| /* |
| * Copyright 2015 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| */ |
| #include <asm/div64.h> |
| |
| #define SHIFT_AMOUNT 16 /* We multiply all original integers with 2^SHIFT_AMOUNT to get the fInt representation */ |
| |
| #define PRECISION 5 /* Change this value to change the number of decimal places in the final output - 5 is a good default */ |
| |
| #define SHIFTED_2 (2 << SHIFT_AMOUNT) |
| #define MAX (1 << (SHIFT_AMOUNT - 1)) - 1 /* 32767 - Might change in the future */ |
| |
| /* ------------------------------------------------------------------------------- |
| * NEW TYPE - fINT |
| * ------------------------------------------------------------------------------- |
| * A variable of type fInt can be accessed in 3 ways using the dot (.) operator |
| * fInt A; |
| * A.full => The full number as it is. Generally not easy to read |
| * A.partial.real => Only the integer portion |
| * A.partial.decimal => Only the fractional portion |
| */ |
| typedef union _fInt { |
| int full; |
| struct _partial { |
| unsigned int decimal: SHIFT_AMOUNT; /*Needs to always be unsigned*/ |
| int real: 32 - SHIFT_AMOUNT; |
| } partial; |
| } fInt; |
| |
| /* ------------------------------------------------------------------------------- |
| * Function Declarations |
| * ------------------------------------------------------------------------------- |
| */ |
| fInt ConvertToFraction(int); /* Use this to convert an INT to a FINT */ |
| fInt Convert_ULONG_ToFraction(uint32_t); /* Use this to convert an uint32_t to a FINT */ |
| fInt GetScaledFraction(int, int); /* Use this to convert an INT to a FINT after scaling it by a factor */ |
| int ConvertBackToInteger(fInt); /* Convert a FINT back to an INT that is scaled by 1000 (i.e. last 3 digits are the decimal digits) */ |
| |
| fInt fNegate(fInt); /* Returns -1 * input fInt value */ |
| fInt fAdd (fInt, fInt); /* Returns the sum of two fInt numbers */ |
| fInt fSubtract (fInt A, fInt B); /* Returns A-B - Sometimes easier than Adding negative numbers */ |
| fInt fMultiply (fInt, fInt); /* Returns the product of two fInt numbers */ |
| fInt fDivide (fInt A, fInt B); /* Returns A/B */ |
| fInt fGetSquare(fInt); /* Returns the square of a fInt number */ |
| fInt fSqrt(fInt); /* Returns the Square Root of a fInt number */ |
| |
| int uAbs(int); /* Returns the Absolute value of the Int */ |
| fInt fAbs(fInt); /* Returns the Absolute value of the fInt */ |
| int uPow(int base, int exponent); /* Returns base^exponent an INT */ |
| |
| void SolveQuadracticEqn(fInt, fInt, fInt, fInt[]); /* Returns the 2 roots via the array */ |
| bool Equal(fInt, fInt); /* Returns true if two fInts are equal to each other */ |
| bool GreaterThan(fInt A, fInt B); /* Returns true if A > B */ |
| |
| fInt fExponential(fInt exponent); /* Can be used to calculate e^exponent */ |
| fInt fNaturalLog(fInt value); /* Can be used to calculate ln(value) */ |
| |
| /* Fuse decoding functions |
| * ------------------------------------------------------------------------------------- |
| */ |
| fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength); |
| fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength); |
| fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength); |
| |
| /* Internal Support Functions - Use these ONLY for testing or adding to internal functions |
| * ------------------------------------------------------------------------------------- |
| * Some of the following functions take two INTs as their input - This is unsafe for a variety of reasons. |
| */ |
| fInt Add (int, int); /* Add two INTs and return Sum as FINT */ |
| fInt Multiply (int, int); /* Multiply two INTs and return Product as FINT */ |
