| /* |
| * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers. |
| * |
| * (C) Copyright 2014, 2015 Linaro Ltd. |
| * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; version 2 |
| * of the License. |
| * |
| * CPPC describes a few methods for controlling CPU performance using |
| * information from a per CPU table called CPC. This table is described in |
| * the ACPI v5.0+ specification. The table consists of a list of |
| * registers which may be memory mapped or hardware registers and also may |
| * include some static integer values. |
| * |
| * CPU performance is on an abstract continuous scale as against a discretized |
| * P-state scale which is tied to CPU frequency only. In brief, the basic |
| * operation involves: |
| * |
| * - OS makes a CPU performance request. (Can provide min and max bounds) |
| * |
| * - Platform (such as BMC) is free to optimize request within requested bounds |
| * depending on power/thermal budgets etc. |
| * |
| * - Platform conveys its decision back to OS |
| * |
| * The communication between OS and platform occurs through another medium |
| * called (PCC) Platform Communication Channel. This is a generic mailbox like |
| * mechanism which includes doorbell semantics to indicate register updates. |
| * See drivers/mailbox/pcc.c for details on PCC. |
| * |
| * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and |
| * above specifications. |
| */ |
| |
| #define pr_fmt(fmt) "ACPI CPPC: " fmt |
| |
| #include <linux/cpufreq.h> |
| #include <linux/delay.h> |
| #include <linux/ktime.h> |
| |
| #include <acpi/cppc_acpi.h> |
| /* |
| * Lock to provide mutually exclusive access to the PCC |
| * channel. e.g. When the remote updates the shared region |
| * with new data, the reader needs to be protected from |
| * other CPUs activity on the same channel. |
| */ |
| static DEFINE_SPINLOCK(pcc_lock); |
| |
| /* |
| * The cpc_desc structure contains the ACPI register details |
| * as described in the per CPU _CPC tables. The details |
| * include the type of register (e.g. PCC, System IO, FFH etc.) |
| * and destination addresses which lets us READ/WRITE CPU performance |
| * information using the appropriate I/O methods. |
| */ |
| static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr); |
| |
| /* This layer handles all the PCC specifics for CPPC. */ |
| static struct mbox_chan *pcc_channel; |
| static void __iomem *pcc_comm_addr; |
| static u64 comm_base_addr; |
| static int pcc_subspace_idx = -1; |
| static bool pcc_channel_acquired; |
| static ktime_t deadline; |
| static unsigned int pcc_mpar, pcc_mrtt; |
| |
| /* pcc mapped address + header size + offset within PCC subspace */ |
| #define GET_PCC_VADDR(offs) (pcc_comm_addr + 0x8 + (offs)) |
| |
| /* |
| * Arbitrary Retries in case the remote processor is slow to respond |
| * to PCC commands. Keeping it high enough to cover emulators where |
| * the processors run painfully slow. |
| */ |
| #define NUM_RETRIES 500 |
| |
| static int check_pcc_chan(void) |
| { |
| int ret = -EIO; |
| struct acpi_pcct_shared_memory __iomem *generic_comm_base = pcc_comm_addr; |
| ktime_t next_deadline = ktime_add(ktime_get(), deadline); |
| |
| /* Retry in case the remote processor was too slow to catch up. */ |
| while (!ktime_after(ktime_get(), next_deadline)) { |
| /* |
| * Per spec, prior to boot the PCC space wil be initialized by |
| * platform and should have set the command completion bit when |
| * PCC can be used by OSPM |
| */ |
| if (readw_relaxed(&generic_comm_base->status) & PCC_CMD_COMPLETE) { |
| ret = 0; |
| break; |
| } |
| /* |
| * Reducing the bus traffic in case this loop takes longer than |
