| #ifndef _ASM_POWERPC_NOHASH_32_PGTABLE_H |
| #define _ASM_POWERPC_NOHASH_32_PGTABLE_H |
| |
| #include <asm-generic/pgtable-nopmd.h> |
| |
| #ifndef __ASSEMBLY__ |
| #include <linux/sched.h> |
| #include <linux/threads.h> |
| #include <asm/io.h> /* For sub-arch specific PPC_PIN_SIZE */ |
| |
| extern unsigned long ioremap_bot; |
| |
| #ifdef CONFIG_44x |
| extern int icache_44x_need_flush; |
| #endif |
| |
| #endif /* __ASSEMBLY__ */ |
| |
| /* |
| * The normal case is that PTEs are 32-bits and we have a 1-page |
| * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus |
| * |
| * For any >32-bit physical address platform, we can use the following |
| * two level page table layout where the pgdir is 8KB and the MS 13 bits |
| * are an index to the second level table. The combined pgdir/pmd first |
| * level has 2048 entries and the second level has 512 64-bit PTE entries. |
| * -Matt |
| */ |
| /* PGDIR_SHIFT determines what a top-level page table entry can map */ |
| #define PGDIR_SHIFT (PAGE_SHIFT + PTE_SHIFT) |
| #define PGDIR_SIZE (1UL << PGDIR_SHIFT) |
| #define PGDIR_MASK (~(PGDIR_SIZE-1)) |
| |
| /* |
| * entries per page directory level: our page-table tree is two-level, so |
| * we don't really have any PMD directory. |
| */ |
| #ifndef __ASSEMBLY__ |
| #define PTE_TABLE_SIZE (sizeof(pte_t) << PTE_SHIFT) |
| #define PGD_TABLE_SIZE (sizeof(pgd_t) << (32 - PGDIR_SHIFT)) |
| #endif /* __ASSEMBLY__ */ |
| |
| #define PTRS_PER_PTE (1 << PTE_SHIFT) |
| #define PTRS_PER_PMD 1 |
| #define PTRS_PER_PGD (1 << (32 - PGDIR_SHIFT)) |
| |
| #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) |
| #define FIRST_USER_ADDRESS 0UL |
| |
| #define pte_ERROR(e) \ |
| pr_err("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \ |
| (unsigned long long)pte_val(e)) |
| #define pgd_ERROR(e) \ |
| pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) |
| |
| /* |
| * This is the bottom of the PKMAP area with HIGHMEM or an arbitrary |
| * value (for now) on others, from where we can start layout kernel |
| * virtual space that goes below PKMAP and FIXMAP |
| */ |
| #ifdef CONFIG_HIGHMEM |
| #define KVIRT_TOP PKMAP_BASE |
| #else |
| #define KVIRT_TOP (0xfe000000UL) /* for now, could be FIXMAP_BASE ? */ |
| #endif |
| |
| /* |
| * ioremap_bot starts at that address. Early ioremaps move down from there, |
| * until mem_init() at which point this becomes the top of the vmalloc |
| * and ioremap space |
| */ |
| #ifdef CONFIG_NOT_COHERENT_CACHE |
| #define IOREMAP_TOP ((KVIRT_TOP - CONFIG_CONSISTENT_SIZE) & PAGE_MASK) |
| #else |
| #define IOREMAP_TOP KVIRT_TOP |
| #endif |
| |
| /* |
| * Just any arbitrary offset to the start of the vmalloc VM area: the |
| * current 16MB value just means that there will be a 64MB "hole" after the |
| * physical memory until the kernel virtual memory starts. That means that |
| * any out-of-bounds memory accesses will hopefully be caught. |
| * The vmalloc() routines leaves a hole of 4kB between each vmalloced |
| * area for the same reason. ;) |
| * |
| * We no longer map larger than phys RAM with the BATs so we don't have |
| * to worry about the VMALLOC_OFFSET causing problems. We do have to worry |
| * about clashes between our early calls to ioremap() that start growing down |
| * from IOREMAP_TOP being run into the VM area allocations (growing upwards |
| * from VMALLOC_START). For this reason we have ioremap_bot to check when |
| * we actually run into our mappings setup in the early boot with the VM |
| * system. This really does become a problem for machines with good amounts |
| * of RAM. -- Cort |
| */ |
| #define VMALLOC_OFFSET (0x1000000) /* 16M */ |
| #ifdef PPC_PIN_SIZE |
| #define VMALLOC_START (((_ALIGN((long)high_memory, PPC_PIN_SIZE) + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))) |
| #else |
| #define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))) |
| #endif |
| #define VMALLOC_END ioremap_bot |
| |
| /* |