| fInt Divide (int, int); /* You get the idea... */ |
| fInt fNegate(fInt); |
| |
| int uGetScaledDecimal (fInt); /* Internal function */ |
| int GetReal (fInt A); /* Internal function */ |
| |
| /* Future Additions and Incomplete Functions |
| * ------------------------------------------------------------------------------------- |
| */ |
| int GetRoundedValue(fInt); /* Incomplete function - Useful only when Precision is lacking */ |
| /* Let us say we have 2.126 but can only handle 2 decimal points. We could */ |
| /* either chop of 6 and keep 2.12 or use this function to get 2.13, which is more accurate */ |
| |
| /* ------------------------------------------------------------------------------------- |
| * TROUBLESHOOTING INFORMATION |
| * ------------------------------------------------------------------------------------- |
| * 1) ConvertToFraction - InputOutOfRangeException: Only accepts numbers smaller than MAX (default: 32767) |
| * 2) fAdd - OutputOutOfRangeException: Output bigger than MAX (default: 32767) |
| * 3) fMultiply - OutputOutOfRangeException: |
| * 4) fGetSquare - OutputOutOfRangeException: |
| * 5) fDivide - DivideByZeroException |
| * 6) fSqrt - NegativeSquareRootException: Input cannot be a negative number |
| */ |
| |
| /* ------------------------------------------------------------------------------------- |
| * START OF CODE |
| * ------------------------------------------------------------------------------------- |
| */ |
| fInt fExponential(fInt exponent) /*Can be used to calculate e^exponent*/ |
| { |
| uint32_t i; |
| bool bNegated = false; |
| |
| fInt fPositiveOne = ConvertToFraction(1); |
| fInt fZERO = ConvertToFraction(0); |
| |
| fInt lower_bound = Divide(78, 10000); |
| fInt solution = fPositiveOne; /*Starting off with baseline of 1 */ |
| fInt error_term; |
| |
| static const uint32_t k_array[11] = {55452, 27726, 13863, 6931, 4055, 2231, 1178, 606, 308, 155, 78}; |
| static const uint32_t expk_array[11] = {2560000, 160000, 40000, 20000, 15000, 12500, 11250, 10625, 10313, 10156, 10078}; |
| |
| if (GreaterThan(fZERO, exponent)) { |
| exponent = fNegate(exponent); |
| bNegated = true; |
| } |
| |
| while (GreaterThan(exponent, lower_bound)) { |
| for (i = 0; i < 11; i++) { |
| if (GreaterThan(exponent, GetScaledFraction(k_array[i], 10000))) { |
| exponent = fSubtract(exponent, GetScaledFraction(k_array[i], 10000)); |
| solution = fMultiply(solution, GetScaledFraction(expk_array[i], 10000)); |
| } |
| } |
| } |
| |
| error_term = fAdd(fPositiveOne, exponent); |
| |
| solution = fMultiply(solution, error_term); |
| |
| if (bNegated) |
| solution = fDivide(fPositiveOne, solution); |
| |
| return solution; |
| } |
| |
| fInt fNaturalLog(fInt value) |
| { |
| uint32_t i; |
| fInt upper_bound = Divide(8, 1000); |
| fInt fNegativeOne = ConvertToFraction(-1); |
| fInt solution = ConvertToFraction(0); /*Starting off with baseline of 0 */ |
| fInt error_term; |
| |
| static const uint32_t k_array[10] = {160000, 40000, 20000, 15000, 12500, 11250, 10625, 10313, 10156, 10078}; |
| static const uint32_t logk_array[10] = {27726, 13863, 6931, 4055, 2231, 1178, 606, 308, 155, 78}; |
| |
| while (GreaterThan(fAdd(value, fNegativeOne), upper_bound)) { |
| for (i = 0; i < 10; i++) { |
| if (GreaterThan(value, GetScaledFraction(k_array[i], 10000))) { |
| value = fDivide(value, GetScaledFraction(k_array[i], 10000)); |
| solution = fAdd(solution, GetScaledFraction(logk_array[i], 10000)); |
| } |
| } |
| } |
| |
| error_term = fAdd(fNegativeOne, value); |
| |
| return (fAdd(solution, error_term)); |
| } |
| |
| fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength) |