| * a few retries. |
| */ |
| udelay(3); |
| } |
| |
| return ret; |
| } |
| |
| static int send_pcc_cmd(u16 cmd) |
| { |
| int ret = -EIO; |
| struct acpi_pcct_shared_memory *generic_comm_base = |
| (struct acpi_pcct_shared_memory *) pcc_comm_addr; |
| static ktime_t last_cmd_cmpl_time, last_mpar_reset; |
| static int mpar_count; |
| unsigned int time_delta; |
| |
| /* |
| * For CMD_WRITE we know for a fact the caller should have checked |
| * the channel before writing to PCC space |
| */ |
| if (cmd == CMD_READ) { |
| ret = check_pcc_chan(); |
| if (ret) |
| return ret; |
| } |
| |
| /* |
| * Handle the Minimum Request Turnaround Time(MRTT) |
| * "The minimum amount of time that OSPM must wait after the completion |
| * of a command before issuing the next command, in microseconds" |
| */ |
| if (pcc_mrtt) { |
| time_delta = ktime_us_delta(ktime_get(), last_cmd_cmpl_time); |
| if (pcc_mrtt > time_delta) |
| udelay(pcc_mrtt - time_delta); |
| } |
| |
| /* |
| * Handle the non-zero Maximum Periodic Access Rate(MPAR) |
| * "The maximum number of periodic requests that the subspace channel can |
| * support, reported in commands per minute. 0 indicates no limitation." |
| * |
| * This parameter should be ideally zero or large enough so that it can |
| * handle maximum number of requests that all the cores in the system can |
| * collectively generate. If it is not, we will follow the spec and just |
| * not send the request to the platform after hitting the MPAR limit in |
| * any 60s window |
| */ |
| if (pcc_mpar) { |
| if (mpar_count == 0) { |
| time_delta = ktime_ms_delta(ktime_get(), last_mpar_reset); |
| if (time_delta < 60 * MSEC_PER_SEC) { |
| pr_debug("PCC cmd not sent due to MPAR limit"); |
| return -EIO; |
| } |
| last_mpar_reset = ktime_get(); |
| mpar_count = pcc_mpar; |
| } |
| mpar_count--; |
| } |
| |
| /* Write to the shared comm region. */ |
| writew_relaxed(cmd, &generic_comm_base->command); |
| |
| /* Flip CMD COMPLETE bit */ |
| writew_relaxed(0, &generic_comm_base->status); |
| |
| /* Ring doorbell */ |
| ret = mbox_send_message(pcc_channel, &cmd); |
| if (ret < 0) { |
| pr_err("Err sending PCC mbox message. cmd:%d, ret:%d\n", |
| cmd, ret); |
| return ret; |
| } |
| |
| /* |
| * For READs we need to ensure the cmd completed to ensure |
| * the ensuing read()s can proceed. For WRITEs we dont care |
| * because the actual write()s are done before coming here |
| * and the next READ or WRITE will check if the channel |
| * is busy/free at the entry of this call. |
| * |
| * If Minimum Request Turnaround Time is non-zero, we need |
| * to record the completion time of both READ and WRITE |
| * command for proper handling of MRTT, so we need to check |
| * for pcc_mrtt in addition to CMD_READ |
| */ |
| if (cmd == CMD_READ || pcc_mrtt) { |
| ret = check_pcc_chan(); |
| if (pcc_mrtt) |
| last_cmd_cmpl_time = ktime_get(); |
| } |
| |
| mbox_client_txdone(pcc_channel, ret); |
| return ret; |
| } |
| |
| static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret) |
| { |
| if (ret < 0) |
| pr_debug("TX did not complete: CMD sent:%x, ret:%d\n", |
| *(u16 *)msg, ret); |
| else |
| pr_debug("TX completed. CMD sent:%x, ret:%d\n", |
| *(u16 *)msg, ret); |
| } |
| |
| struct mbox_client cppc_mbox_cl = { |
| .tx_done = cppc_chan_tx_done, |
| .knows_txdone = true, |
| }; |
| |
| static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle) |
| { |
| int result = -EFAULT; |
| acpi_status status = AE_OK; |
| struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL}; |
| struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"}; |
| struct acpi_buffer state = {0, NULL}; |
| union acpi_object *psd = NULL; |
