| /* |
| * Copyright 2014 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| * Authors: Alex Deucher |
| */ |
| #include <linux/firmware.h> |
| #include <drm/drmP.h> |
| #include "amdgpu.h" |
| #include "amdgpu_ucode.h" |
| #include "amdgpu_trace.h" |
| #include "vi.h" |
| #include "vid.h" |
| |
| #include "oss/oss_3_0_d.h" |
| #include "oss/oss_3_0_sh_mask.h" |
| |
| #include "gmc/gmc_8_1_d.h" |
| #include "gmc/gmc_8_1_sh_mask.h" |
| |
| #include "gca/gfx_8_0_d.h" |
| #include "gca/gfx_8_0_enum.h" |
| #include "gca/gfx_8_0_sh_mask.h" |
| |
| #include "bif/bif_5_0_d.h" |
| #include "bif/bif_5_0_sh_mask.h" |
| |
| #include "tonga_sdma_pkt_open.h" |
| |
| static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev); |
| static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev); |
| static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev); |
| static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev); |
| |
| MODULE_FIRMWARE("amdgpu/tonga_sdma.bin"); |
| MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin"); |
| MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin"); |
| MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin"); |
| MODULE_FIRMWARE("amdgpu/fiji_sdma.bin"); |
| MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin"); |
| MODULE_FIRMWARE("amdgpu/stoney_sdma.bin"); |
| MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin"); |
| MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin"); |
| MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin"); |
| MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin"); |
| |
| |
| static const u32 sdma_offsets[SDMA_MAX_INSTANCE] = |
| { |
| SDMA0_REGISTER_OFFSET, |
| SDMA1_REGISTER_OFFSET |
| }; |
| |
| static const u32 golden_settings_tonga_a11[] = |
| { |
| mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007, |
| mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000, |
| mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100, |
| mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100, |
| mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100, |
| mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007, |
| mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000, |
| mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100, |
| mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100, |
| mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100, |
| }; |
| |
| static const u32 tonga_mgcg_cgcg_init[] = |
| { |
| mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100, |
| mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100 |
| }; |
| |
| static const u32 golden_settings_fiji_a10[] = |
| { |
| mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007, |
| mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100, |
| mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100, |
| mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100, |
| mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007, |
| mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100, |
| mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100, |
| mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100, |
| }; |
| |
| static const u32 fiji_mgcg_cgcg_init[] = |
| { |
| mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100, |
| mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100 |
| }; |
| |
| static const u32 golden_settings_polaris11_a11[] = |
| { |
| mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007, |
| mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000, |
| mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100, |
| mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100, |
| mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100, |
| mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007, |
| mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000, |
| mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100, |
| mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100, |
| mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100, |
| }; |
| |
| static const u32 golden_settings_polaris10_a11[] = |
| { |
| mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007, |
| mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000, |
| mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100, |
| mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100, |
| mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100, |
| mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007, |
| mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000, |
| mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100, |
| mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100, |
| mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100, |
| }; |
| |
| static const u32 cz_golden_settings_a11[] = |
| { |
| mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007, |
| mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000, |
| mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100, |
| mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800, |
| mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100, |
| mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100, |
| mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007, |
| mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000, |
| mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100, |
| mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800, |
| mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100, |
| mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100, |
| }; |
| |
| static const u32 cz_mgcg_cgcg_init[] = |
| { |
| mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100, |
| mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100 |
| }; |
| |
| static const u32 stoney_golden_settings_a11[] = |
| { |
| mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100, |
| mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800, |
| mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100, |
| mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100, |
| }; |
| |
| static const u32 stoney_mgcg_cgcg_init[] = |
| { |
| mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100, |
| }; |
| |
| /* |
| * sDMA - System DMA |
| * Starting with CIK, the GPU has new asynchronous |
| * DMA engines. These engines are used for compute |
| * and gfx. There are two DMA engines (SDMA0, SDMA1) |
| * and each one supports 1 ring buffer used for gfx |
| * and 2 queues used for compute. |
| * |
| * The programming model is very similar to the CP |
| * (ring buffer, IBs, etc.), but sDMA has it's own |
