| queue->ddcb_next = (queue->ddcb_next + 1) % queue->ddcb_max; |
| |
| /* clear important DDCB fields */ |
| pu64 = (u64 *)pddcb; |
| pu64[0] = 0ULL; /* offs 0x00 (ICRC,HSI,SHI,...) */ |
| pu64[1] = 0ULL; /* offs 0x01 (ACFUNC,CMD...) */ |
| |
| /* destroy previous results in ASV */ |
| pu64[0x80/8] = 0ULL; /* offs 0x80 (ASV + 0) */ |
| pu64[0x88/8] = 0ULL; /* offs 0x88 (ASV + 0x08) */ |
| pu64[0x90/8] = 0ULL; /* offs 0x90 (ASV + 0x10) */ |
| pu64[0x98/8] = 0ULL; /* offs 0x98 (ASV + 0x18) */ |
| pu64[0xd0/8] = 0ULL; /* offs 0xd0 (RETC,ATTN...) */ |
| |
| pddcb->pre = DDCB_PRESET_PRE; /* 128 */ |
| pddcb->seqnum_16 = cpu_to_be16(queue->ddcb_seq++); |
| return pddcb; |
| } |
| |
| /** |
| * __genwqe_purge_ddcb() - Remove a DDCB from the workqueue |
| * @cd: genwqe device descriptor |
| * @req: DDCB request |
| * |
| * This will fail when the request was already FETCHED. In this case |
| * we need to wait until it is finished. Else the DDCB can be |
| * reused. This function also ensures that the request data structure |
| * is removed from ddcb_req[]. |
| * |
| * Do not forget to call this function when genwqe_wait_ddcb() fails, |
| * such that the request gets really removed from ddcb_req[]. |
| * |
| * Return: 0 success |
| */ |
| int __genwqe_purge_ddcb(struct genwqe_dev *cd, struct ddcb_requ *req) |
| { |
| struct ddcb *pddcb = NULL; |
| unsigned int t; |
| unsigned long flags; |
| struct ddcb_queue *queue = req->queue; |
| struct pci_dev *pci_dev = cd->pci_dev; |
| u64 queue_status; |
| __be32 icrc_hsi_shi = 0x0000; |
| __be32 old, new; |
| |
| /* unsigned long flags; */ |
| if (genwqe_ddcb_software_timeout <= 0) { |
| dev_err(&pci_dev->dev, |
| "[%s] err: software timeout is not set!\n", __func__); |
| return -EFAULT; |
| } |
| |
| pddcb = &queue->ddcb_vaddr[req->num]; |
| |
| for (t = 0; t < genwqe_ddcb_software_timeout * 10; t++) { |
| |
| spin_lock_irqsave(&queue->ddcb_lock, flags); |
| |
| /* Check if req was meanwhile finished */ |
| if (ddcb_requ_get_state(req) == GENWQE_REQU_FINISHED) |
| goto go_home; |
| |
| /* try to set PURGE bit if FETCHED/COMPLETED are not set */ |
| old = pddcb->icrc_hsi_shi_32; /* read SHI/HSI in BE32 */ |
| if ((old & DDCB_FETCHED_BE32) == 0x00000000) { |
| |
| new = (old | DDCB_PURGE_BE32); |
| icrc_hsi_shi = cmpxchg(&pddcb->icrc_hsi_shi_32, |
| old, new); |
| if (icrc_hsi_shi == old) |
| goto finish_ddcb; |
| } |
| |
| /* normal finish with HSI bit */ |
| barrier(); |
| icrc_hsi_shi = pddcb->icrc_hsi_shi_32; |
| if (icrc_hsi_shi & DDCB_COMPLETED_BE32) |
| goto finish_ddcb; |
| |
| spin_unlock_irqrestore(&queue->ddcb_lock, flags); |
| |
| /* |
| * Here the check_ddcb() function will most likely |
| * discover this DDCB to be finished some point in |
| * time. It will mark the req finished and free it up |
| * in the list. |
| */ |
| |
| copy_ddcb_results(req, req->num); /* for the failing case */ |
| msleep(100); /* sleep for 1/10 second and try again */ |
| continue; |
| |
| finish_ddcb: |
| copy_ddcb_results(req, req->num); |