| struct acpi_psd_package *pdomain; |
| |
| status = acpi_evaluate_object_typed(handle, "_PSD", NULL, &buffer, |
| ACPI_TYPE_PACKAGE); |
| if (ACPI_FAILURE(status)) |
| return -ENODEV; |
| |
| psd = buffer.pointer; |
| if (!psd || psd->package.count != 1) { |
| pr_debug("Invalid _PSD data\n"); |
| goto end; |
| } |
| |
| pdomain = &(cpc_ptr->domain_info); |
| |
| state.length = sizeof(struct acpi_psd_package); |
| state.pointer = pdomain; |
| |
| status = acpi_extract_package(&(psd->package.elements[0]), |
| &format, &state); |
| if (ACPI_FAILURE(status)) { |
| pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id); |
| goto end; |
| } |
| |
| if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) { |
| pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id); |
| goto end; |
| } |
| |
| if (pdomain->revision != ACPI_PSD_REV0_REVISION) { |
| pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id); |
| goto end; |
| } |
| |
| if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL && |
| pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY && |
| pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) { |
| pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id); |
| goto end; |
| } |
| |
| result = 0; |
| end: |
| kfree(buffer.pointer); |
| return result; |
| } |
| |
| /** |
| * acpi_get_psd_map - Map the CPUs in a common freq domain. |
| * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info. |
| * |
| * Return: 0 for success or negative value for err. |
| */ |
| int acpi_get_psd_map(struct cpudata **all_cpu_data) |
| { |
| int count_target; |
| int retval = 0; |
| unsigned int i, j; |
| cpumask_var_t covered_cpus; |
| struct cpudata *pr, *match_pr; |
| struct acpi_psd_package *pdomain; |
| struct acpi_psd_package *match_pdomain; |
| struct cpc_desc *cpc_ptr, *match_cpc_ptr; |
| |
| if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL)) |
| return -ENOMEM; |
| |
| /* |
| * Now that we have _PSD data from all CPUs, lets setup P-state |
| * domain info. |
| */ |
| for_each_possible_cpu(i) { |
| pr = all_cpu_data[i]; |
| if (!pr) |
| continue; |
| |
| if (cpumask_test_cpu(i, covered_cpus)) |
| continue; |
| |
| cpc_ptr = per_cpu(cpc_desc_ptr, i); |
| if (!cpc_ptr) |
| continue; |
| |
| pdomain = &(cpc_ptr->domain_info); |
| cpumask_set_cpu(i, pr->shared_cpu_map); |
| cpumask_set_cpu(i, covered_cpus); |
| if (pdomain->num_processors <= 1) |
| continue; |
| |
| /* Validate the Domain info */ |
| count_target = pdomain->num_processors; |
| if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL) |
| pr->shared_type = CPUFREQ_SHARED_TYPE_ALL; |
| else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL) |
| pr->shared_type = CPUFREQ_SHARED_TYPE_HW; |
| else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY) |
| pr->shared_type = CPUFREQ_SHARED_TYPE_ANY; |
| |
| for_each_possible_cpu(j) { |
| if (i == j) |
| continue; |
| |
| match_cpc_ptr = per_cpu(cpc_desc_ptr, j); |
| if (!match_cpc_ptr) |
| continue; |
| |
| match_pdomain = &(match_cpc_ptr->domain_info); |
| if (match_pdomain->domain != pdomain->domain) |
| continue; |
| |
| /* Here i and j are in the same domain */ |
| if (match_pdomain->num_processors != count_target) { |
| retval = -EFAULT; |
| goto err_ret; |
| } |
| |
| if (pdomain->coord_type != match_pdomain->coord_type) { |
| retval = -EFAULT; |
| goto err_ret; |
| } |
| |
| cpumask_set_cpu(j, covered_cpus); |
| cpumask_set_cpu(j, pr->shared_cpu_map); |
| } |
| |
| for_each_possible_cpu(j) { |
| if (i == j) |
| continue; |
| |
| match_pr = all_cpu_data[j]; |
| if (!match_pr) |
| continue; |
| |
| match_cpc_ptr = per_cpu(cpc_desc_ptr, j); |