| { |
| fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value); |
| fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1); |
| |
| fInt f_decoded_value; |
| |
| f_decoded_value = fDivide(f_fuse_value, f_bit_max_value); |
| f_decoded_value = fMultiply(f_decoded_value, f_range); |
| f_decoded_value = fAdd(f_decoded_value, f_min); |
| |
| return f_decoded_value; |
| } |
| |
| |
| fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength) |
| { |
| fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value); |
| fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1); |
| |
| fInt f_CONSTANT_NEG13 = ConvertToFraction(-13); |
| fInt f_CONSTANT1 = ConvertToFraction(1); |
| |
| fInt f_decoded_value; |
| |
| f_decoded_value = fSubtract(fDivide(f_bit_max_value, f_fuse_value), f_CONSTANT1); |
| f_decoded_value = fNaturalLog(f_decoded_value); |
| f_decoded_value = fMultiply(f_decoded_value, fDivide(f_range, f_CONSTANT_NEG13)); |
| f_decoded_value = fAdd(f_decoded_value, f_average); |
| |
| return f_decoded_value; |
| } |
| |
| fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength) |
| { |
| fInt fLeakage; |
| fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1); |
| |
| fLeakage = fMultiply(ln_max_div_min, Convert_ULONG_ToFraction(leakageID_fuse)); |
| fLeakage = fDivide(fLeakage, f_bit_max_value); |
| fLeakage = fExponential(fLeakage); |
| fLeakage = fMultiply(fLeakage, f_min); |
| |
| return fLeakage; |
| } |
| |
| fInt ConvertToFraction(int X) /*Add all range checking here. Is it possible to make fInt a private declaration? */ |
| { |
| fInt temp; |
| |
| if (X <= MAX) |
| temp.full = (X << SHIFT_AMOUNT); |
| else |
| temp.full = 0; |
| |
| return temp; |
| } |
| |
| fInt fNegate(fInt X) |
| { |
| fInt CONSTANT_NEGONE = ConvertToFraction(-1); |
| return (fMultiply(X, CONSTANT_NEGONE)); |
| } |
| |
| fInt Convert_ULONG_ToFraction(uint32_t X) |
| { |
| fInt temp; |
| |
| if (X <= MAX) |
| temp.full = (X << SHIFT_AMOUNT); |
| else |
| temp.full = 0; |
| |
| return temp; |
| } |
| |
| fInt GetScaledFraction(int X, int factor) |
| { |
| int times_shifted, factor_shifted; |
| bool bNEGATED; |
| fInt fValue; |
| |
| times_shifted = 0; |
| factor_shifted = 0; |
| bNEGATED = false; |
| |
| if (X < 0) { |
| X = -1*X; |
| bNEGATED = true; |
| } |
| |
| if (factor < 0) { |
| factor = -1*factor; |
| bNEGATED = !bNEGATED; /*If bNEGATED = true due to X < 0, this will cover the case of negative cancelling negative */ |
| } |
| |
| if ((X > MAX) || factor > MAX) { |
| if ((X/factor) <= MAX) { |
| while (X > MAX) { |
| X = X >> 1; |
| times_shifted++; |
| } |
| |
| while (factor > MAX) { |
| factor = factor >> 1; |
| factor_shifted++; |
| } |
| } else { |
| fValue.full = 0; |
| return fValue; |
| } |
| } |
| |
| if (factor == 1) |
| return ConvertToFraction(X); |
| |
| fValue = fDivide(ConvertToFraction(X * uPow(-1, bNEGATED)), ConvertToFraction(factor)); |
| |
| fValue.full = fValue.full << times_shifted; |
| fValue.full = fValue.full >> factor_shifted; |
| |
| return fValue; |
| } |
| |
| /* Addition using two fInts */ |
| fInt fAdd (fInt X, fInt Y) |
| { |
| fInt Sum; |
| |
| Sum.full = X.full + Y.full; |
| |
| return Sum; |
| } |
| |
| /* Addition using two fInts */ |
| fInt fSubtract (fInt X, fInt Y) |
| { |
| fInt Difference; |
| |
| Difference.full = X.full - Y.full; |
| |
| return Difference; |
| } |
| |
| bool Equal(fInt A, fInt B) |
| { |
| if (A.full == B.full) |
| return true; |
| else |
| return false; |
| } |
| |
| bool GreaterThan(fInt A, fInt B) |
| { |
| if (A.full > B.full) |
| return true; |
| else |
| return false; |
| } |
| |
| fInt fMultiply (fInt X, fInt Y) /* Uses 64-bit integers (int64_t) */ |