| ddcb_requ_set_state(req, GENWQE_REQU_FINISHED); |
| queue->ddcbs_in_flight--; |
| queue->ddcb_req[req->num] = NULL; /* delete from array */ |
| ddcb_mark_cleared(pddcb); |
| |
| /* Move active DDCB further; Nothing to do here anymore. */ |
| |
| /* |
| * We need to ensure that there is at least one free |
| * DDCB in the queue. To do that, we must update |
| * ddcb_act only if the COMPLETED bit is set for the |
| * DDCB we are working on else we treat that DDCB even |
| * if we PURGED it as occupied (hardware is supposed |
| * to set the COMPLETED bit yet!). |
| */ |
| icrc_hsi_shi = pddcb->icrc_hsi_shi_32; |
| if ((icrc_hsi_shi & DDCB_COMPLETED_BE32) && |
| (queue->ddcb_act == req->num)) { |
| queue->ddcb_act = ((queue->ddcb_act + 1) % |
| queue->ddcb_max); |
| } |
| go_home: |
| spin_unlock_irqrestore(&queue->ddcb_lock, flags); |
| return 0; |
| } |
| |
| /* |
| * If the card is dead and the queue is forced to stop, we |
| * might see this in the queue status register. |
| */ |
| queue_status = __genwqe_readq(cd, queue->IO_QUEUE_STATUS); |
| |
| dev_dbg(&pci_dev->dev, "UN/FINISHED DDCB#%d\n", req->num); |
| genwqe_hexdump(pci_dev, pddcb, sizeof(*pddcb)); |
| |
| dev_err(&pci_dev->dev, |
| "[%s] err: DDCB#%d not purged and not completed after %d seconds QSTAT=%016llx!!\n", |
| __func__, req->num, genwqe_ddcb_software_timeout, |
| queue_status); |
| |
| print_ddcb_info(cd, req->queue); |
| |
| return -EFAULT; |
| } |
| |
| int genwqe_init_debug_data(struct genwqe_dev *cd, struct genwqe_debug_data *d) |
| { |
| int len; |
| struct pci_dev *pci_dev = cd->pci_dev; |
| |
| if (d == NULL) { |
| dev_err(&pci_dev->dev, |
| "[%s] err: invalid memory for debug data!\n", |
| __func__); |
| return -EFAULT; |
| } |
| |
| len = sizeof(d->driver_version); |
| snprintf(d->driver_version, len, "%s", DRV_VERSION); |
| d->slu_unitcfg = cd->slu_unitcfg; |
| d->app_unitcfg = cd->app_unitcfg; |
| return 0; |
| } |
| |
| /** |
| * __genwqe_enqueue_ddcb() - Enqueue a DDCB |
| * @cd: pointer to genwqe device descriptor |
| * @req: pointer to DDCB execution request |
| * @f_flags: file mode: blocking, non-blocking |
| * |
| * Return: 0 if enqueuing succeeded |
| * -EIO if card is unusable/PCIe problems |
| * -EBUSY if enqueuing failed |
| */ |
| int __genwqe_enqueue_ddcb(struct genwqe_dev *cd, struct ddcb_requ *req, |
| unsigned int f_flags) |
| { |
| struct ddcb *pddcb; |
| unsigned long flags; |
| struct ddcb_queue *queue; |
| struct pci_dev *pci_dev = cd->pci_dev; |
| u16 icrc; |
| |
| retry: |
| if (cd->card_state != GENWQE_CARD_USED) { |
| printk_ratelimited(KERN_ERR |
| "%s %s: [%s] Card is unusable/PCIe problem Req#%d\n", |
| GENWQE_DEVNAME, dev_name(&pci_dev->dev), |
| __func__, req->num); |
| return -EIO; |
| } |
| |
| queue = req->queue = &cd->queue; |
| |
| /* FIXME circumvention to improve performance when no irq is |
| * there. |
| */ |
| if (genwqe_polling_enabled) |
| genwqe_check_ddcb_queue(cd, queue); |
| |
| /* |
| * It must be ensured to process all DDCBs in successive |