| if (!match_cpc_ptr) |
| continue; |
| |
| match_pdomain = &(match_cpc_ptr->domain_info); |
| if (match_pdomain->domain != pdomain->domain) |
| continue; |
| |
| match_pr->shared_type = pr->shared_type; |
| cpumask_copy(match_pr->shared_cpu_map, |
| pr->shared_cpu_map); |
| } |
| } |
| |
| err_ret: |
| for_each_possible_cpu(i) { |
| pr = all_cpu_data[i]; |
| if (!pr) |
| continue; |
| |
| /* Assume no coordination on any error parsing domain info */ |
| if (retval) { |
| cpumask_clear(pr->shared_cpu_map); |
| cpumask_set_cpu(i, pr->shared_cpu_map); |
| pr->shared_type = CPUFREQ_SHARED_TYPE_ALL; |
| } |
| } |
| |
| free_cpumask_var(covered_cpus); |
| return retval; |
| } |
| EXPORT_SYMBOL_GPL(acpi_get_psd_map); |
| |
| static int register_pcc_channel(int pcc_subspace_idx) |
| { |
| struct acpi_pcct_hw_reduced *cppc_ss; |
| unsigned int len; |
| u64 usecs_lat; |
| |
| if (pcc_subspace_idx >= 0) { |
| pcc_channel = pcc_mbox_request_channel(&cppc_mbox_cl, |
| pcc_subspace_idx); |
| |
| if (IS_ERR(pcc_channel)) { |
| pr_err("Failed to find PCC communication channel\n"); |
| return -ENODEV; |
| } |
| |
| /* |
| * The PCC mailbox controller driver should |
| * have parsed the PCCT (global table of all |
| * PCC channels) and stored pointers to the |
| * subspace communication region in con_priv. |
| */ |
| cppc_ss = pcc_channel->con_priv; |
| |
| if (!cppc_ss) { |
| pr_err("No PCC subspace found for CPPC\n"); |
| return -ENODEV; |
| } |
| |
| /* |
| * This is the shared communication region |
| * for the OS and Platform to communicate over. |
| */ |
| comm_base_addr = cppc_ss->base_address; |
| len = cppc_ss->length; |
| |
| /* |
| * cppc_ss->latency is just a Nominal value. In reality |
| * the remote processor could be much slower to reply. |
| * So add an arbitrary amount of wait on top of Nominal. |
| */ |
| usecs_lat = NUM_RETRIES * cppc_ss->latency; |
| deadline = ns_to_ktime(usecs_lat * NSEC_PER_USEC); |
| pcc_mrtt = cppc_ss->min_turnaround_time; |
| pcc_mpar = cppc_ss->max_access_rate; |
| |
| pcc_comm_addr = acpi_os_ioremap(comm_base_addr, len); |
| if (!pcc_comm_addr) { |
| pr_err("Failed to ioremap PCC comm region mem\n"); |
| return -ENOMEM; |
| } |
| |
| /* Set flag so that we dont come here for each CPU. */ |
| pcc_channel_acquired = true; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * An example CPC table looks like the following. |
| * |
| * Name(_CPC, Package() |
| * { |
| * 17, |
| * NumEntries |
| * 1, |
| * // Revision |
| * ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)}, |
| * // Highest Performance |
| * ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)}, |
| * // Nominal Performance |
| * ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)}, |
| * // Lowest Nonlinear Performance |
| * ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)}, |
| * // Lowest Performance |
| * ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)}, |
| * // Guaranteed Performance Register |
| * ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)}, |
| * // Desired Performance Register |
| * ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)}, |
| * .. |
| * .. |
| * .. |
| * |
| * } |
| * Each Register() encodes how to access that specific register. |
| * e.g. a sample PCC entry has the following encoding: |
| * |
| * Register ( |
| * PCC, |
| * AddressSpaceKeyword |
| * 8, |
| * //RegisterBitWidth |
| * 8, |
| * //RegisterBitOffset |
| * 0x30, |
| * //RegisterAddress |
| * 9 |
| * //AccessSize (subspace ID) |
| * 0 |
| * ) |
| * } |
| */ |
| |
| /** |
| * acpi_cppc_processor_probe - Search for per CPU _CPC objects. |
| * @pr: Ptr to acpi_processor containing this CPUs logical Id. |
