| /* QLogic qed NIC Driver |
| * Copyright (c) 2015 QLogic Corporation |
| * |
| * This software is available under the terms of the GNU General Public License |
| * (GPL) Version 2, available from the file COPYING in the main directory of |
| * this source tree. |
| */ |
| |
| #ifndef _QED_CHAIN_H |
| #define _QED_CHAIN_H |
| |
| #include <linux/types.h> |
| #include <asm/byteorder.h> |
| #include <linux/kernel.h> |
| #include <linux/list.h> |
| #include <linux/slab.h> |
| #include <linux/qed/common_hsi.h> |
| |
| /* dma_addr_t manip */ |
| #define DMA_LO_LE(x) cpu_to_le32(lower_32_bits(x)) |
| #define DMA_HI_LE(x) cpu_to_le32(upper_32_bits(x)) |
| #define DMA_REGPAIR_LE(x, val) do { \ |
| (x).hi = DMA_HI_LE((val)); \ |
| (x).lo = DMA_LO_LE((val)); \ |
| } while (0) |
| |
| #define HILO_GEN(hi, lo, type) ((((type)(hi)) << 32) + (lo)) |
| #define HILO_DMA(hi, lo) HILO_GEN(hi, lo, dma_addr_t) |
| #define HILO_64(hi, lo) HILO_GEN((le32_to_cpu(hi)), (le32_to_cpu(lo)), u64) |
| #define HILO_DMA_REGPAIR(regpair) (HILO_DMA(regpair.hi, regpair.lo)) |
| #define HILO_64_REGPAIR(regpair) (HILO_64(regpair.hi, regpair.lo)) |
| |
| enum qed_chain_mode { |
| /* Each Page contains a next pointer at its end */ |
| QED_CHAIN_MODE_NEXT_PTR, |
| |
| /* Chain is a single page (next ptr) is unrequired */ |
| QED_CHAIN_MODE_SINGLE, |
| |
| /* Page pointers are located in a side list */ |
| QED_CHAIN_MODE_PBL, |
| }; |
| |
| enum qed_chain_use_mode { |
| QED_CHAIN_USE_TO_PRODUCE, /* Chain starts empty */ |
| QED_CHAIN_USE_TO_CONSUME, /* Chain starts full */ |
| QED_CHAIN_USE_TO_CONSUME_PRODUCE, /* Chain starts empty */ |
| }; |
| |
| struct qed_chain_next { |
| struct regpair next_phys; |
| void *next_virt; |
| }; |
| |
| struct qed_chain_pbl { |
| dma_addr_t p_phys_table; |
| void *p_virt_table; |
| u16 prod_page_idx; |
| u16 cons_page_idx; |
| }; |
| |
| struct qed_chain { |
| void *p_virt_addr; |
| dma_addr_t p_phys_addr; |
| void *p_prod_elem; |
| void *p_cons_elem; |
| u16 page_cnt; |
| enum qed_chain_mode mode; |
| enum qed_chain_use_mode intended_use; /* used to produce/consume */ |
| u16 capacity; /*< number of _usable_ elements */ |
| u16 size; /* number of elements */ |
| u16 prod_idx; |
| u16 cons_idx; |
| u16 elem_per_page; |
| u16 elem_per_page_mask; |
| u16 elem_unusable; |
| u16 usable_per_page; |
| u16 elem_size; |
| u16 next_page_mask; |
| struct qed_chain_pbl pbl; |
| }; |
| |
| #define QED_CHAIN_PBL_ENTRY_SIZE (8) |
| #define QED_CHAIN_PAGE_SIZE (0x1000) |
| #define ELEMS_PER_PAGE(elem_size) (QED_CHAIN_PAGE_SIZE / (elem_size)) |
| |
| #define UNUSABLE_ELEMS_PER_PAGE(elem_size, mode) \ |
| ((mode == QED_CHAIN_MODE_NEXT_PTR) ? \ |
| (1 + ((sizeof(struct qed_chain_next) - 1) / \ |
| (elem_size))) : 0) |
| |
| #define USABLE_ELEMS_PER_PAGE(elem_size, mode) \ |
| ((u32)(ELEMS_PER_PAGE(elem_size) - \ |
| UNUSABLE_ELEMS_PER_PAGE(elem_size, mode))) |
| |
| #define QED_CHAIN_PAGE_CNT(elem_cnt, elem_size, mode) \ |