| * order. Use a lock here in order to prevent nested DDCB |
| * enqueuing. |
| */ |
| spin_lock_irqsave(&queue->ddcb_lock, flags); |
| |
| pddcb = get_next_ddcb(cd, queue, &req->num); /* get ptr and num */ |
| if (pddcb == NULL) { |
| int rc; |
| |
| spin_unlock_irqrestore(&queue->ddcb_lock, flags); |
| |
| if (f_flags & O_NONBLOCK) { |
| queue->return_on_busy++; |
| return -EBUSY; |
| } |
| |
| queue->wait_on_busy++; |
| rc = wait_event_interruptible(queue->busy_waitq, |
| queue_free_ddcbs(queue) != 0); |
| dev_dbg(&pci_dev->dev, "[%s] waiting for free DDCB: rc=%d\n", |
| __func__, rc); |
| if (rc == -ERESTARTSYS) |
| return rc; /* interrupted by a signal */ |
| |
| goto retry; |
| } |
| |
| if (queue->ddcb_req[req->num] != NULL) { |
| spin_unlock_irqrestore(&queue->ddcb_lock, flags); |
| |
| dev_err(&pci_dev->dev, |
| "[%s] picked DDCB %d with req=%p still in use!!\n", |
| __func__, req->num, req); |
| return -EFAULT; |
| } |
| ddcb_requ_set_state(req, GENWQE_REQU_ENQUEUED); |
| queue->ddcb_req[req->num] = req; |
| |
| pddcb->cmdopts_16 = cpu_to_be16(req->cmd.cmdopts); |
| pddcb->cmd = req->cmd.cmd; |
| pddcb->acfunc = req->cmd.acfunc; /* functional unit */ |
| |
| /* |
| * We know that we can get retc 0x104 with CRC error, do not |
| * stop the queue in those cases for this command. XDIR = 1 |
| * does not work for old SLU versions. |
| * |
| * Last bitstream with the old XDIR behavior had SLU_ID |
| * 0x34199. |
| */ |
| if ((cd->slu_unitcfg & 0xFFFF0ull) > 0x34199ull) |
| pddcb->xdir = 0x1; |
| else |
| pddcb->xdir = 0x0; |
| |
| |
| pddcb->psp = (((req->cmd.asiv_length / 8) << 4) | |
| ((req->cmd.asv_length / 8))); |
| pddcb->disp_ts_64 = cpu_to_be64(req->cmd.disp_ts); |
| |
| /* |
| * If copying the whole DDCB_ASIV_LENGTH is impacting |
| * performance we need to change it to |
| * req->cmd.asiv_length. But simulation benefits from some |
| * non-architectured bits behind the architectured content. |
| * |
| * How much data is copied depends on the availability of the |
| * ATS field, which was introduced late. If the ATS field is |
| * supported ASIV is 8 bytes shorter than it used to be. Since |
| * the ATS field is copied too, the code should do exactly |
| * what it did before, but I wanted to make copying of the ATS |
| * field very explicit. |
| */ |
| if (genwqe_get_slu_id(cd) <= 0x2) { |
| memcpy(&pddcb->__asiv[0], /* destination */ |
| &req->cmd.__asiv[0], /* source */ |
| DDCB_ASIV_LENGTH); /* req->cmd.asiv_length */ |
| } else { |
| pddcb->n.ats_64 = cpu_to_be64(req->cmd.ats); |
| memcpy(&pddcb->n.asiv[0], /* destination */ |
| &req->cmd.asiv[0], /* source */ |
| DDCB_ASIV_LENGTH_ATS); /* req->cmd.asiv_length */ |
| } |
| |
| pddcb->icrc_hsi_shi_32 = cpu_to_be32(0x00000000); /* for crc */ |
| |
| /* |
| * Calculate CRC_16 for corresponding range PSP(7:4). Include |
| * empty 4 bytes prior to the data. |
| */ |
| icrc = genwqe_crc16((const u8 *)pddcb, |
| ICRC_LENGTH(req->cmd.asiv_length), 0xffff); |
| pddcb->icrc_hsi_shi_32 = cpu_to_be32((u32)icrc << 16); |
| |