| * |
| * Return: 0 for success or negative value for err. |
| */ |
| int acpi_cppc_processor_probe(struct acpi_processor *pr) |
| { |
| struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL}; |
| union acpi_object *out_obj, *cpc_obj; |
| struct cpc_desc *cpc_ptr; |
| struct cpc_reg *gas_t; |
| acpi_handle handle = pr->handle; |
| unsigned int num_ent, i, cpc_rev; |
| acpi_status status; |
| int ret = -EFAULT; |
| |
| /* Parse the ACPI _CPC table for this cpu. */ |
| status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output, |
| ACPI_TYPE_PACKAGE); |
| if (ACPI_FAILURE(status)) { |
| ret = -ENODEV; |
| goto out_buf_free; |
| } |
| |
| out_obj = (union acpi_object *) output.pointer; |
| |
| cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL); |
| if (!cpc_ptr) { |
| ret = -ENOMEM; |
| goto out_buf_free; |
| } |
| |
| /* First entry is NumEntries. */ |
| cpc_obj = &out_obj->package.elements[0]; |
| if (cpc_obj->type == ACPI_TYPE_INTEGER) { |
| num_ent = cpc_obj->integer.value; |
| } else { |
| pr_debug("Unexpected entry type(%d) for NumEntries\n", |
| cpc_obj->type); |
| goto out_free; |
| } |
| |
| /* Only support CPPCv2. Bail otherwise. */ |
| if (num_ent != CPPC_NUM_ENT) { |
| pr_debug("Firmware exports %d entries. Expected: %d\n", |
| num_ent, CPPC_NUM_ENT); |
| goto out_free; |
| } |
| |
| /* Second entry should be revision. */ |
| cpc_obj = &out_obj->package.elements[1]; |
| if (cpc_obj->type == ACPI_TYPE_INTEGER) { |
| cpc_rev = cpc_obj->integer.value; |
| } else { |
| pr_debug("Unexpected entry type(%d) for Revision\n", |
| cpc_obj->type); |
| goto out_free; |
| } |
| |
| if (cpc_rev != CPPC_REV) { |
| pr_debug("Firmware exports revision:%d. Expected:%d\n", |
| cpc_rev, CPPC_REV); |
| goto out_free; |
| } |
| |
| /* Iterate through remaining entries in _CPC */ |
| for (i = 2; i < num_ent; i++) { |
| cpc_obj = &out_obj->package.elements[i]; |
| |
| if (cpc_obj->type == ACPI_TYPE_INTEGER) { |
| cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER; |
| cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value; |
| } else if (cpc_obj->type == ACPI_TYPE_BUFFER) { |
| gas_t = (struct cpc_reg *) |
| cpc_obj->buffer.pointer; |
| |
| /* |
| * The PCC Subspace index is encoded inside |
| * the CPC table entries. The same PCC index |
| * will be used for all the PCC entries, |
| * so extract it only once. |
| */ |
| if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) { |
| if (pcc_subspace_idx < 0) |
| pcc_subspace_idx = gas_t->access_width; |
| else if (pcc_subspace_idx != gas_t->access_width) { |
| pr_debug("Mismatched PCC ids.\n"); |
| goto out_free; |
| } |
| } else if (gas_t->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY) { |
| /* Support only PCC and SYS MEM type regs */ |
| pr_debug("Unsupported register type: %d\n", gas_t->space_id); |
| goto out_free; |
| } |
| |
| cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER; |
| memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t)); |
| } else { |
| pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id); |
| goto out_free; |
| } |
| } |
| /* Store CPU Logical ID */ |
| cpc_ptr->cpu_id = pr->id; |
| |
| /* Plug it into this CPUs CPC descriptor. */ |
| per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr; |
| |
| /* Parse PSD data for this CPU */ |
| ret = acpi_get_psd(cpc_ptr, handle); |
| if (ret) |
| goto out_free; |
| |
| /* Register PCC channel once for all CPUs. */ |
| if (!pcc_channel_acquired) { |
| ret = register_pcc_channel(pcc_subspace_idx); |
| if (ret) |
| goto out_free; |
| } |
| |
| /* Everything looks okay */ |
| pr_debug("Parsed CPC struct for CPU: %d\n", pr->id); |
| |