| DIV_ROUND_UP(elem_cnt, USABLE_ELEMS_PER_PAGE(elem_size, mode)) |
| |
| /* Accessors */ |
| static inline u16 qed_chain_get_prod_idx(struct qed_chain *p_chain) |
| { |
| return p_chain->prod_idx; |
| } |
| |
| static inline u16 qed_chain_get_cons_idx(struct qed_chain *p_chain) |
| { |
| return p_chain->cons_idx; |
| } |
| |
| static inline u16 qed_chain_get_elem_left(struct qed_chain *p_chain) |
| { |
| u16 used; |
| |
| /* we don't need to trancate upon assignmet, as we assign u32->u16 */ |
| used = ((u32)0x10000u + (u32)(p_chain->prod_idx)) - |
| (u32)p_chain->cons_idx; |
| if (p_chain->mode == QED_CHAIN_MODE_NEXT_PTR) |
| used -= p_chain->prod_idx / p_chain->elem_per_page - |
| p_chain->cons_idx / p_chain->elem_per_page; |
| |
| return p_chain->capacity - used; |
| } |
| |
| static inline u8 qed_chain_is_full(struct qed_chain *p_chain) |
| { |
| return qed_chain_get_elem_left(p_chain) == p_chain->capacity; |
| } |
| |
| static inline u8 qed_chain_is_empty(struct qed_chain *p_chain) |
| { |
| return qed_chain_get_elem_left(p_chain) == 0; |
| } |
| |
| static inline u16 qed_chain_get_elem_per_page( |
| struct qed_chain *p_chain) |
| { |
| return p_chain->elem_per_page; |
| } |
| |
| static inline u16 qed_chain_get_usable_per_page( |
| struct qed_chain *p_chain) |
| { |
| return p_chain->usable_per_page; |
| } |
| |
| static inline u16 qed_chain_get_unusable_per_page( |
| struct qed_chain *p_chain) |
| { |
| return p_chain->elem_unusable; |
| } |
| |
| static inline u16 qed_chain_get_size(struct qed_chain *p_chain) |
| { |
| return p_chain->size; |
| } |
| |
| static inline dma_addr_t |
| qed_chain_get_pbl_phys(struct qed_chain *p_chain) |
| { |
| return p_chain->pbl.p_phys_table; |
| } |
| |
| /** |
| * @brief qed_chain_advance_page - |
| * |
| * Advance the next element accros pages for a linked chain |
| * |
| * @param p_chain |
| * @param p_next_elem |
| * @param idx_to_inc |
| * @param page_to_inc |
| */ |
| static inline void |
| qed_chain_advance_page(struct qed_chain *p_chain, |
| void **p_next_elem, |
| u16 *idx_to_inc, |
| u16 *page_to_inc) |
| |
| { |
| switch (p_chain->mode) { |
| case QED_CHAIN_MODE_NEXT_PTR: |
| { |
| struct qed_chain_next *p_next = *p_next_elem; |
| *p_next_elem = p_next->next_virt; |
| *idx_to_inc += p_chain->elem_unusable; |
| break; |
| } |
| case QED_CHAIN_MODE_SINGLE: |
| *p_next_elem = p_chain->p_virt_addr; |
| break; |
| |
| case QED_CHAIN_MODE_PBL: |
| /* It is assumed pages are sequential, next element needs |
| * to change only when passing going back to first from last. |
| */ |
| if (++(*page_to_inc) == p_chain->page_cnt) { |
| *page_to_inc = 0; |
| *p_next_elem = p_chain->p_virt_addr; |
| } |
| } |
| } |
| |
| #define is_unusable_idx(p, idx) \ |
| (((p)->idx & (p)->elem_per_page_mask) == (p)->usable_per_page) |
| |
| #define is_unusable_next_idx(p, idx) \ |
| ((((p)->idx + 1) & (p)->elem_per_page_mask) == (p)->usable_per_page) |