| /* enable DDCB completion irq */ |
| if (!genwqe_polling_enabled) |
| pddcb->icrc_hsi_shi_32 |= DDCB_INTR_BE32; |
| |
| dev_dbg(&pci_dev->dev, "INPUT DDCB#%d\n", req->num); |
| genwqe_hexdump(pci_dev, pddcb, sizeof(*pddcb)); |
| |
| if (ddcb_requ_collect_debug_data(req)) { |
| /* use the kernel copy of debug data. copying back to |
| user buffer happens later */ |
| |
| genwqe_init_debug_data(cd, &req->debug_data); |
| memcpy(&req->debug_data.ddcb_before, pddcb, |
| sizeof(req->debug_data.ddcb_before)); |
| } |
| |
| enqueue_ddcb(cd, queue, pddcb, req->num); |
| queue->ddcbs_in_flight++; |
| |
| if (queue->ddcbs_in_flight > queue->ddcbs_max_in_flight) |
| queue->ddcbs_max_in_flight = queue->ddcbs_in_flight; |
| |
| ddcb_requ_set_state(req, GENWQE_REQU_TAPPED); |
| spin_unlock_irqrestore(&queue->ddcb_lock, flags); |
| wake_up_interruptible(&cd->queue_waitq); |
| |
| return 0; |
| } |
| |
| /** |
| * __genwqe_execute_raw_ddcb() - Setup and execute DDCB |
| * @cd: pointer to genwqe device descriptor |
| * @req: user provided DDCB request |
| * @f_flags: file mode: blocking, non-blocking |
| */ |
| int __genwqe_execute_raw_ddcb(struct genwqe_dev *cd, |
| struct genwqe_ddcb_cmd *cmd, |
| unsigned int f_flags) |
| { |
| int rc = 0; |
| struct pci_dev *pci_dev = cd->pci_dev; |
| struct ddcb_requ *req = container_of(cmd, struct ddcb_requ, cmd); |
| |
| if (cmd->asiv_length > DDCB_ASIV_LENGTH) { |
| dev_err(&pci_dev->dev, "[%s] err: wrong asiv_length of %d\n", |
| __func__, cmd->asiv_length); |
| return -EINVAL; |
| } |
| if (cmd->asv_length > DDCB_ASV_LENGTH) { |
| dev_err(&pci_dev->dev, "[%s] err: wrong asv_length of %d\n", |
| __func__, cmd->asiv_length); |
| return -EINVAL; |
| } |
| rc = __genwqe_enqueue_ddcb(cd, req, f_flags); |
| if (rc != 0) |
| return rc; |
| |
| rc = __genwqe_wait_ddcb(cd, req); |
| if (rc < 0) /* error or signal interrupt */ |
| goto err_exit; |
| |
| if (ddcb_requ_collect_debug_data(req)) { |
| if (copy_to_user((struct genwqe_debug_data __user *) |
| (unsigned long)cmd->ddata_addr, |
| &req->debug_data, |
| sizeof(struct genwqe_debug_data))) |
| return -EFAULT; |
| } |
| |
| /* |
| * Higher values than 0x102 indicate completion with faults, |
| * lower values than 0x102 indicate processing faults. Note |
| * that DDCB might have been purged. E.g. Cntl+C. |
| */ |
| if (cmd->retc != DDCB_RETC_COMPLETE) { |
| /* This might happen e.g. flash read, and needs to be |
| handled by the upper layer code. */ |
| rc = -EBADMSG; /* not processed/error retc */ |
| } |
| |
| return rc; |
| |
| err_exit: |
| __genwqe_purge_ddcb(cd, req); |
| |
| if (ddcb_requ_collect_debug_data(req)) { |
| if (copy_to_user((struct genwqe_debug_data __user *) |
| (unsigned long)cmd->ddata_addr, |
| &req->debug_data, |
| sizeof(struct genwqe_debug_data))) |
| return -EFAULT; |
| } |
| return rc; |
| } |
| |
| /** |
| * genwqe_next_ddcb_ready() - Figure out if the next DDCB is already finished |
| * |
| * We use this as condition for our wait-queue code. |
| */ |
| static int genwqe_next_ddcb_ready(struct genwqe_dev *cd) |