| * packet format that is different from the PM4 format |
| * used by the CP. sDMA supports copying data, writing |
| * embedded data, solid fills, and a number of other |
| * things. It also has support for tiling/detiling of |
| * buffers. |
| */ |
| |
| static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev) |
| { |
| switch (adev->asic_type) { |
| case CHIP_FIJI: |
| amdgpu_program_register_sequence(adev, |
| fiji_mgcg_cgcg_init, |
| (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init)); |
| amdgpu_program_register_sequence(adev, |
| golden_settings_fiji_a10, |
| (const u32)ARRAY_SIZE(golden_settings_fiji_a10)); |
| break; |
| case CHIP_TONGA: |
| amdgpu_program_register_sequence(adev, |
| tonga_mgcg_cgcg_init, |
| (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init)); |
| amdgpu_program_register_sequence(adev, |
| golden_settings_tonga_a11, |
| (const u32)ARRAY_SIZE(golden_settings_tonga_a11)); |
| break; |
| case CHIP_POLARIS11: |
| amdgpu_program_register_sequence(adev, |
| golden_settings_polaris11_a11, |
| (const u32)ARRAY_SIZE(golden_settings_polaris11_a11)); |
| break; |
| case CHIP_POLARIS10: |
| amdgpu_program_register_sequence(adev, |
| golden_settings_polaris10_a11, |
| (const u32)ARRAY_SIZE(golden_settings_polaris10_a11)); |
| break; |
| case CHIP_CARRIZO: |
| amdgpu_program_register_sequence(adev, |
| cz_mgcg_cgcg_init, |
| (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init)); |
| amdgpu_program_register_sequence(adev, |
| cz_golden_settings_a11, |
| (const u32)ARRAY_SIZE(cz_golden_settings_a11)); |
| break; |
| case CHIP_STONEY: |
| amdgpu_program_register_sequence(adev, |
| stoney_mgcg_cgcg_init, |
| (const u32)ARRAY_SIZE(stoney_mgcg_cgcg_init)); |
| amdgpu_program_register_sequence(adev, |
| stoney_golden_settings_a11, |
| (const u32)ARRAY_SIZE(stoney_golden_settings_a11)); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static void sdma_v3_0_free_microcode(struct amdgpu_device *adev) |
| { |
| int i; |
| for (i = 0; i < adev->sdma.num_instances; i++) { |
| release_firmware(adev->sdma.instance[i].fw); |
| adev->sdma.instance[i].fw = NULL; |
| } |
| } |
| |
| /** |
| * sdma_v3_0_init_microcode - load ucode images from disk |
| * |
| * @adev: amdgpu_device pointer |
| * |
| * Use the firmware interface to load the ucode images into |
| * the driver (not loaded into hw). |
| * Returns 0 on success, error on failure. |
| */ |
| static int sdma_v3_0_init_microcode(struct amdgpu_device *adev) |
| { |
| const char *chip_name; |
| char fw_name[30]; |
| int err = 0, i; |
| struct amdgpu_firmware_info *info = NULL; |
| const struct common_firmware_header *header = NULL; |
| const struct sdma_firmware_header_v1_0 *hdr; |
| |
| DRM_DEBUG("\n"); |
| |
| switch (adev->asic_type) { |
| case CHIP_TONGA: |
| chip_name = "tonga"; |
| break; |
| case CHIP_FIJI: |
| chip_name = "fiji"; |
| break; |
| case CHIP_POLARIS11: |
| chip_name = "polaris11"; |
| break; |
| case CHIP_POLARIS10: |
| chip_name = "polaris10"; |
| break; |
| case CHIP_CARRIZO: |
| chip_name = "carrizo"; |
| break; |
| case CHIP_STONEY: |
| chip_name = "stoney"; |
| break; |
| default: BUG(); |
| } |
| |
| for (i = 0; i < adev->sdma.num_instances; i++) { |
| if (i == 0) |
| snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name); |
| else |
| snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name); |
| err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev); |
| if (err) |
| goto out; |
| err = amdgpu_ucode_validate(adev->sdma.instance[i].fw); |
| if (err) |
| goto out; |
| hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data; |
| adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version); |
| adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version); |
| if (adev->sdma.instance[i].feature_version >= 20) |
| adev->sdma.instance[i].burst_nop = true; |
| |
| if (adev->firmware.smu_load) { |
| info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i]; |
| info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i; |
| info->fw = adev->sdma.instance[i].fw; |
| header = (const struct common_firmware_header *)info->fw->data; |
| adev->firmware.fw_size += |
| ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE); |
| } |
| } |
| out: |
| if (err) { |
| printk(KERN_ERR |
| "sdma_v3_0: Failed to load firmware \"%s\"\n", |
| fw_name); |
| for (i = 0; i < adev->sdma.num_instances; i++) { |
| release_firmware(adev->sdma.instance[i].fw); |
| adev->sdma.instance[i].fw = NULL; |
| } |
| } |
| return err; |
| } |
| |
| /** |
| * sdma_v3_0_ring_get_rptr - get the current read pointer |
| * |
| * @ring: amdgpu ring pointer |
| * |
| * Get the current rptr from the hardware (VI+). |
| */ |
| static uint32_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring) |
| { |
| u32 rptr; |
| |
| /* XXX check if swapping is necessary on BE */ |
| rptr = ring->adev->wb.wb[ring->rptr_offs] >> 2; |
| |
| return rptr; |
| } |
| |
| /** |
| * sdma_v3_0_ring_get_wptr - get the current write pointer |
| * |
| * @ring: amdgpu ring pointer |
| * |
| * Get the current wptr from the hardware (VI+). |
| */ |
| static uint32_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring) |
| { |
| struct amdgpu_device *adev = ring->adev; |
| u32 wptr; |
| |
| if (ring->use_doorbell) { |
| /* XXX check if swapping is necessary on BE */ |
| wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2; |
| } else { |
| int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1; |
| |
| wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2; |
| } |
| |
| return wptr; |
| } |
| |
| /** |
| * sdma_v3_0_ring_set_wptr - commit the write pointer |
| * |
| * @ring: amdgpu ring pointer |
| * |
| * Write the wptr back to the hardware (VI+). |
| */ |
| static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring) |
| { |
| struct amdgpu_device *adev = ring->adev; |
| |
| if (ring->use_doorbell) { |
| /* XXX check if swapping is necessary on BE */ |
| adev->wb.wb[ring->wptr_offs] = ring->wptr << 2; |
| WDOORBELL32(ring->doorbell_index, ring->wptr << 2); |
| } else { |
| int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1; |
| |
| WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], ring->wptr << 2); |
| } |
| } |
| |
| static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count) |
| { |
| struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring); |
| int i; |
| |
| for (i = 0; i < count; i++) |
| if (sdma && sdma->burst_nop && (i == 0)) |
| amdgpu_ring_write(ring, ring->nop | |
| SDMA_PKT_NOP_HEADER_COUNT(count - 1)); |
| else |
| amdgpu_ring_write(ring, ring->nop); |
| } |
| |
| /** |
| * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine |
| * |
| * @ring: amdgpu ring pointer |
| * @ib: IB object to schedule |
| * |
| * Schedule an IB in the DMA ring (VI). |
| */ |
| static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring, |
| struct amdgpu_ib *ib, |
| unsigned vm_id, bool ctx_switch) |
| { |
| u32 vmid = vm_id & 0xf; |
| u32 next_rptr = ring->wptr + 5; |
| |
| while ((next_rptr & 7) != 2) |
| next_rptr++; |
| next_rptr += 6; |
| |
| amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | |
| SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR)); |
| amdgpu_ring_write(ring, lower_32_bits(ring->next_rptr_gpu_addr) & 0xfffffffc); |
| amdgpu_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr)); |
| amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1)); |
| amdgpu_ring_write(ring, next_rptr); |
| |
| /* IB packet must end on a 8 DW boundary */ |
| sdma_v3_0_ring_insert_nop(ring, (10 - (ring->wptr & 7)) % 8); |
| |
| amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) | |
| SDMA_PKT_INDIRECT_HEADER_VMID(vmid)); |
| /* base must be 32 byte aligned */ |
| amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0); |
| amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr)); |
| amdgpu_ring_write(ring, ib->length_dw); |
| amdgpu_ring_write(ring, 0); |
| amdgpu_ring_write(ring, 0); |
| |
| } |
| |
| /** |
| * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring |
| * |
| * @ring: amdgpu ring pointer |
| * |
| * Emit an hdp flush packet on the requested DMA ring. |
| */ |
| static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring) |
| { |
| u32 ref_and_mask = 0; |
| |
| if (ring == &ring->adev->sdma.instance[0].ring) |
| ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1); |
| else |
| ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1); |
| |
| amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | |
| SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) | |
| SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */ |
| amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2); |
| amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2); |
| amdgpu_ring_write(ring, ref_and_mask); /* reference */ |
| amdgpu_ring_write(ring, ref_and_mask); /* mask */ |
| amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | |
| SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */ |
| } |
| |
| static void sdma_v3_0_ring_emit_hdp_invalidate(struct amdgpu_ring *ring) |
| { |
| amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) | |
| SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf)); |
| amdgpu_ring_write(ring, mmHDP_DEBUG0); |
| amdgpu_ring_write(ring, 1); |
| } |
| |
| /** |
| * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring |
| * |
| * @ring: amdgpu ring pointer |
| * @fence: amdgpu fence object |
| * |
| * Add a DMA fence packet to the ring to write |
| * the fence seq number and DMA trap packet to generate |
| * an interrupt if needed (VI). |
| */ |
| static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq, |
| unsigned flags) |
| { |
| bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT; |
| /* write the fence */ |
| amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE)); |
| amdgpu_ring_write(ring, lower_32_bits(addr)); |
| amdgpu_ring_write(ring, upper_32_bits(addr)); |
| amdgpu_ring_write(ring, lower_32_bits(seq)); |
| |
| /* optionally write high bits as well */ |
| if (write64bit) { |
| addr += 4; |
| amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE)); |
| amdgpu_ring_write(ring, lower_32_bits(addr)); |
| amdgpu_ring_write(ring, upper_32_bits(addr)); |
| amdgpu_ring_write(ring, upper_32_bits(seq)); |
| } |
| |
| /* generate an interrupt */ |
| amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP)); |
| amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0)); |
| } |
| |
| unsigned init_cond_exec(struct amdgpu_ring *ring) |
| { |
| unsigned ret; |
| amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_COND_EXE)); |
| amdgpu_ring_write(ring, lower_32_bits(ring->cond_exe_gpu_addr)); |
| amdgpu_ring_write(ring, upper_32_bits(ring->cond_exe_gpu_addr)); |
| amdgpu_ring_write(ring, 1); |
| ret = ring->wptr;/* this is the offset we need patch later */ |
| amdgpu_ring_write(ring, 0x55aa55aa);/* insert dummy here and patch it later */ |
| return ret; |
| } |
| |
| void patch_cond_exec(struct amdgpu_ring *ring, unsigned offset) |
| { |
| unsigned cur; |
| BUG_ON(ring->ring[offset] != 0x55aa55aa); |
| |
| cur = ring->wptr - 1; |
| if (likely(cur > offset)) |
| ring->ring[offset] = cur - offset; |
| else |
| ring->ring[offset] = (ring->ring_size>>2) - offset + cur; |
| } |
| |
| |
| /** |
| * sdma_v3_0_gfx_stop - stop the gfx async dma engines |
| * |
| * @adev: amdgpu_device pointer |
| * |
| * Stop the gfx async dma ring buffers (VI). |
| */ |
| static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev) |
| { |
| struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring; |
| struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring; |
| u32 rb_cntl, ib_cntl; |
| int i; |
| |
| if ((adev->mman.buffer_funcs_ring == sdma0) || |
| (adev->mman.buffer_funcs_ring == sdma1)) |
| amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size); |
| |
| for (i = 0; i < adev->sdma.num_instances; i++) { |
| rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]); |
| rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0); |
| WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl); |
| ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]); |
| ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0); |
| WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl); |
| } |
| sdma0->ready = false; |
| sdma1->ready = false; |
| } |
| |
| /** |
| * sdma_v3_0_rlc_stop - stop the compute async dma engines |
| * |
| * @adev: amdgpu_device pointer |
| * |
| * Stop the compute async dma queues (VI). |
| */ |
| static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev) |
| { |
| /* XXX todo */ |
| } |
| |
| /** |
| * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch |
| * |
| * @adev: amdgpu_device pointer |
| * @enable: enable/disable the DMA MEs context switch. |
| * |
| * Halt or unhalt the async dma engines context switch (VI). |
| */ |
| static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable) |
| { |
| u32 f32_cntl; |
| int i; |
| |
| for (i = 0; i < adev->sdma.num_instances; i++) { |
| f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]); |
| if (enable) |
| f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL, |
| AUTO_CTXSW_ENABLE, 1); |
| else |
| f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL, |
| AUTO_CTXSW_ENABLE, 0); |
| WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl); |
| } |
| } |
| |
| /** |
| * sdma_v3_0_enable - stop the async dma engines |
| * |
| * @adev: amdgpu_device pointer |
| * @enable: enable/disable the DMA MEs. |
| * |
| * Halt or unhalt the async dma engines (VI). |
| */ |
| static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable) |
| { |
| u32 f32_cntl; |
| int i; |
| |
| if (enable == false) { |
| sdma_v3_0_gfx_stop(adev); |
| sdma_v3_0_rlc_stop(adev); |
| } |
| |
| for (i = 0; i < adev->sdma.num_instances; i++) { |
| f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]); |
| if (enable) |
| f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0); |
| else |
| f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1); |
| WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl); |
| } |
| } |
| |
| /** |
| * sdma_v3_0_gfx_resume - setup and start the async dma engines |
| * |
| * @adev: amdgpu_device pointer |
| * |
| * Set up the gfx DMA ring buffers and enable them (VI). |
| * Returns 0 for success, error for failure. |
| */ |
| static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev) |
| { |
| struct amdgpu_ring *ring; |
| u32 rb_cntl, ib_cntl; |
| u32 rb_bufsz; |
| u32 wb_offset; |
| u32 doorbell; |
| int i, j, r; |
| |
| for (i = 0; i < adev->sdma.num_instances; i++) { |
| ring = &adev->sdma.instance[i].ring; |
| wb_offset = (ring->rptr_offs * 4); |
| |
| mutex_lock(&adev->srbm_mutex); |
| for (j = 0; j < 16; j++) { |
| vi_srbm_select(adev, 0, 0, 0, j); |
| /* SDMA GFX */ |
| WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0); |
| WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0); |
| } |
| vi_srbm_select(adev, 0, 0, 0, 0); |
| mutex_unlock(&adev->srbm_mutex); |
| |
| WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i], |
| adev->gfx.config.gb_addr_config & 0x70); |
| |
| WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0); |
| |
| /* Set ring buffer size in dwords */ |
| rb_bufsz = order_base_2(ring->ring_size / 4); |
| rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]); |
| rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz); |
| #ifdef __BIG_ENDIAN |
| rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1); |
| rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, |
| RPTR_WRITEBACK_SWAP_ENABLE, 1); |
| #endif |
| WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl); |
| |
| /* Initialize the ring buffer's read and write pointers */ |
| WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0); |
| WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0); |
| WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0); |
| WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0); |
| |
| /* set the wb address whether it's enabled or not */ |
| WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i], |
| upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF); |
| WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i], |
| lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC); |
| |
| rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1); |
| |
| WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8); |
| WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40); |
| |
| ring->wptr = 0; |
| WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2); |
| |
| doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]); |
| |
| if (ring->use_doorbell) { |
| doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, |
| OFFSET, ring->doorbell_index); |
| doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1); |
| } else { |
| doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0); |
| } |
| WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell); |
| |
| /* enable DMA RB */ |
| rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1); |
| WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl); |
| |
| ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]); |
| ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1); |
| #ifdef __BIG_ENDIAN |
| ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1); |
| #endif |
| /* enable DMA IBs */ |
| WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl); |
| |
| ring->ready = true; |
| } |
| |
| /* unhalt the MEs */ |
| sdma_v3_0_enable(adev, true); |
| /* enable sdma ring preemption */ |
| sdma_v3_0_ctx_switch_enable(adev, true); |
| |
| for (i = 0; i < adev->sdma.num_instances; i++) { |
| ring = &adev->sdma.instance[i].ring; |
| r = amdgpu_ring_test_ring(ring); |
| if (r) { |
| ring->ready = false; |
| return r; |
| } |
| |
| if (adev->mman.buffer_funcs_ring == ring) |
| amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * sdma_v3_0_rlc_resume - setup and start the async dma engines |
| * |
| * @adev: amdgpu_device pointer |
| * |
| * Set up the compute DMA queues and enable them (VI). |
| * Returns 0 for success, error for failure. |
| */ |
| static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev) |
| { |
| /* XXX todo */ |
| return 0; |
| } |
| |
| /** |
| * sdma_v3_0_load_microcode - load the sDMA ME ucode |
| * |
| * @adev: amdgpu_device pointer |
| * |
| * Loads the sDMA0/1 ucode. |
| * Returns 0 for success, -EINVAL if the ucode is not available. |
| */ |
| static int sdma_v3_0_load_microcode(struct amdgpu_device *adev) |
| { |
| const struct sdma_firmware_header_v1_0 *hdr; |
| const __le32 *fw_data; |
| u32 fw_size; |
| int i, j; |
| |
| /* halt the MEs */ |
| sdma_v3_0_enable(adev, false); |
| |
| for (i = 0; i < adev->sdma.num_instances; i++) { |
| if (!adev->sdma.instance[i].fw) |
| return -EINVAL; |
| hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data; |
| amdgpu_ucode_print_sdma_hdr(&hdr->header); |
| fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4; |
| fw_data = (const __le32 *) |
| (adev->sdma.instance[i].fw->data + |
| le32_to_cpu(hdr->header.ucode_array_offset_bytes)); |
| WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0); |
| for (j = 0; j < fw_size; j++) |
| WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++)); |
| WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * sdma_v3_0_start - setup and start the async dma engines |
| * |
| * @adev: amdgpu_device pointer |
| * |
| * Set up the DMA engines and enable them (VI). |
| * Returns 0 for success, error for failure. |
| */ |
| static int sdma_v3_0_start(struct amdgpu_device *adev) |
| { |
| int r, i; |
| |
| if (!adev->pp_enabled) { |
| if (!adev->firmware.smu_load) { |
| r = sdma_v3_0_load_microcode(adev); |
| if (r) |
| return r; |
| } else { |
| for (i = 0; i < adev->sdma.num_instances; i++) { |
| r = adev->smu.smumgr_funcs->check_fw_load_finish(adev, |
| (i == 0) ? |