| |
| #define test_ans_skip(p, idx) \ |
| do { \ |
| if (is_unusable_idx(p, idx)) { \ |
| (p)->idx += (p)->elem_unusable; \ |
| } \ |
| } while (0) |
| |
| /** |
| * @brief qed_chain_return_multi_produced - |
| * |
| * A chain in which the driver "Produces" elements should use this API |
| * to indicate previous produced elements are now consumed. |
| * |
| * @param p_chain |
| * @param num |
| */ |
| static inline void |
| qed_chain_return_multi_produced(struct qed_chain *p_chain, |
| u16 num) |
| { |
| p_chain->cons_idx += num; |
| test_ans_skip(p_chain, cons_idx); |
| } |
| |
| /** |
| * @brief qed_chain_return_produced - |
| * |
| * A chain in which the driver "Produces" elements should use this API |
| * to indicate previous produced elements are now consumed. |
| * |
| * @param p_chain |
| */ |
| static inline void qed_chain_return_produced(struct qed_chain *p_chain) |
| { |
| p_chain->cons_idx++; |
| test_ans_skip(p_chain, cons_idx); |
| } |
| |
| /** |
| * @brief qed_chain_produce - |
| * |
| * A chain in which the driver "Produces" elements should use this to get |
| * a pointer to the next element which can be "Produced". It's driver |
| * responsibility to validate that the chain has room for new element. |
| * |
| * @param p_chain |
| * |
| * @return void*, a pointer to next element |
| */ |
| static inline void *qed_chain_produce(struct qed_chain *p_chain) |
| { |
| void *ret = NULL; |
| |
| if ((p_chain->prod_idx & p_chain->elem_per_page_mask) == |
| p_chain->next_page_mask) { |
| qed_chain_advance_page(p_chain, &p_chain->p_prod_elem, |
| &p_chain->prod_idx, |
| &p_chain->pbl.prod_page_idx); |
| } |
| |
| ret = p_chain->p_prod_elem; |
| p_chain->prod_idx++; |
| p_chain->p_prod_elem = (void *)(((u8 *)p_chain->p_prod_elem) + |
| p_chain->elem_size); |
| |
| return ret; |
| } |
| |
| /** |
| * @brief qed_chain_get_capacity - |
| * |
| * Get the maximum number of BDs in chain |
| * |
| * @param p_chain |
| * @param num |
| * |
| * @return u16, number of unusable BDs |
| */ |
| static inline u16 qed_chain_get_capacity(struct qed_chain *p_chain) |
| { |
| return p_chain->capacity; |
| } |
| |
| /** |
| * @brief qed_chain_recycle_consumed - |
| * |
| * Returns an element which was previously consumed; |
| * Increments producers so they could be written to FW. |
| * |
| * @param p_chain |
| */ |
| static inline void |
| qed_chain_recycle_consumed(struct qed_chain *p_chain) |
| { |
| test_ans_skip(p_chain, prod_idx); |
| p_chain->prod_idx++; |
| } |
| |
| /** |
| * @brief qed_chain_consume - |
| * |
| * A Chain in which the driver utilizes data written by a different source |
| * (i.e., FW) should use this to access passed buffers. |
| * |
| * @param p_chain |
| * |
| * @return void*, a pointer to the next buffer written |
| */ |
| static inline void *qed_chain_consume(struct qed_chain *p_chain) |
| { |
| void *ret = NULL; |
| |
| if ((p_chain->cons_idx & p_chain->elem_per_page_mask) == |
