blob: 07966970adaddb10ca33d7e390495f9924755ac7 [file] [log] [blame]
/*
* Copyright 2013 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
/* Machine-generated file; do not edit. */
#ifndef __ARCH_UART_H__
#define __ARCH_UART_H__
#include <arch/abi.h>
#include <arch/uart_def.h>
#ifndef __ASSEMBLER__
/* Divisor. */
__extension__
typedef union
{
struct
{
#ifndef __BIG_ENDIAN__
/*
* Baud Rate Divisor. Desired_baud_rate = REF_CLK frequency / (baud *
* 16).
* Note: REF_CLK is always 125 MHz, the default
* divisor = 68, baud rate = 125M/(68*16) = 115200 baud.
*/
uint_reg_t divisor : 12;
/* Reserved. */
uint_reg_t __reserved : 52;
#else /* __BIG_ENDIAN__ */
uint_reg_t __reserved : 52;
uint_reg_t divisor : 12;
#endif
};
uint_reg_t word;
} UART_DIVISOR_t;
/* FIFO Count. */
__extension__
typedef union
{
struct
{
#ifndef __BIG_ENDIAN__
/*
* n: n active entries in the receive FIFO (max is 2**8). Each entry has
* 8 bits.
* 0: no active entry in the receive FIFO (that is empty).
*/
uint_reg_t rfifo_count : 9;
/* Reserved. */
uint_reg_t __reserved_0 : 7;
/*
* n: n active entries in the transmit FIFO (max is 2**8). Each entry has
* 8 bits.
* 0: no active entry in the transmit FIFO (that is empty).
*/
uint_reg_t tfifo_count : 9;
/* Reserved. */
uint_reg_t __reserved_1 : 7;
/*
* n: n active entries in the write FIFO (max is 2**2). Each entry has 8
* bits.
* 0: no active entry in the write FIFO (that is empty).
*/
uint_reg_t wfifo_count : 3;
/* Reserved. */
uint_reg_t __reserved_2 : 29;
#else /* __BIG_ENDIAN__ */
uint_reg_t __reserved_2 : 29;
uint_reg_t wfifo_count : 3;
uint_reg_t __reserved_1 : 7;
uint_reg_t tfifo_count : 9;
uint_reg_t __reserved_0 : 7;
uint_reg_t rfifo_count : 9;
#endif
};
uint_reg_t word;
} UART_FIFO_COUNT_t;
/* FLAG. */
__extension__
typedef union
{
struct
{
#ifndef __BIG_ENDIAN__
/* Reserved. */
uint_reg_t __reserved_0 : 1;
/* 1: receive FIFO is empty */
uint_reg_t rfifo_empty : 1;
/* 1: write FIFO is empty. */
uint_reg_t wfifo_empty : 1;
/* 1: transmit FIFO is empty. */
uint_reg_t tfifo_empty : 1;
/* 1: receive FIFO is full. */
uint_reg_t rfifo_full : 1;
/* 1: write FIFO is full. */
uint_reg_t wfifo_full : 1;
/* 1: transmit FIFO is full. */
uint_reg_t tfifo_full : 1;
/* Reserved. */
uint_reg_t __reserved_1 : 57;
#else /* __BIG_ENDIAN__ */
uint_reg_t __reserved_1 : 57;
uint_reg_t tfifo_full : 1;
uint_reg_t wfifo_full : 1;
uint_reg_t rfifo_full : 1;
uint_reg_t tfifo_empty : 1;
uint_reg_t wfifo_empty : 1;
uint_reg_t rfifo_empty : 1;
uint_reg_t __reserved_0 : 1;
#endif
};
uint_reg_t word;
} UART_FLAG_t;
/*
* Interrupt Vector Mask.
* Each bit in this register corresponds to a specific interrupt. When set,
* the associated interrupt will not be dispatched.
*/
__extension__
typedef union
{
struct
{
#ifndef __BIG_ENDIAN__
/* Read data FIFO read and no data available */
uint_reg_t rdat_err : 1;
/* Write FIFO was written but it was full */
uint_reg_t wdat_err : 1;
/* Stop bit not found when current data was received */
uint_reg_t frame_err : 1;
/* Parity error was detected when current data was received */
uint_reg_t parity_err : 1;
/* Data was received but the receive FIFO was full */
uint_reg_t rfifo_overflow : 1;
/*
* An almost full event is reached when data is to be written to the
* receive FIFO, and the receive FIFO has more than or equal to
* BUFFER_THRESHOLD.RFIFO_AFULL bytes.