| { |
| unsigned long flags; |
| struct ddcb *pddcb; |
| struct ddcb_queue *queue = &cd->queue; |
| |
| spin_lock_irqsave(&queue->ddcb_lock, flags); |
| |
| if (queue_empty(queue)) { /* emtpy queue */ |
| spin_unlock_irqrestore(&queue->ddcb_lock, flags); |
| return 0; |
| } |
| |
| pddcb = &queue->ddcb_vaddr[queue->ddcb_act]; |
| if (pddcb->icrc_hsi_shi_32 & DDCB_COMPLETED_BE32) { /* ddcb ready */ |
| spin_unlock_irqrestore(&queue->ddcb_lock, flags); |
| return 1; |
| } |
| |
| spin_unlock_irqrestore(&queue->ddcb_lock, flags); |
| return 0; |
| } |
| |
| /** |
| * genwqe_ddcbs_in_flight() - Check how many DDCBs are in flight |
| * |
| * Keep track on the number of DDCBs which ware currently in the |
| * queue. This is needed for statistics as well as conditon if we want |
| * to wait or better do polling in case of no interrupts available. |
| */ |
| int genwqe_ddcbs_in_flight(struct genwqe_dev *cd) |
| { |
| unsigned long flags; |
| int ddcbs_in_flight = 0; |
| struct ddcb_queue *queue = &cd->queue; |
| |
| spin_lock_irqsave(&queue->ddcb_lock, flags); |
| ddcbs_in_flight += queue->ddcbs_in_flight; |
| spin_unlock_irqrestore(&queue->ddcb_lock, flags); |
| |
| return ddcbs_in_flight; |
| } |
| |
| static int setup_ddcb_queue(struct genwqe_dev *cd, struct ddcb_queue *queue) |
| { |
| int rc, i; |
| struct ddcb *pddcb; |
| u64 val64; |
| unsigned int queue_size; |
| struct pci_dev *pci_dev = cd->pci_dev; |
| |
| if (genwqe_ddcb_max < 2) |
| return -EINVAL; |
| |
| queue_size = roundup(genwqe_ddcb_max * sizeof(struct ddcb), PAGE_SIZE); |
| |
| queue->ddcbs_in_flight = 0; /* statistics */ |
| queue->ddcbs_max_in_flight = 0; |
| queue->ddcbs_completed = 0; |
| queue->return_on_busy = 0; |
| queue->wait_on_busy = 0; |
| |
| queue->ddcb_seq = 0x100; /* start sequence number */ |
| queue->ddcb_max = genwqe_ddcb_max; /* module parameter */ |
| queue->ddcb_vaddr = __genwqe_alloc_consistent(cd, queue_size, |
| &queue->ddcb_daddr); |
| if (queue->ddcb_vaddr == NULL) { |
| dev_err(&pci_dev->dev, |
| "[%s] **err: could not allocate DDCB **\n", __func__); |
| return -ENOMEM; |
| } |
| memset(queue->ddcb_vaddr, 0, queue_size); |
| |
| queue->ddcb_req = kzalloc(sizeof(struct ddcb_requ *) * |
| queue->ddcb_max, GFP_KERNEL); |
| if (!queue->ddcb_req) { |
| rc = -ENOMEM; |
| goto free_ddcbs; |
| } |
| |
| queue->ddcb_waitqs = kzalloc(sizeof(wait_queue_head_t) * |
| queue->ddcb_max, GFP_KERNEL); |
| if (!queue->ddcb_waitqs) { |
| rc = -ENOMEM; |
| goto free_requs; |
| } |
| |
| for (i = 0; i < queue->ddcb_max; i++) { |
| pddcb = &queue->ddcb_vaddr[i]; /* DDCBs */ |
| pddcb->icrc_hsi_shi_32 = DDCB_COMPLETED_BE32; |
| pddcb->retc_16 = cpu_to_be16(0xfff); |
| |
| queue->ddcb_req[i] = NULL; /* requests */ |
| init_waitqueue_head(&queue->ddcb_waitqs[i]); /* waitqueues */ |
| } |
| |
| queue->ddcb_act = 0; |
| queue->ddcb_next = 0; /* queue is empty */ |
| |
| spin_lock_init(&queue->ddcb_lock); |
| init_waitqueue_head(&queue->busy_waitq); |
| |