| p_chain->next_page_mask) { |
| qed_chain_advance_page(p_chain, &p_chain->p_cons_elem, |
| &p_chain->cons_idx, |
| &p_chain->pbl.cons_page_idx); |
| } |
| |
| ret = p_chain->p_cons_elem; |
| p_chain->cons_idx++; |
| p_chain->p_cons_elem = (void *)(((u8 *)p_chain->p_cons_elem) + |
| p_chain->elem_size); |
| |
| return ret; |
| } |
| |
| /** |
| * @brief qed_chain_reset - Resets the chain to its start state |
| * |
| * @param p_chain pointer to a previously allocted chain |
| */ |
| static inline void qed_chain_reset(struct qed_chain *p_chain) |
| { |
| int i; |
| |
| p_chain->prod_idx = 0; |
| p_chain->cons_idx = 0; |
| p_chain->p_cons_elem = p_chain->p_virt_addr; |
| p_chain->p_prod_elem = p_chain->p_virt_addr; |
| |
| if (p_chain->mode == QED_CHAIN_MODE_PBL) { |
| p_chain->pbl.prod_page_idx = p_chain->page_cnt - 1; |
| p_chain->pbl.cons_page_idx = p_chain->page_cnt - 1; |
| } |
| |
| switch (p_chain->intended_use) { |
| case QED_CHAIN_USE_TO_CONSUME_PRODUCE: |
| case QED_CHAIN_USE_TO_PRODUCE: |
| /* Do nothing */ |
| break; |
| |
| case QED_CHAIN_USE_TO_CONSUME: |
| /* produce empty elements */ |
| for (i = 0; i < p_chain->capacity; i++) |
| qed_chain_recycle_consumed(p_chain); |
| break; |
| } |
| } |
| |
| /** |
| * @brief qed_chain_init - Initalizes a basic chain struct |
| * |
| * @param p_chain |
| * @param p_virt_addr |
| * @param p_phys_addr physical address of allocated buffer's beginning |
| * @param page_cnt number of pages in the allocated buffer |
| * @param elem_size size of each element in the chain |
| * @param intended_use |
| * @param mode |
| */ |
| static inline void qed_chain_init(struct qed_chain *p_chain, |
| void *p_virt_addr, |
| dma_addr_t p_phys_addr, |
| u16 page_cnt, |
| u8 elem_size, |
| enum qed_chain_use_mode intended_use, |
| enum qed_chain_mode mode) |
| { |
| /* chain fixed parameters */ |
| p_chain->p_virt_addr = p_virt_addr; |
| p_chain->p_phys_addr = p_phys_addr; |
| p_chain->elem_size = elem_size; |
| p_chain->page_cnt = page_cnt; |
| p_chain->mode = mode; |
| |
| p_chain->intended_use = intended_use; |
| p_chain->elem_per_page = ELEMS_PER_PAGE(elem_size); |
| p_chain->usable_per_page = |
| USABLE_ELEMS_PER_PAGE(elem_size, mode); |
| p_chain->capacity = p_chain->usable_per_page * page_cnt; |
| p_chain->size = p_chain->elem_per_page * page_cnt; |
| p_chain->elem_per_page_mask = p_chain->elem_per_page - 1; |
| |
| p_chain->elem_unusable = UNUSABLE_ELEMS_PER_PAGE(elem_size, mode); |
| |
| p_chain->next_page_mask = (p_chain->usable_per_page & |
| p_chain->elem_per_page_mask); |
| |
| if (mode == QED_CHAIN_MODE_NEXT_PTR) { |
| struct qed_chain_next *p_next; |
| u16 i; |
| |
| for (i = 0; i < page_cnt - 1; i++) { |
| /* Increment mem_phy to the next page. */ |
| p_phys_addr += QED_CHAIN_PAGE_SIZE; |
| |
| /* Initialize the physical address of the next page. */ |
| p_next = (struct qed_chain_next *)((u8 *)p_virt_addr + |
| elem_size * |