| * Bits in a linux-style PTE. These match the bits in the |
| * (hardware-defined) PowerPC PTE as closely as possible. |
| */ |
| |
| #if defined(CONFIG_40x) |
| #include <asm/nohash/32/pte-40x.h> |
| #elif defined(CONFIG_44x) |
| #include <asm/nohash/32/pte-44x.h> |
| #elif defined(CONFIG_FSL_BOOKE) && defined(CONFIG_PTE_64BIT) |
| #include <asm/nohash/pte-book3e.h> |
| #elif defined(CONFIG_FSL_BOOKE) |
| #include <asm/nohash/32/pte-fsl-booke.h> |
| #elif defined(CONFIG_8xx) |
| #include <asm/nohash/32/pte-8xx.h> |
| #endif |
| |
| /* And here we include common definitions */ |
| #include <asm/pte-common.h> |
| |
| #ifndef __ASSEMBLY__ |
| |
| #define pte_clear(mm, addr, ptep) \ |
| do { pte_update(ptep, ~_PAGE_HASHPTE, 0); } while (0) |
| |
| #define pmd_none(pmd) (!pmd_val(pmd)) |
| #define pmd_bad(pmd) (pmd_val(pmd) & _PMD_BAD) |
| #define pmd_present(pmd) (pmd_val(pmd) & _PMD_PRESENT_MASK) |
| static inline void pmd_clear(pmd_t *pmdp) |
| { |
| *pmdp = __pmd(0); |
| } |
| |
| |
| |
| /* |
| * When flushing the tlb entry for a page, we also need to flush the hash |
| * table entry. flush_hash_pages is assembler (for speed) in hashtable.S. |
| */ |
| extern int flush_hash_pages(unsigned context, unsigned long va, |
| unsigned long pmdval, int count); |
| |
| /* Add an HPTE to the hash table */ |
| extern void add_hash_page(unsigned context, unsigned long va, |
| unsigned long pmdval); |
| |
| /* Flush an entry from the TLB/hash table */ |
| extern void flush_hash_entry(struct mm_struct *mm, pte_t *ptep, |
| unsigned long address); |
| |
| /* |
| * PTE updates. This function is called whenever an existing |
| * valid PTE is updated. This does -not- include set_pte_at() |
| * which nowadays only sets a new PTE. |
| * |
| * Depending on the type of MMU, we may need to use atomic updates |
| * and the PTE may be either 32 or 64 bit wide. In the later case, |
| * when using atomic updates, only the low part of the PTE is |
| * accessed atomically. |
| * |
| * In addition, on 44x, we also maintain a global flag indicating |
| * that an executable user mapping was modified, which is needed |
| * to properly flush the virtually tagged instruction cache of |
| * those implementations. |
| */ |
| #ifndef CONFIG_PTE_64BIT |
| static inline unsigned long pte_update(pte_t *p, |
| unsigned long clr, |
| unsigned long set) |
| { |
| #ifdef PTE_ATOMIC_UPDATES |
| unsigned long old, tmp; |
| |
| __asm__ __volatile__("\ |
| 1: lwarx %0,0,%3\n\ |
| andc %1,%0,%4\n\ |
| or %1,%1,%5\n" |
| PPC405_ERR77(0,%3) |
| " stwcx. %1,0,%3\n\ |
| bne- 1b" |
| : "=&r" (old), "=&r" (tmp), "=m" (*p) |
| : "r" (p), "r" (clr), "r" (set), "m" (*p) |
| : "cc" ); |
| #else /* PTE_ATOMIC_UPDATES */ |
| unsigned long old = pte_val(*p); |
| *p = __pte((old & ~clr) | set); |
| #endif /* !PTE_ATOMIC_UPDATES */ |
| |
| #ifdef CONFIG_44x |
| if ((old & _PAGE_USER) && (old & _PAGE_EXEC)) |
| icache_44x_need_flush = 1; |
| #endif |
| return old; |
| } |
| #else /* CONFIG_PTE_64BIT */ |
| static inline unsigned long long pte_update(pte_t *p, |
| unsigned long clr, |
| unsigned long set) |
| { |
| #ifdef PTE_ATOMIC_UPDATES |
| unsigned long long old; |
| unsigned long tmp; |
| |
| __asm__ __volatile__("\ |
| 1: lwarx %L0,0,%4\n\ |
| lwzx %0,0,%3\n\ |
| andc %1,%L0,%5\n\ |
| or %1,%1,%6\n" |
| PPC405_ERR77(0,%3) |
| " stwcx. %1,0,%4\n\ |
| bne- 1b" |
| : "=&r" (old), "=&r" (tmp), "=m" (*p) |
| : "r" (p), "r" ((unsigned long)(p) + 4), "r" (clr), "r" (set), "m" (*p) |
| : "cc" ); |
| #else /* PTE_ATOMIC_UPDATES */ |
| unsigned long long old = pte_val(*p); |
| *p = __pte((old & ~(unsigned long long)clr) | set); |
| #endif /* !PTE_ATOMIC_UPDATES */ |
| |
| #ifdef CONFIG_44x |
| if ((old & _PAGE_USER) && (old & _PAGE_EXEC)) |
| icache_44x_need_flush = 1; |
| #endif |
| return old; |
| } |
| #endif /* CONFIG_PTE_64BIT */ |
| |
| /* |
| * 2.6 calls this without flushing the TLB entry; this is wrong |
| * for our hash-based implementation, we fix that up here. |