| kfree(output.pointer); |
| return 0; |
| |
| out_free: |
| kfree(cpc_ptr); |
| |
| out_buf_free: |
| kfree(output.pointer); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe); |
| |
| /** |
| * acpi_cppc_processor_exit - Cleanup CPC structs. |
| * @pr: Ptr to acpi_processor containing this CPUs logical Id. |
| * |
| * Return: Void |
| */ |
| void acpi_cppc_processor_exit(struct acpi_processor *pr) |
| { |
| struct cpc_desc *cpc_ptr; |
| cpc_ptr = per_cpu(cpc_desc_ptr, pr->id); |
| kfree(cpc_ptr); |
| } |
| EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit); |
| |
| /* |
| * Since cpc_read and cpc_write are called while holding pcc_lock, it should be |
| * as fast as possible. We have already mapped the PCC subspace during init, so |
| * we can directly write to it. |
| */ |
| |
| static int cpc_read(struct cpc_reg *reg, u64 *val) |
| { |
| int ret_val = 0; |
| |
| *val = 0; |
| if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) { |
| void __iomem *vaddr = GET_PCC_VADDR(reg->address); |
| |
| switch (reg->bit_width) { |
| case 8: |
| *val = readb_relaxed(vaddr); |
| break; |
| case 16: |
| *val = readw_relaxed(vaddr); |
| break; |
| case 32: |
| *val = readl_relaxed(vaddr); |
| break; |
| case 64: |
| *val = readq_relaxed(vaddr); |
| break; |
| default: |
| pr_debug("Error: Cannot read %u bit width from PCC\n", |
| reg->bit_width); |
| ret_val = -EFAULT; |
| } |
| } else |
| ret_val = acpi_os_read_memory((acpi_physical_address)reg->address, |
| val, reg->bit_width); |
| return ret_val; |
| } |
| |
| static int cpc_write(struct cpc_reg *reg, u64 val) |
| { |
| int ret_val = 0; |
| |
| if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) { |
| void __iomem *vaddr = GET_PCC_VADDR(reg->address); |
| |
| switch (reg->bit_width) { |
| case 8: |
| writeb_relaxed(val, vaddr); |
| break; |
| case 16: |
| writew_relaxed(val, vaddr); |
| break; |
| case 32: |
| writel_relaxed(val, vaddr); |
| break; |
| case 64: |
| writeq_relaxed(val, vaddr); |
| break; |
| default: |
| pr_debug("Error: Cannot write %u bit width to PCC\n", |
| reg->bit_width); |
| ret_val = -EFAULT; |
| break; |
| } |
| } else |
| ret_val = acpi_os_write_memory((acpi_physical_address)reg->address, |
| val, reg->bit_width); |
| return ret_val; |
| } |
| |
| /** |
| * cppc_get_perf_caps - Get a CPUs performance capabilities. |
| * @cpunum: CPU from which to get capabilities info. |
| * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h |
| * |
| * Return: 0 for success with perf_caps populated else -ERRNO. |
| */ |
| int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps) |
| { |
| struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum); |
| struct cpc_register_resource *highest_reg, *lowest_reg, *ref_perf, |
| *nom_perf; |
| u64 high, low, ref, nom; |
| int ret = 0; |
| |
| if (!cpc_desc) { |
| pr_debug("No CPC descriptor for CPU:%d\n", cpunum); |
| return -ENODEV; |
| } |
| |
| highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF]; |
| lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF]; |
| ref_perf = &cpc_desc->cpc_regs[REFERENCE_PERF]; |
| nom_perf = &cpc_desc->cpc_regs[NOMINAL_PERF]; |
| |
| spin_lock(&pcc_lock); |
| |
| /* Are any of the regs PCC ?*/ |
| if ((highest_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) || |
| (lowest_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) || |
| (ref_perf->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) || |
| (nom_perf->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM)) { |
| /* Ring doorbell once to update PCC subspace */ |
| if (send_pcc_cmd(CMD_READ) < 0) { |
| ret = -EIO; |
| goto out_err; |
| } |
| } |
| |