| AMDGPU_UCODE_ID_SDMA0 : |
| AMDGPU_UCODE_ID_SDMA1); |
| if (r) |
| return -EINVAL; |
| } |
| } |
| } |
| |
| /* disble sdma engine before programing it */ |
| sdma_v3_0_ctx_switch_enable(adev, false); |
| sdma_v3_0_enable(adev, false); |
| |
| /* start the gfx rings and rlc compute queues */ |
| r = sdma_v3_0_gfx_resume(adev); |
| if (r) |
| return r; |
| r = sdma_v3_0_rlc_resume(adev); |
| if (r) |
| return r; |
| |
| return 0; |
| } |
| |
| /** |
| * sdma_v3_0_ring_test_ring - simple async dma engine test |
| * |
| * @ring: amdgpu_ring structure holding ring information |
| * |
| * Test the DMA engine by writing using it to write an |
| * value to memory. (VI). |
| * Returns 0 for success, error for failure. |
| */ |
| static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring) |
| { |
| struct amdgpu_device *adev = ring->adev; |
| unsigned i; |
| unsigned index; |
| int r; |
| u32 tmp; |
| u64 gpu_addr; |
| |
| r = amdgpu_wb_get(adev, &index); |
| if (r) { |
| dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r); |
| return r; |
| } |
| |
| gpu_addr = adev->wb.gpu_addr + (index * 4); |
| tmp = 0xCAFEDEAD; |
| adev->wb.wb[index] = cpu_to_le32(tmp); |
| |
| r = amdgpu_ring_alloc(ring, 5); |
| if (r) { |
| DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r); |
| amdgpu_wb_free(adev, index); |
| return r; |
| } |
| |
| amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | |
| SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR)); |
| amdgpu_ring_write(ring, lower_32_bits(gpu_addr)); |
| amdgpu_ring_write(ring, upper_32_bits(gpu_addr)); |
| amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1)); |
| amdgpu_ring_write(ring, 0xDEADBEEF); |
| amdgpu_ring_commit(ring); |
| |
| for (i = 0; i < adev->usec_timeout; i++) { |
| tmp = le32_to_cpu(adev->wb.wb[index]); |
| if (tmp == 0xDEADBEEF) |
| break; |
| DRM_UDELAY(1); |
| } |
| |
| if (i < adev->usec_timeout) { |
| DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i); |
| } else { |
| DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n", |
| ring->idx, tmp); |
| r = -EINVAL; |
| } |
| amdgpu_wb_free(adev, index); |
| |
| return r; |
| } |
| |
| /** |
| * sdma_v3_0_ring_test_ib - test an IB on the DMA engine |
| * |
| * @ring: amdgpu_ring structure holding ring information |
| * |
| * Test a simple IB in the DMA ring (VI). |
| * Returns 0 on success, error on failure. |
| */ |
| static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring) |
| { |
| struct amdgpu_device *adev = ring->adev; |
| struct amdgpu_ib ib; |
| struct fence *f = NULL; |
| unsigned i; |
| unsigned index; |
| int r; |
| u32 tmp = 0; |
| u64 gpu_addr; |
| |
| r = amdgpu_wb_get(adev, &index); |
| if (r) { |
| dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r); |
| return r; |
| } |
| |
| gpu_addr = adev->wb.gpu_addr + (index * 4); |
| tmp = 0xCAFEDEAD; |
| adev->wb.wb[index] = cpu_to_le32(tmp); |
| memset(&ib, 0, sizeof(ib)); |
| r = amdgpu_ib_get(adev, NULL, 256, &ib); |
| if (r) { |
| DRM_ERROR("amdgpu: failed to get ib (%d).\n", r); |
| goto err0; |
| } |
| |
| ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | |
| SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR); |
| ib.ptr[1] = lower_32_bits(gpu_addr); |
| ib.ptr[2] = upper_32_bits(gpu_addr); |
| ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1); |
| ib.ptr[4] = 0xDEADBEEF; |
| ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); |
| ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); |
| ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP); |
| ib.length_dw = 8; |
| |
| r = amdgpu_ib_schedule(ring, 1, &ib, NULL, NULL, &f); |
| if (r) |
| goto err1; |
| |
| r = fence_wait(f, false); |
| if (r) { |
| DRM_ERROR("amdgpu: fence wait failed (%d).\n", r); |
| goto err1; |
| } |
| for (i = 0; i < adev->usec_timeout; i++) { |
| tmp = le32_to_cpu(adev->wb.wb[index]); |
| if (tmp == 0xDEADBEEF) |
| break; |
| DRM_UDELAY(1); |
| } |
| if (i < adev->usec_timeout) { |
| DRM_INFO("ib test on ring %d succeeded in %u usecs\n", |
| ring->idx, i); |
| goto err1; |
| } else { |
| DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp); |
| r = -EINVAL; |
| } |
| err1: |
| fence_put(f); |
| amdgpu_ib_free(adev, &ib, NULL); |
| fence_put(f); |
| err0: |
| amdgpu_wb_free(adev, index); |
| return r; |
| } |
| |
| /** |
| * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART |
| * |
| * @ib: indirect buffer to fill with commands |
| * @pe: addr of the page entry |
| * @src: src addr to copy from |
| * @count: number of page entries to update |
| * |
| * Update PTEs by copying them from the GART using sDMA (CIK). |
| */ |
| static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib, |
| uint64_t pe, uint64_t src, |
| unsigned count) |
| { |
| while (count) { |
| unsigned bytes = count * 8; |
| if (bytes > 0x1FFFF8) |
| bytes = 0x1FFFF8; |
| |
| ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | |
| SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR); |
| ib->ptr[ib->length_dw++] = bytes; |
| ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ |
| ib->ptr[ib->length_dw++] = lower_32_bits(src); |
| ib->ptr[ib->length_dw++] = upper_32_bits(src); |
| ib->ptr[ib->length_dw++] = lower_32_bits(pe); |
| ib->ptr[ib->length_dw++] = upper_32_bits(pe); |
| |
| pe += bytes; |
| src += bytes; |
| count -= bytes / 8; |
| } |
| } |
| |
| /** |
| * sdma_v3_0_vm_write_pte - update PTEs by writing them manually |
| * |
| * @ib: indirect buffer to fill with commands |
| * @pe: addr of the page entry |
| * @addr: dst addr to write into pe |
| * @count: number of page entries to update |
| * @incr: increase next addr by incr bytes |
| * @flags: access flags |
| * |
| * Update PTEs by writing them manually using sDMA (CIK). |
| */ |
| static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib, |
| const dma_addr_t *pages_addr, uint64_t pe, |
| uint64_t addr, unsigned count, |
| uint32_t incr, uint32_t flags) |
| { |
| uint64_t value; |
| unsigned ndw; |
| |
| while (count) { |
| ndw = count * 2; |
| if (ndw > 0xFFFFE) |
| ndw = 0xFFFFE; |
| |
| /* for non-physically contiguous pages (system) */ |
| ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) | |
| SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR); |
| ib->ptr[ib->length_dw++] = pe; |
| ib->ptr[ib->length_dw++] = upper_32_bits(pe); |
| ib->ptr[ib->length_dw++] = ndw; |
| for (; ndw > 0; ndw -= 2, --count, pe += 8) { |
| value = amdgpu_vm_map_gart(pages_addr, addr); |
| addr += incr; |
| value |= flags; |
| ib->ptr[ib->length_dw++] = value; |
| ib->ptr[ib->length_dw++] = upper_32_bits(value); |
| } |
| } |
| } |
| |
| /** |
| * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA |
| * |
| * @ib: indirect buffer to fill with commands |
| * @pe: addr of the page entry |
| * @addr: dst addr to write into pe |
| * @count: number of page entries to update |
| * @incr: increase next addr by incr bytes |
| * @flags: access flags |
| * |
| * Update the page tables using sDMA (CIK). |
| */ |
| static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib, |
| uint64_t pe, |
| uint64_t addr, unsigned count, |
| uint32_t incr, uint32_t flags) |
| { |
| uint64_t value; |
| unsigned ndw; |
| |
| while (count) { |
| ndw = count; |
| if (ndw > 0x7FFFF) |
| ndw = 0x7FFFF; |
| |
| if (flags & AMDGPU_PTE_VALID) |
| value = addr; |
| else |
| value = 0; |
| |
| /* for physically contiguous pages (vram) */ |
| ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE); |
| ib->ptr[ib->length_dw++] = pe; /* dst addr */ |
| ib->ptr[ib->length_dw++] = upper_32_bits(pe); |
| ib->ptr[ib->length_dw++] = flags; /* mask */ |
| ib->ptr[ib->length_dw++] = 0; |
| ib->ptr[ib->length_dw++] = value; /* value */ |
| ib->ptr[ib->length_dw++] = upper_32_bits(value); |
| ib->ptr[ib->length_dw++] = incr; /* increment size */ |
| ib->ptr[ib->length_dw++] = 0; |
| ib->ptr[ib->length_dw++] = ndw; /* number of entries */ |
| |
| pe += ndw * 8; |
| addr += ndw * incr; |
| count -= ndw; |
| } |
| } |
| |
| /** |
| * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw |
| * |
| * @ib: indirect buffer to fill with padding |
| * |
| */ |
| static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib) |
| { |
| struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring); |
| u32 pad_count; |
| int i; |
| |
| pad_count = (8 - (ib->length_dw & 0x7)) % 8; |
| for (i = 0; i < pad_count; i++) |
| if (sdma && sdma->burst_nop && (i == 0)) |
| ib->ptr[ib->length_dw++] = |
| SDMA_PKT_HEADER_OP(SDMA_OP_NOP) | |
| SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1); |
| else |
| ib->ptr[ib->length_dw++] = |
| SDMA_PKT_HEADER_OP(SDMA_OP_NOP); |
| } |
| |
| /** |
| * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline |
| * |
| * @ring: amdgpu_ring pointer |
| * |
| * Make sure all previous operations are completed (CIK). |
| */ |
| static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring) |
| { |
| uint32_t seq = ring->fence_drv.sync_seq; |
| uint64_t addr = ring->fence_drv.gpu_addr; |
| |
| /* wait for idle */ |
| amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | |
| SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) | |
| SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */ |
| SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1)); |
| amdgpu_ring_write(ring, addr & 0xfffffffc); |
| amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff); |
| amdgpu_ring_write(ring, seq); /* reference */ |
| amdgpu_ring_write(ring, 0xfffffff); /* mask */ |
| amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | |
| SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */ |
| } |
| |
| /** |
| * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA |
| * |
| * @ring: amdgpu_ring pointer |
| * @vm: amdgpu_vm pointer |
| * |
| * Update the page table base and flush the VM TLB |
| * using sDMA (VI). |
| */ |
| static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring, |
| unsigned vm_id, uint64_t pd_addr) |
| { |
| amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) | |
| SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf)); |
| if (vm_id < 8) { |
| amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id)); |
| } else { |
| amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8)); |
| } |
| amdgpu_ring_write(ring, pd_addr >> 12); |
| |
| /* flush TLB */ |
| amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) | |
| SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf)); |
| amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST); |
| amdgpu_ring_write(ring, 1 << vm_id); |
| |
| /* wait for flush */ |
| amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) | |
| SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) | |
| SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */ |
| amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2); |
| amdgpu_ring_write(ring, 0); |
| amdgpu_ring_write(ring, 0); /* reference */ |
| amdgpu_ring_write(ring, 0); /* mask */ |
| amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) | |
| SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */ |
| } |
| |
| static int sdma_v3_0_early_init(void *handle) |
| { |
| struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
| |
| switch (adev->asic_type) { |
| case CHIP_STONEY: |
| adev->sdma.num_instances = 1; |
| break; |
| default: |
| adev->sdma.num_instances = SDMA_MAX_INSTANCE; |
| break; |
| } |
| |
| sdma_v3_0_set_ring_funcs(adev); |
| sdma_v3_0_set_buffer_funcs(adev); |
| sdma_v3_0_set_vm_pte_funcs(adev); |
| sdma_v3_0_set_irq_funcs(adev); |
| |
| return 0; |
| } |
| |
| static int sdma_v3_0_sw_init(void *handle) |
| { |
| struct amdgpu_ring *ring; |
| int r, i; |
| struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
| |
| /* SDMA trap event */ |
| r = amdgpu_irq_add_id(adev, 224, &adev->sdma.trap_irq); |
| if (r) |
| return r; |
| |
| /* SDMA Privileged inst */ |
| r = amdgpu_irq_add_id(adev, 241, &adev->sdma.illegal_inst_irq); |
| if (r) |
| return r; |
| |
| /* SDMA Privileged inst */ |
| r = amdgpu_irq_add_id(adev, 247, &adev->sdma.illegal_inst_irq); |
| if (r) |
| return r; |
| |
| r = sdma_v3_0_init_microcode(adev); |
| if (r) { |
| DRM_ERROR("Failed to load sdma firmware!\n"); |
| return r; |
| } |
| |
| for (i = 0; i < adev->sdma.num_instances; i++) { |
| ring = &adev->sdma.instance[i].ring; |
| ring->ring_obj = NULL; |
| ring->use_doorbell = true; |
| ring->doorbell_index = (i == 0) ? |
| AMDGPU_DOORBELL_sDMA_ENGINE0 : AMDGPU_DOORBELL_sDMA_ENGINE1; |
| |
| sprintf(ring->name, "sdma%d", i); |
| r = amdgpu_ring_init(adev, ring, 1024, |
| SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 0xf, |
| &adev->sdma.trap_irq, |
| (i == 0) ? |
| AMDGPU_SDMA_IRQ_TRAP0 : AMDGPU_SDMA_IRQ_TRAP1, |
| AMDGPU_RING_TYPE_SDMA); |
| if (r) |
| return r; |
| } |
| |
| return r; |
| } |
| |
| static int sdma_v3_0_sw_fini(void *handle) |
| { |
| struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
| int i; |
| |
| for (i = 0; i < adev->sdma.num_instances; i++) |
| amdgpu_ring_fini(&adev->sdma.instance[i].ring); |
| |
| sdma_v3_0_free_microcode(adev); |
| return 0; |
| } |
| |
| static int sdma_v3_0_hw_init(void *handle) |
| { |
| int r; |
| struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
| |
| sdma_v3_0_init_golden_registers(adev); |
| |