| { |
| fInt Product; |
| int64_t tempProduct; |
| bool X_LessThanOne, Y_LessThanOne; |
| |
| X_LessThanOne = (X.partial.real == 0 && X.partial.decimal != 0 && X.full >= 0); |
| Y_LessThanOne = (Y.partial.real == 0 && Y.partial.decimal != 0 && Y.full >= 0); |
| |
| /*The following is for a very specific common case: Non-zero number with ONLY fractional portion*/ |
| /* TEMPORARILY DISABLED - CAN BE USED TO IMPROVE PRECISION |
| |
| if (X_LessThanOne && Y_LessThanOne) { |
| Product.full = X.full * Y.full; |
| return Product |
| }*/ |
| |
| tempProduct = ((int64_t)X.full) * ((int64_t)Y.full); /*Q(16,16)*Q(16,16) = Q(32, 32) - Might become a negative number! */ |
| tempProduct = tempProduct >> 16; /*Remove lagging 16 bits - Will lose some precision from decimal; */ |
| Product.full = (int)tempProduct; /*The int64_t will lose the leading 16 bits that were part of the integer portion */ |
| |
| return Product; |
| } |
| |
| fInt fDivide (fInt X, fInt Y) |
| { |
| fInt fZERO, fQuotient; |
| int64_t longlongX, longlongY; |
| |
| fZERO = ConvertToFraction(0); |
| |
| if (Equal(Y, fZERO)) |
| return fZERO; |
| |
| longlongX = (int64_t)X.full; |
| longlongY = (int64_t)Y.full; |
| |
| longlongX = longlongX << 16; /*Q(16,16) -> Q(32,32) */ |
| |
| div64_s64(longlongX, longlongY); /*Q(32,32) divided by Q(16,16) = Q(16,16) Back to original format */ |
| |
| fQuotient.full = (int)longlongX; |
| return fQuotient; |
| } |
| |
| int ConvertBackToInteger (fInt A) /*THIS is the function that will be used to check with the Golden settings table*/ |
| { |
| fInt fullNumber, scaledDecimal, scaledReal; |
| |
| scaledReal.full = GetReal(A) * uPow(10, PRECISION-1); /* DOUBLE CHECK THISSSS!!! */ |
| |
| scaledDecimal.full = uGetScaledDecimal(A); |
| |
| fullNumber = fAdd(scaledDecimal,scaledReal); |
| |
| return fullNumber.full; |
| } |
| |
| fInt fGetSquare(fInt A) |
| { |
| return fMultiply(A,A); |
| } |
| |
| /* x_new = x_old - (x_old^2 - C) / (2 * x_old) */ |
| fInt fSqrt(fInt num) |
| { |
| fInt F_divide_Fprime, Fprime; |
| fInt test; |
| fInt twoShifted; |
| int seed, counter, error; |
| fInt x_new, x_old, C, y; |
| |
| fInt fZERO = ConvertToFraction(0); |
| |
| /* (0 > num) is the same as (num < 0), i.e., num is negative */ |
| |
| if (GreaterThan(fZERO, num) || Equal(fZERO, num)) |
| return fZERO; |
| |
| C = num; |
| |
| if (num.partial.real > 3000) |
| seed = 60; |
| else if (num.partial.real > 1000) |
| seed = 30; |
| else if (num.partial.real > 100) |
| seed = 10; |
| else |
| seed = 2; |
| |
| counter = 0; |
| |
| if (Equal(num, fZERO)) /*Square Root of Zero is zero */ |
| return fZERO; |
| |
| twoShifted = ConvertToFraction(2); |
| x_new = ConvertToFraction(seed); |
| |
| do { |
| counter++; |
| |
| x_old.full = x_new.full; |
| |
| test = fGetSquare(x_old); /*1.75*1.75 is reverting back to 1 when shifted down */ |
| y = fSubtract(test, C); /*y = f(x) = x^2 - C; */ |
| |
| Fprime = fMultiply(twoShifted, x_old); |
| F_divide_Fprime = fDivide(y, Fprime); |
| |
| x_new = fSubtract(x_old, F_divide_Fprime); |
| |
| error = ConvertBackToInteger(x_new) - ConvertBackToInteger(x_old); |
| |
| if (counter > 20) /*20 is already way too many iterations. If we dont have an answer by then, we never will*/ |
| return x_new; |
| |
| } while (uAbs(error) > 0); |
| |
| return (x_new); |
| } |
| |
| void SolveQuadracticEqn(fInt A, fInt B, fInt C, fInt Roots[]) |
| { |
| fInt *pRoots = &Roots[0]; |
| fInt temp, root_first, root_second; |
| fInt f_CONSTANT10, f_CONSTANT100; |
| |
| f_CONSTANT100 = ConvertToFraction(100); |
| f_CONSTANT10 = ConvertToFraction(10); |
| |