| cpc_read(&highest_reg->cpc_entry.reg, &high); |
| perf_caps->highest_perf = high; |
| |
| cpc_read(&lowest_reg->cpc_entry.reg, &low); |
| perf_caps->lowest_perf = low; |
| |
| cpc_read(&ref_perf->cpc_entry.reg, &ref); |
| perf_caps->reference_perf = ref; |
| |
| cpc_read(&nom_perf->cpc_entry.reg, &nom); |
| perf_caps->nominal_perf = nom; |
| |
| if (!ref) |
| perf_caps->reference_perf = perf_caps->nominal_perf; |
| |
| if (!high || !low || !nom) |
| ret = -EFAULT; |
| |
| out_err: |
| spin_unlock(&pcc_lock); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(cppc_get_perf_caps); |
| |
| /** |
| * cppc_get_perf_ctrs - Read a CPUs performance feedback counters. |
| * @cpunum: CPU from which to read counters. |
| * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h |
| * |
| * Return: 0 for success with perf_fb_ctrs populated else -ERRNO. |
| */ |
| int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs) |
| { |
| struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum); |
| struct cpc_register_resource *delivered_reg, *reference_reg; |
| u64 delivered, reference; |
| int ret = 0; |
| |
| if (!cpc_desc) { |
| pr_debug("No CPC descriptor for CPU:%d\n", cpunum); |
| return -ENODEV; |
| } |
| |
| delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR]; |
| reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR]; |
| |
| spin_lock(&pcc_lock); |
| |
| /* Are any of the regs PCC ?*/ |
| if ((delivered_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) || |
| (reference_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM)) { |
| /* Ring doorbell once to update PCC subspace */ |
| if (send_pcc_cmd(CMD_READ) < 0) { |
| ret = -EIO; |
| goto out_err; |
| } |
| } |
| |
| cpc_read(&delivered_reg->cpc_entry.reg, &delivered); |
| cpc_read(&reference_reg->cpc_entry.reg, &reference); |
| |
| if (!delivered || !reference) { |
| ret = -EFAULT; |
| goto out_err; |
| } |
| |
| perf_fb_ctrs->delivered = delivered; |
| perf_fb_ctrs->reference = reference; |
| |
| perf_fb_ctrs->delivered -= perf_fb_ctrs->prev_delivered; |
| perf_fb_ctrs->reference -= perf_fb_ctrs->prev_reference; |
| |
| perf_fb_ctrs->prev_delivered = delivered; |
| perf_fb_ctrs->prev_reference = reference; |
| |
| out_err: |
| spin_unlock(&pcc_lock); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs); |
| |
| /** |
| * cppc_set_perf - Set a CPUs performance controls. |
| * @cpu: CPU for which to set performance controls. |
| * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h |
| * |
| * Return: 0 for success, -ERRNO otherwise. |
| */ |
| int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls) |
| { |
| struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu); |
| struct cpc_register_resource *desired_reg; |
| int ret = 0; |
| |
| if (!cpc_desc) { |
| pr_debug("No CPC descriptor for CPU:%d\n", cpu); |
| return -ENODEV; |
| } |
| |
| desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF]; |
| |
| spin_lock(&pcc_lock); |
| |
| /* If this is PCC reg, check if channel is free before writing */ |
| if (desired_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) { |
| ret = check_pcc_chan(); |
| if (ret) |
| goto busy_channel; |
| } |
| |
| /* |
| * Skip writing MIN/MAX until Linux knows how to come up with |
| * useful values. |
| */ |
| cpc_write(&desired_reg->cpc_entry.reg, perf_ctrls->desired_perf); |
| |
| /* Is this a PCC reg ?*/ |
| if (desired_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) { |
| /* Ring doorbell so Remote can get our perf request. */ |
| if (send_pcc_cmd(CMD_WRITE) < 0) |
| ret = -EIO; |
| } |
| busy_channel: |
| spin_unlock(&pcc_lock); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(cppc_set_perf); |