| val64 = ((u64)(queue->ddcb_max - 1) << 8); /* lastptr */ |
| __genwqe_writeq(cd, queue->IO_QUEUE_CONFIG, 0x07); /* iCRC/vCRC */ |
| __genwqe_writeq(cd, queue->IO_QUEUE_SEGMENT, queue->ddcb_daddr); |
| __genwqe_writeq(cd, queue->IO_QUEUE_INITSQN, queue->ddcb_seq); |
| __genwqe_writeq(cd, queue->IO_QUEUE_WRAP, val64); |
| return 0; |
| |
| free_requs: |
| kfree(queue->ddcb_req); |
| queue->ddcb_req = NULL; |
| free_ddcbs: |
| __genwqe_free_consistent(cd, queue_size, queue->ddcb_vaddr, |
| queue->ddcb_daddr); |
| queue->ddcb_vaddr = NULL; |
| queue->ddcb_daddr = 0ull; |
| return -ENODEV; |
| |
| } |
| |
| static int ddcb_queue_initialized(struct ddcb_queue *queue) |
| { |
| return queue->ddcb_vaddr != NULL; |
| } |
| |
| static void free_ddcb_queue(struct genwqe_dev *cd, struct ddcb_queue *queue) |
| { |
| unsigned int queue_size; |
| |
| queue_size = roundup(queue->ddcb_max * sizeof(struct ddcb), PAGE_SIZE); |
| |
| kfree(queue->ddcb_req); |
| queue->ddcb_req = NULL; |
| |
| if (queue->ddcb_vaddr) { |
| __genwqe_free_consistent(cd, queue_size, queue->ddcb_vaddr, |
| queue->ddcb_daddr); |
| queue->ddcb_vaddr = NULL; |
| queue->ddcb_daddr = 0ull; |
| } |
| } |
| |
| static irqreturn_t genwqe_pf_isr(int irq, void *dev_id) |
| { |
| u64 gfir; |
| struct genwqe_dev *cd = (struct genwqe_dev *)dev_id; |
| struct pci_dev *pci_dev = cd->pci_dev; |
| |
| /* |
| * In case of fatal FIR error the queue is stopped, such that |
| * we can safely check it without risking anything. |
| */ |
| cd->irqs_processed++; |
| wake_up_interruptible(&cd->queue_waitq); |
| |
| /* |
| * Checking for errors before kicking the queue might be |
| * safer, but slower for the good-case ... See above. |
| */ |
| gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR); |
| if (((gfir & GFIR_ERR_TRIGGER) != 0x0) && |
| !pci_channel_offline(pci_dev)) { |
| |
| if (cd->use_platform_recovery) { |
| /* |
| * Since we use raw accessors, EEH errors won't be |
| * detected by the platform until we do a non-raw |
| * MMIO or config space read |
| */ |
| readq(cd->mmio + IO_SLC_CFGREG_GFIR); |
| |
| /* Don't do anything if the PCI channel is frozen */ |
| if (pci_channel_offline(pci_dev)) |
| goto exit; |
| } |
| |
| wake_up_interruptible(&cd->health_waitq); |
| |
| /* |
| * By default GFIRs causes recovery actions. This |
| * count is just for debug when recovery is masked. |
| */ |
| dev_err_ratelimited(&pci_dev->dev, |
| "[%s] GFIR=%016llx\n", |
| __func__, gfir); |
| } |
| |
| exit: |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t genwqe_vf_isr(int irq, void *dev_id) |
| { |
| struct genwqe_dev *cd = (struct genwqe_dev *)dev_id; |
| |
| cd->irqs_processed++; |
| wake_up_interruptible(&cd->queue_waitq); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * genwqe_card_thread() - Work thread for the DDCB queue |
| * |
| * The idea is to check if there are DDCBs in processing. If there are |
| * some finished DDCBs, we process them and wakeup the |
| * requestors. Otherwise we give other processes time using |
| * cond_resched(). |
| */ |