| r = sdma_v3_0_start(adev); |
| if (r) |
| return r; |
| |
| return r; |
| } |
| |
| static int sdma_v3_0_hw_fini(void *handle) |
| { |
| struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
| |
| sdma_v3_0_ctx_switch_enable(adev, false); |
| sdma_v3_0_enable(adev, false); |
| |
| return 0; |
| } |
| |
| static int sdma_v3_0_suspend(void *handle) |
| { |
| struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
| |
| return sdma_v3_0_hw_fini(adev); |
| } |
| |
| static int sdma_v3_0_resume(void *handle) |
| { |
| struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
| |
| return sdma_v3_0_hw_init(adev); |
| } |
| |
| static bool sdma_v3_0_is_idle(void *handle) |
| { |
| struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
| u32 tmp = RREG32(mmSRBM_STATUS2); |
| |
| if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK | |
| SRBM_STATUS2__SDMA1_BUSY_MASK)) |
| return false; |
| |
| return true; |
| } |
| |
| static int sdma_v3_0_wait_for_idle(void *handle) |
| { |
| unsigned i; |
| u32 tmp; |
| struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
| |
| for (i = 0; i < adev->usec_timeout; i++) { |
| tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK | |
| SRBM_STATUS2__SDMA1_BUSY_MASK); |
| |
| if (!tmp) |
| return 0; |
| udelay(1); |
| } |
| return -ETIMEDOUT; |
| } |
| |
| static int sdma_v3_0_soft_reset(void *handle) |
| { |
| u32 srbm_soft_reset = 0; |
| struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
| u32 tmp = RREG32(mmSRBM_STATUS2); |
| |
| if (tmp & SRBM_STATUS2__SDMA_BUSY_MASK) { |
| /* sdma0 */ |
| tmp = RREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET); |
| tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0); |
| WREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET, tmp); |
| srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK; |
| } |
| if (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK) { |
| /* sdma1 */ |
| tmp = RREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET); |
| tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0); |
| WREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET, tmp); |
| srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK; |
| } |
| |
| if (srbm_soft_reset) { |
| tmp = RREG32(mmSRBM_SOFT_RESET); |
| tmp |= srbm_soft_reset; |
| dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp); |
| WREG32(mmSRBM_SOFT_RESET, tmp); |
| tmp = RREG32(mmSRBM_SOFT_RESET); |
| |
| udelay(50); |
| |
| tmp &= ~srbm_soft_reset; |
| WREG32(mmSRBM_SOFT_RESET, tmp); |
| tmp = RREG32(mmSRBM_SOFT_RESET); |
| |
| /* Wait a little for things to settle down */ |
| udelay(50); |
| } |
| |
| return 0; |
| } |
| |
| static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev, |
| struct amdgpu_irq_src *source, |
| unsigned type, |
| enum amdgpu_interrupt_state state) |
| { |
| u32 sdma_cntl; |
| |
| switch (type) { |
| case AMDGPU_SDMA_IRQ_TRAP0: |
| switch (state) { |
| case AMDGPU_IRQ_STATE_DISABLE: |
| sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET); |
| sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0); |
| WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl); |
| break; |
| case AMDGPU_IRQ_STATE_ENABLE: |
| sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET); |
| sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1); |
| WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl); |
| break; |
| default: |
| break; |
| } |
| break; |
| case AMDGPU_SDMA_IRQ_TRAP1: |
| switch (state) { |
| case AMDGPU_IRQ_STATE_DISABLE: |
| sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET); |
| sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0); |
| WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl); |
| break; |
| case AMDGPU_IRQ_STATE_ENABLE: |
| sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET); |
| sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1); |
| WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl); |
| break; |
| default: |
| break; |
| } |
| break; |
| default: |
| break; |
| } |
| return 0; |
| } |
| |
| static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev, |
| struct amdgpu_irq_src *source, |
| struct amdgpu_iv_entry *entry) |
| { |
| u8 instance_id, queue_id; |
| |
| instance_id = (entry->ring_id & 0x3) >> 0; |
| queue_id = (entry->ring_id & 0xc) >> 2; |
| DRM_DEBUG("IH: SDMA trap\n"); |
| switch (instance_id) { |
| case 0: |
| switch (queue_id) { |
| case 0: |
| amdgpu_fence_process(&adev->sdma.instance[0].ring); |
| break; |
| case 1: |
| /* XXX compute */ |
| break; |
| case 2: |
| /* XXX compute */ |
| break; |
| } |
| break; |
| case 1: |
| switch (queue_id) { |
| case 0: |
| amdgpu_fence_process(&adev->sdma.instance[1].ring); |
| break; |
| case 1: |
| /* XXX compute */ |
| break; |
| case 2: |
| /* XXX compute */ |
| break; |
| } |
| break; |
| } |
| return 0; |
| } |
| |
| static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev, |
| struct amdgpu_irq_src *source, |
| struct amdgpu_iv_entry *entry) |
| { |
| DRM_ERROR("Illegal instruction in SDMA command stream\n"); |
| schedule_work(&adev->reset_work); |
| return 0; |
| } |
| |
| static void sdma_v3_0_update_sdma_medium_grain_clock_gating( |
| struct amdgpu_device *adev, |
| bool enable) |
| { |
| uint32_t temp, data; |
| int i; |
| |
| if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) { |
| for (i = 0; i < adev->sdma.num_instances; i++) { |
| temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]); |
| data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK | |
| SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK | |
| SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK | |
| SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK | |
| SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK | |
| SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK | |
| SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK | |
| SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK); |
| if (data != temp) |
| WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data); |
| } |
| } else { |
| for (i = 0; i < adev->sdma.num_instances; i++) { |
| temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]); |
| data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK | |
| SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK | |
| SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK | |
| SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK | |
| SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK | |
| SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK | |
| SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK | |
| SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK; |