| */ |
| #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG |
| static inline int __ptep_test_and_clear_young(unsigned int context, unsigned long addr, pte_t *ptep) |
| { |
| unsigned long old; |
| old = pte_update(ptep, _PAGE_ACCESSED, 0); |
| #if _PAGE_HASHPTE != 0 |
| if (old & _PAGE_HASHPTE) { |
| unsigned long ptephys = __pa(ptep) & PAGE_MASK; |
| flush_hash_pages(context, addr, ptephys, 1); |
| } |
| #endif |
| return (old & _PAGE_ACCESSED) != 0; |
| } |
| #define ptep_test_and_clear_young(__vma, __addr, __ptep) \ |
| __ptep_test_and_clear_young((__vma)->vm_mm->context.id, __addr, __ptep) |
| |
| #define __HAVE_ARCH_PTEP_GET_AND_CLEAR |
| static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep) |
| { |
| return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0)); |
| } |
| |
| #define __HAVE_ARCH_PTEP_SET_WRPROTECT |
| static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, |
| pte_t *ptep) |
| { |
| pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), _PAGE_RO); |
| } |
| static inline void huge_ptep_set_wrprotect(struct mm_struct *mm, |
| unsigned long addr, pte_t *ptep) |
| { |
| ptep_set_wrprotect(mm, addr, ptep); |
| } |
| |
| |
| static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry) |
| { |
| unsigned long set = pte_val(entry) & |
| (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC); |
| unsigned long clr = ~pte_val(entry) & _PAGE_RO; |
| |
| pte_update(ptep, clr, set); |
| } |
| |
| #define __HAVE_ARCH_PTE_SAME |
| #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0) |
| |
| /* |
| * Note that on Book E processors, the pmd contains the kernel virtual |
| * (lowmem) address of the pte page. The physical address is less useful |
| * because everything runs with translation enabled (even the TLB miss |
| * handler). On everything else the pmd contains the physical address |
| * of the pte page. -- paulus |
| */ |
| #ifndef CONFIG_BOOKE |
| #define pmd_page_vaddr(pmd) \ |
| ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) |
| #define pmd_page(pmd) \ |
| pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT) |
| #else |
| #define pmd_page_vaddr(pmd) \ |
| ((unsigned long) (pmd_val(pmd) & PAGE_MASK)) |
| #define pmd_page(pmd) \ |
| pfn_to_page((__pa(pmd_val(pmd)) >> PAGE_SHIFT)) |
| #endif |
| |
| /* to find an entry in a kernel page-table-directory */ |
| #define pgd_offset_k(address) pgd_offset(&init_mm, address) |
| |
| /* to find an entry in a page-table-directory */ |
| #define pgd_index(address) ((address) >> PGDIR_SHIFT) |
| #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) |
| |
| /* Find an entry in the third-level page table.. */ |
| #define pte_index(address) \ |
| (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) |
| #define pte_offset_kernel(dir, addr) \ |
| (pmd_bad(*(dir)) ? NULL : (pte_t *)pmd_page_vaddr(*(dir)) + \ |
| pte_index(addr)) |
| #define pte_offset_map(dir, addr) \ |
| ((pte_t *) kmap_atomic(pmd_page(*(dir))) + pte_index(addr)) |
| #define pte_unmap(pte) kunmap_atomic(pte) |
| |
| /* |
| * Encode and decode a swap entry. |
| * Note that the bits we use in a PTE for representing a swap entry |
| * must not include the _PAGE_PRESENT bit or the _PAGE_HASHPTE bit (if used). |
| * -- paulus |
| */ |
| #define __swp_type(entry) ((entry).val & 0x1f) |
| #define __swp_offset(entry) ((entry).val >> 5) |
| #define __swp_entry(type, offset) ((swp_entry_t) { (type) | ((offset) << 5) }) |
| #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 3 }) |
| #define __swp_entry_to_pte(x) ((pte_t) { (x).val << 3 }) |
| |
| #ifndef CONFIG_PPC_4K_PAGES |
| void pgtable_cache_init(void); |
| #else |
| /* |
| * No page table caches to initialise |
| */ |
| #define pgtable_cache_init() do { } while (0) |
| #endif |
| |
| extern int get_pteptr(struct mm_struct *mm, unsigned long addr, pte_t **ptep, |
| pmd_t **pmdp); |
| |
| #endif /* !__ASSEMBLY__ */ |
| |
| #endif /* __ASM_POWERPC_NOHASH_32_PGTABLE_H */ |