| static int genwqe_card_thread(void *data) |
| { |
| int should_stop = 0, rc = 0; |
| struct genwqe_dev *cd = (struct genwqe_dev *)data; |
| |
| while (!kthread_should_stop()) { |
| |
| genwqe_check_ddcb_queue(cd, &cd->queue); |
| |
| if (genwqe_polling_enabled) { |
| rc = wait_event_interruptible_timeout( |
| cd->queue_waitq, |
| genwqe_ddcbs_in_flight(cd) || |
| (should_stop = kthread_should_stop()), 1); |
| } else { |
| rc = wait_event_interruptible_timeout( |
| cd->queue_waitq, |
| genwqe_next_ddcb_ready(cd) || |
| (should_stop = kthread_should_stop()), HZ); |
| } |
| if (should_stop) |
| break; |
| |
| /* |
| * Avoid soft lockups on heavy loads; we do not want |
| * to disable our interrupts. |
| */ |
| cond_resched(); |
| } |
| return 0; |
| } |
| |
| /** |
| * genwqe_setup_service_layer() - Setup DDCB queue |
| * @cd: pointer to genwqe device descriptor |
| * |
| * Allocate DDCBs. Configure Service Layer Controller (SLC). |
| * |
| * Return: 0 success |
| */ |
| int genwqe_setup_service_layer(struct genwqe_dev *cd) |
| { |
| int rc; |
| struct ddcb_queue *queue; |
| struct pci_dev *pci_dev = cd->pci_dev; |
| |
| if (genwqe_is_privileged(cd)) { |
| rc = genwqe_card_reset(cd); |
| if (rc < 0) { |
| dev_err(&pci_dev->dev, |
| "[%s] err: reset failed.\n", __func__); |
| return rc; |
| } |
| genwqe_read_softreset(cd); |
| } |
| |
| queue = &cd->queue; |
| queue->IO_QUEUE_CONFIG = IO_SLC_QUEUE_CONFIG; |
| queue->IO_QUEUE_STATUS = IO_SLC_QUEUE_STATUS; |
| queue->IO_QUEUE_SEGMENT = IO_SLC_QUEUE_SEGMENT; |
| queue->IO_QUEUE_INITSQN = IO_SLC_QUEUE_INITSQN; |
| queue->IO_QUEUE_OFFSET = IO_SLC_QUEUE_OFFSET; |
| queue->IO_QUEUE_WRAP = IO_SLC_QUEUE_WRAP; |
| queue->IO_QUEUE_WTIME = IO_SLC_QUEUE_WTIME; |
| queue->IO_QUEUE_ERRCNTS = IO_SLC_QUEUE_ERRCNTS; |
| queue->IO_QUEUE_LRW = IO_SLC_QUEUE_LRW; |
| |
| rc = setup_ddcb_queue(cd, queue); |
| if (rc != 0) { |
| rc = -ENODEV; |
| goto err_out; |
| } |
| |
| init_waitqueue_head(&cd->queue_waitq); |
| cd->card_thread = kthread_run(genwqe_card_thread, cd, |
| GENWQE_DEVNAME "%d_thread", |
| cd->card_idx); |
| if (IS_ERR(cd->card_thread)) { |
| rc = PTR_ERR(cd->card_thread); |
| cd->card_thread = NULL; |
| goto stop_free_queue; |
| } |
| |
| rc = genwqe_set_interrupt_capability(cd, GENWQE_MSI_IRQS); |
| if (rc) |
| goto stop_kthread; |
| |
| /* |
| * We must have all wait-queues initialized when we enable the |
| * interrupts. Otherwise we might crash if we get an early |
| * irq. |
| */ |
| init_waitqueue_head(&cd->health_waitq); |
| |
| if (genwqe_is_privileged(cd)) { |
| rc = request_irq(pci_dev->irq, genwqe_pf_isr, IRQF_SHARED, |
| GENWQE_DEVNAME, cd); |
| } else { |
| rc = request_irq(pci_dev->irq, genwqe_vf_isr, IRQF_SHARED, |
| GENWQE_DEVNAME, cd); |
| } |
| if (rc < 0) { |
| dev_err(&pci_dev->dev, "irq %d not free.\n", pci_dev->irq); |
| goto stop_irq_cap; |
| } |
| |
| cd->card_state = GENWQE_CARD_USED; |
| return 0; |
| |
| stop_irq_cap: |
| genwqe_reset_interrupt_capability(cd); |
| stop_kthread: |
| kthread_stop(cd->card_thread); |