| |
| if (data != temp) |
| WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data); |
| } |
| } |
| } |
| |
| static void sdma_v3_0_update_sdma_medium_grain_light_sleep( |
| struct amdgpu_device *adev, |
| bool enable) |
| { |
| uint32_t temp, data; |
| int i; |
| |
| if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) { |
| for (i = 0; i < adev->sdma.num_instances; i++) { |
| temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]); |
| data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; |
| |
| if (temp != data) |
| WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data); |
| } |
| } else { |
| for (i = 0; i < adev->sdma.num_instances; i++) { |
| temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]); |
| data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK; |
| |
| if (temp != data) |
| WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data); |
| } |
| } |
| } |
| |
| static int sdma_v3_0_set_clockgating_state(void *handle, |
| enum amd_clockgating_state state) |
| { |
| struct amdgpu_device *adev = (struct amdgpu_device *)handle; |
| |
| switch (adev->asic_type) { |
| case CHIP_FIJI: |
| case CHIP_CARRIZO: |
| case CHIP_STONEY: |
| sdma_v3_0_update_sdma_medium_grain_clock_gating(adev, |
| state == AMD_CG_STATE_GATE ? true : false); |
| sdma_v3_0_update_sdma_medium_grain_light_sleep(adev, |
| state == AMD_CG_STATE_GATE ? true : false); |
| break; |
| default: |
| break; |
| } |
| return 0; |
| } |
| |
| static int sdma_v3_0_set_powergating_state(void *handle, |
| enum amd_powergating_state state) |
| { |
| return 0; |
| } |
| |
| const struct amd_ip_funcs sdma_v3_0_ip_funcs = { |
| .name = "sdma_v3_0", |
| .early_init = sdma_v3_0_early_init, |
| .late_init = NULL, |
| .sw_init = sdma_v3_0_sw_init, |
| .sw_fini = sdma_v3_0_sw_fini, |
| .hw_init = sdma_v3_0_hw_init, |
| .hw_fini = sdma_v3_0_hw_fini, |
| .suspend = sdma_v3_0_suspend, |
| .resume = sdma_v3_0_resume, |
| .is_idle = sdma_v3_0_is_idle, |
| .wait_for_idle = sdma_v3_0_wait_for_idle, |
| .soft_reset = sdma_v3_0_soft_reset, |
| .set_clockgating_state = sdma_v3_0_set_clockgating_state, |
| .set_powergating_state = sdma_v3_0_set_powergating_state, |
| }; |
| |
| static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = { |
| .get_rptr = sdma_v3_0_ring_get_rptr, |
| .get_wptr = sdma_v3_0_ring_get_wptr, |
| .set_wptr = sdma_v3_0_ring_set_wptr, |
| .parse_cs = NULL, |
| .emit_ib = sdma_v3_0_ring_emit_ib, |
| .emit_fence = sdma_v3_0_ring_emit_fence, |
| .emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync, |
| .emit_vm_flush = sdma_v3_0_ring_emit_vm_flush, |
| .emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush, |
| .emit_hdp_invalidate = sdma_v3_0_ring_emit_hdp_invalidate, |
| .test_ring = sdma_v3_0_ring_test_ring, |
| .test_ib = sdma_v3_0_ring_test_ib, |
| .insert_nop = sdma_v3_0_ring_insert_nop, |
| .pad_ib = sdma_v3_0_ring_pad_ib, |
| }; |
| |
| static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev) |
| { |
| int i; |
| |
| for (i = 0; i < adev->sdma.num_instances; i++) |
| adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs; |
| } |
| |
| static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = { |
| .set = sdma_v3_0_set_trap_irq_state, |
| .process = sdma_v3_0_process_trap_irq, |
| }; |
| |
| static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = { |
| .process = sdma_v3_0_process_illegal_inst_irq, |
| }; |
| |
| static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev) |
| { |
| adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST; |
| adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs; |
| adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs; |
| } |
| |
| /** |
| * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine |
| * |
| * @ring: amdgpu_ring structure holding ring information |
| * @src_offset: src GPU address |
| * @dst_offset: dst GPU address |
| * @byte_count: number of bytes to xfer |
| * |
| * Copy GPU buffers using the DMA engine (VI). |
| * Used by the amdgpu ttm implementation to move pages if |
| * registered as the asic copy callback. |
| */ |
| static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib, |
| uint64_t src_offset, |
| uint64_t dst_offset, |
| uint32_t byte_count) |
| { |
| ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) | |
| SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR); |
| ib->ptr[ib->length_dw++] = byte_count; |
| ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */ |
| ib->ptr[ib->length_dw++] = lower_32_bits(src_offset); |
| ib->ptr[ib->length_dw++] = upper_32_bits(src_offset); |
| ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); |
| ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); |
| } |
| |
| /** |
| * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine |
| * |
| * @ring: amdgpu_ring structure holding ring information |
| * @src_data: value to write to buffer |
| * @dst_offset: dst GPU address |
| * @byte_count: number of bytes to xfer |
| * |
| * Fill GPU buffers using the DMA engine (VI). |
| */ |
| static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib, |
| uint32_t src_data, |
| uint64_t dst_offset, |
| uint32_t byte_count) |
| { |
| ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL); |
| ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); |
| ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset); |
| ib->ptr[ib->length_dw++] = src_data; |
| ib->ptr[ib->length_dw++] = byte_count; |
| } |
| |
| static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = { |
| .copy_max_bytes = 0x1fffff, |
| .copy_num_dw = 7, |
| .emit_copy_buffer = sdma_v3_0_emit_copy_buffer, |
| |
| .fill_max_bytes = 0x1fffff, |
| .fill_num_dw = 5, |
| .emit_fill_buffer = sdma_v3_0_emit_fill_buffer, |
| }; |
| |
| static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev) |
| { |
| if (adev->mman.buffer_funcs == NULL) { |
| adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs; |
| adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring; |
| } |
| } |
| |
| static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = { |
| .copy_pte = sdma_v3_0_vm_copy_pte, |
| .write_pte = sdma_v3_0_vm_write_pte, |
| .set_pte_pde = sdma_v3_0_vm_set_pte_pde, |
| }; |
| |
| static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev) |
| { |
| unsigned i; |
| |
| if (adev->vm_manager.vm_pte_funcs == NULL) { |
| adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs; |
| for (i = 0; i < adev->sdma.num_instances; i++) |
| adev->vm_manager.vm_pte_rings[i] = |
| &adev->sdma.instance[i].ring; |
| |
| adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances; |
| } |
| } |