*/
uint_reg_t rfifo_afull : 1;
/* Reserved. */
uint_reg_t __reserved_0 : 1;
/* An entry in the transmit FIFO was popped */
uint_reg_t tfifo_re : 1;
/* An entry has been pushed into the receive FIFO */
uint_reg_t rfifo_we : 1;
/* An entry of the write FIFO has been popped */
uint_reg_t wfifo_re : 1;
/* Rshim read receive FIFO in protocol mode */
uint_reg_t rfifo_err : 1;
/*
* An almost empty event is reached when data is to be read from the
* transmit FIFO, and the transmit FIFO has less than or equal to
* BUFFER_THRESHOLD.TFIFO_AEMPTY bytes.
*/
uint_reg_t tfifo_aempty : 1;
/* Reserved. */
uint_reg_t __reserved_1 : 52;
#else /* __BIG_ENDIAN__ */
uint_reg_t __reserved_1 : 52;
uint_reg_t tfifo_aempty : 1;
uint_reg_t rfifo_err : 1;
uint_reg_t wfifo_re : 1;
uint_reg_t rfifo_we : 1;
uint_reg_t tfifo_re : 1;
uint_reg_t __reserved_0 : 1;
uint_reg_t rfifo_afull : 1;
uint_reg_t rfifo_overflow : 1;
uint_reg_t parity_err : 1;
uint_reg_t frame_err : 1;
uint_reg_t wdat_err : 1;
uint_reg_t rdat_err : 1;
#endif
};
uint_reg_t word;
} UART_INTERRUPT_MASK_t;
/*
* Interrupt vector, write-one-to-clear.
* Each bit in this register corresponds to a specific interrupt. Hardware
* sets the bit when the associated condition has occurred. Writing a 1
* clears the status bit.
*/
__extension__
typedef union
{
struct
{
#ifndef __BIG_ENDIAN__
/* Read data FIFO read and no data available */
uint_reg_t rdat_err : 1;
/* Write FIFO was written but it was full */
uint_reg_t wdat_err : 1;
/* Stop bit not found when current data was received */
uint_reg_t frame_err : 1;
/* Parity error was detected when current data was received */
uint_reg_t parity_err : 1;
/* Data was received but the receive FIFO was full */
uint_reg_t rfifo_overflow : 1;
/*
* Data was received and the receive FIFO is now almost full (more than
* BUFFER_THRESHOLD.RFIFO_AFULL bytes in it)
*/
uint_reg_t rfifo_afull : 1;
/* Reserved. */
uint_reg_t __reserved_0 : 1;
/* An entry in the transmit FIFO was popped */
uint_reg_t tfifo_re : 1;
/* An entry has been pushed into the receive FIFO */
uint_reg_t rfifo_we : 1;
/* An entry of the write FIFO has been popped */
uint_reg_t wfifo_re : 1;
/* Rshim read receive FIFO in protocol mode */
uint_reg_t rfifo_err : 1;
/*
* Data was read from the transmit FIFO and now it is almost empty (less
* than or equal to BUFFER_THRESHOLD.TFIFO_AEMPTY bytes in it).
*/
uint_reg_t tfifo_aempty : 1;
/* Reserved. */
uint_reg_t __reserved_1 : 52;
#else /* __BIG_ENDIAN__ */
uint_reg_t __reserved_1 : 52;
uint_reg_t tfifo_aempty : 1;
uint_reg_t rfifo_err : 1;
uint_reg_t wfifo_re : 1;
uint_reg_t rfifo_we : 1;
uint_reg_t tfifo_re : 1;
uint_reg_t __reserved_0 : 1;
uint_reg_t rfifo_afull : 1;
uint_reg_t rfifo_overflow : 1;
uint_reg_t parity_err : 1;
uint_reg_t frame_err : 1;
uint_reg_t wdat_err : 1;
uint_reg_t rdat_err : 1;
#endif
};
uint_reg_t word;
} UART_INTERRUPT_STATUS_t;
/* Type. */
__extension__
typedef union
{
struct
{
#ifndef __BIG_ENDIAN__
/* Number of stop bits, rx and tx */
uint_reg_t sbits : 1;
/* Reserved. */
uint_reg_t __reserved_0 : 1;
/* Data word size, rx and tx */
uint_reg_t dbits : 1;
/* Reserved. */
uint_reg_t __reserved_1 : 1;
/* Parity selection, rx and tx */
uint_reg_t ptype : 3;
/* Reserved. */
uint_reg_t __reserved_2 : 57;
#else /* __BIG_ENDIAN__ */
uint_reg_t __reserved_2 : 57;
uint_reg_t ptype : 3;
uint_reg_t __reserved_1 : 1;
uint_reg_t dbits : 1;
uint_reg_t __reserved_0 : 1;
uint_reg_t sbits : 1;
#endif
};
uint_reg_t word;
} UART_TYPE_t;
#endif /* !defined(__ASSEMBLER__) */
#endif /* !defined(__ARCH_UART_H__) */