| cd->card_thread = NULL; |
| stop_free_queue: |
| free_ddcb_queue(cd, queue); |
| err_out: |
| return rc; |
| } |
| |
| /** |
| * queue_wake_up_all() - Handles fatal error case |
| * |
| * The PCI device got unusable and we have to stop all pending |
| * requests as fast as we can. The code after this must purge the |
| * DDCBs in question and ensure that all mappings are freed. |
| */ |
| static int queue_wake_up_all(struct genwqe_dev *cd) |
| { |
| unsigned int i; |
| unsigned long flags; |
| struct ddcb_queue *queue = &cd->queue; |
| |
| spin_lock_irqsave(&queue->ddcb_lock, flags); |
| |
| for (i = 0; i < queue->ddcb_max; i++) |
| wake_up_interruptible(&queue->ddcb_waitqs[queue->ddcb_act]); |
| |
| wake_up_interruptible(&queue->busy_waitq); |
| spin_unlock_irqrestore(&queue->ddcb_lock, flags); |
| |
| return 0; |
| } |
| |
| /** |
| * genwqe_finish_queue() - Remove any genwqe devices and user-interfaces |
| * |
| * Relies on the pre-condition that there are no users of the card |
| * device anymore e.g. with open file-descriptors. |
| * |
| * This function must be robust enough to be called twice. |
| */ |
| int genwqe_finish_queue(struct genwqe_dev *cd) |
| { |
| int i, rc = 0, in_flight; |
| int waitmax = genwqe_ddcb_software_timeout; |
| struct pci_dev *pci_dev = cd->pci_dev; |
| struct ddcb_queue *queue = &cd->queue; |
| |
| if (!ddcb_queue_initialized(queue)) |
| return 0; |
| |
| /* Do not wipe out the error state. */ |
| if (cd->card_state == GENWQE_CARD_USED) |
| cd->card_state = GENWQE_CARD_UNUSED; |
| |
| /* Wake up all requests in the DDCB queue such that they |
| should be removed nicely. */ |
| queue_wake_up_all(cd); |
| |
| /* We must wait to get rid of the DDCBs in flight */ |
| for (i = 0; i < waitmax; i++) { |
| in_flight = genwqe_ddcbs_in_flight(cd); |
| |
| if (in_flight == 0) |
| break; |
| |
| dev_dbg(&pci_dev->dev, |
| " DEBUG [%d/%d] waiting for queue to get empty: %d requests!\n", |
| i, waitmax, in_flight); |
| |
| /* |
| * Severe severe error situation: The card itself has |
| * 16 DDCB queues, each queue has e.g. 32 entries, |
| * each DDBC has a hardware timeout of currently 250 |
| * msec but the PFs have a hardware timeout of 8 sec |
| * ... so I take something large. |
| */ |
| msleep(1000); |
| } |
| if (i == waitmax) { |
| dev_err(&pci_dev->dev, " [%s] err: queue is not empty!!\n", |
| __func__); |
| rc = -EIO; |
| } |
| return rc; |
| } |
| |
| /** |
| * genwqe_release_service_layer() - Shutdown DDCB queue |
| * @cd: genwqe device descriptor |
| * |
| * This function must be robust enough to be called twice. |
| */ |
| int genwqe_release_service_layer(struct genwqe_dev *cd) |
| { |
| struct pci_dev *pci_dev = cd->pci_dev; |
| |
| if (!ddcb_queue_initialized(&cd->queue)) |
| return 1; |
| |
| free_irq(pci_dev->irq, cd); |
| genwqe_reset_interrupt_capability(cd); |
| |
| if (cd->card_thread != NULL) { |
| kthread_stop(cd->card_thread); |
| cd->card_thread = NULL; |
| } |
| |
| free_ddcb_queue(cd, &cd->queue); |
| return 0; |
| } |