| while(GreaterThan(A, f_CONSTANT100) || GreaterThan(B, f_CONSTANT100) || GreaterThan(C, f_CONSTANT100)) { |
| A = fDivide(A, f_CONSTANT10); |
| B = fDivide(B, f_CONSTANT10); |
| C = fDivide(C, f_CONSTANT10); |
| } |
| |
| temp = fMultiply(ConvertToFraction(4), A); /* root = 4*A */ |
| temp = fMultiply(temp, C); /* root = 4*A*C */ |
| temp = fSubtract(fGetSquare(B), temp); /* root = b^2 - 4AC */ |
| temp = fSqrt(temp); /*root = Sqrt (b^2 - 4AC); */ |
| |
| root_first = fSubtract(fNegate(B), temp); /* b - Sqrt(b^2 - 4AC) */ |
| root_second = fAdd(fNegate(B), temp); /* b + Sqrt(b^2 - 4AC) */ |
| |
| root_first = fDivide(root_first, ConvertToFraction(2)); /* [b +- Sqrt(b^2 - 4AC)]/[2] */ |
| root_first = fDivide(root_first, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */ |
| |
| root_second = fDivide(root_second, ConvertToFraction(2)); /* [b +- Sqrt(b^2 - 4AC)]/[2] */ |
| root_second = fDivide(root_second, A); /*[b +- Sqrt(b^2 - 4AC)]/[2*A] */ |
| |
| *(pRoots + 0) = root_first; |
| *(pRoots + 1) = root_second; |
| } |
| |
| /* ----------------------------------------------------------------------------- |
| * SUPPORT FUNCTIONS |
| * ----------------------------------------------------------------------------- |
| */ |
| |
| /* Addition using two normal ints - Temporary - Use only for testing purposes?. */ |
| fInt Add (int X, int Y) |
| { |
| fInt A, B, Sum; |
| |
| A.full = (X << SHIFT_AMOUNT); |
| B.full = (Y << SHIFT_AMOUNT); |
| |
| Sum.full = A.full + B.full; |
| |
| return Sum; |
| } |
| |
| /* Conversion Functions */ |
| int GetReal (fInt A) |
| { |
| return (A.full >> SHIFT_AMOUNT); |
| } |
| |
| /* Temporarily Disabled */ |
| int GetRoundedValue(fInt A) /*For now, round the 3rd decimal place */ |
| { |
| /* ROUNDING TEMPORARLY DISABLED |
| int temp = A.full; |
| int decimal_cutoff, decimal_mask = 0x000001FF; |
| decimal_cutoff = temp & decimal_mask; |
| if (decimal_cutoff > 0x147) { |
| temp += 673; |
| }*/ |
| |
| return ConvertBackToInteger(A)/10000; /*Temporary - in case this was used somewhere else */ |
| } |
| |
| fInt Multiply (int X, int Y) |
| { |
| fInt A, B, Product; |
| |
| A.full = X << SHIFT_AMOUNT; |
| B.full = Y << SHIFT_AMOUNT; |
| |
| Product = fMultiply(A, B); |
| |
| return Product; |
| } |
| |
| fInt Divide (int X, int Y) |
| { |
| fInt A, B, Quotient; |
| |
| A.full = X << SHIFT_AMOUNT; |
| B.full = Y << SHIFT_AMOUNT; |
| |
| Quotient = fDivide(A, B); |
| |
| return Quotient; |
| } |
| |
| int uGetScaledDecimal (fInt A) /*Converts the fractional portion to whole integers - Costly function */ |
| { |
| int dec[PRECISION]; |
| int i, scaledDecimal = 0, tmp = A.partial.decimal; |
| |
| for (i = 0; i < PRECISION; i++) { |
| dec[i] = tmp / (1 << SHIFT_AMOUNT); |
| tmp = tmp - ((1 << SHIFT_AMOUNT)*dec[i]); |
| tmp *= 10; |
| scaledDecimal = scaledDecimal + dec[i]*uPow(10, PRECISION - 1 -i); |
| } |
| |
| return scaledDecimal; |
| } |
| |
| int uPow(int base, int power) |
| { |
| if (power == 0) |
| return 1; |
| else |
| return (base)*uPow(base, power - 1); |
| } |
| |
| fInt fAbs(fInt A) |
| { |
| if (A.partial.real < 0) |
| return (fMultiply(A, ConvertToFraction(-1))); |
| else |
| return A; |
| } |
| |
| int uAbs(int X) |
| { |
| if (X < 0) |
| return (X * -1); |
| else |
| return X; |
| } |
| |
| fInt fRoundUpByStepSize(fInt A, fInt fStepSize, bool error_term) |
| { |
| fInt solution; |
| |
| solution = fDivide(A, fStepSize); |
| solution.partial.decimal = 0; /*All fractional digits changes to 0 */ |
| |
| if (error_term) |
| solution.partial.real += 1; /*Error term of 1 added */ |
| |
| solution = fMultiply(solution, fStepSize); |
| solution = fAdd(solution, fStepSize); |
| |
| return solution; |
| } |
| |