| p_chain-> |
| usable_per_page); |
| |
| p_next->next_phys.lo = DMA_LO_LE(p_phys_addr); |
| p_next->next_phys.hi = DMA_HI_LE(p_phys_addr); |
| |
| /* Initialize the virtual address of the next page. */ |
| p_next->next_virt = (void *)((u8 *)p_virt_addr + |
| QED_CHAIN_PAGE_SIZE); |
| |
| /* Move to the next page. */ |
| p_virt_addr = p_next->next_virt; |
| } |
| |
| /* Last page's next should point to beginning of the chain */ |
| p_next = (struct qed_chain_next *)((u8 *)p_virt_addr + |
| elem_size * |
| p_chain->usable_per_page); |
| |
| p_next->next_phys.lo = DMA_LO_LE(p_chain->p_phys_addr); |
| p_next->next_phys.hi = DMA_HI_LE(p_chain->p_phys_addr); |
| p_next->next_virt = p_chain->p_virt_addr; |
| } |
| qed_chain_reset(p_chain); |
| } |
| |
| /** |
| * @brief qed_chain_pbl_init - Initalizes a basic pbl chain |
| * struct |
| * @param p_chain |
| * @param p_virt_addr virtual address of allocated buffer's beginning |
| * @param p_phys_addr physical address of allocated buffer's beginning |
| * @param page_cnt number of pages in the allocated buffer |
| * @param elem_size size of each element in the chain |
| * @param use_mode |
| * @param p_phys_pbl pointer to a pre-allocated side table |
| * which will hold physical page addresses. |
| * @param p_virt_pbl pointer to a pre allocated side table |
| * which will hold virtual page addresses. |
| */ |
| static inline void |
| qed_chain_pbl_init(struct qed_chain *p_chain, |
| void *p_virt_addr, |
| dma_addr_t p_phys_addr, |
| u16 page_cnt, |
| u8 elem_size, |
| enum qed_chain_use_mode use_mode, |
| dma_addr_t p_phys_pbl, |
| dma_addr_t *p_virt_pbl) |
| { |
| dma_addr_t *p_pbl_dma = p_virt_pbl; |
| int i; |
| |
| qed_chain_init(p_chain, p_virt_addr, p_phys_addr, page_cnt, |
| elem_size, use_mode, QED_CHAIN_MODE_PBL); |
| |
| p_chain->pbl.p_phys_table = p_phys_pbl; |
| p_chain->pbl.p_virt_table = p_virt_pbl; |
| |
| /* Fill the PBL with physical addresses*/ |
| for (i = 0; i < page_cnt; i++) { |
| *p_pbl_dma = p_phys_addr; |
| p_phys_addr += QED_CHAIN_PAGE_SIZE; |
| p_pbl_dma++; |
| } |
| } |
| |
| /** |
| * @brief qed_chain_set_prod - sets the prod to the given |
| * value |
| * |
| * @param prod_idx |
| * @param p_prod_elem |
| */ |
| static inline void qed_chain_set_prod(struct qed_chain *p_chain, |
| u16 prod_idx, |
| void *p_prod_elem) |
| { |
| p_chain->prod_idx = prod_idx; |
| p_chain->p_prod_elem = p_prod_elem; |
| } |
| |
| /** |
| * @brief qed_chain_get_elem - |
| * |
| * get a pointer to an element represented by absolute idx |
| * |
| * @param p_chain |
| * @assumption p_chain->size is a power of 2 |
| * |
| * @return void*, a pointer to next element |
| */ |
| static inline void *qed_chain_sge_get_elem(struct qed_chain *p_chain, |
| u16 idx) |
| { |
| void *ret = NULL; |
| |
| if (idx >= p_chain->size) |
| return NULL; |
| |
| ret = (u8 *)p_chain->p_virt_addr + p_chain->elem_size * idx; |
| |
| return ret; |
| } |
| |
| /** |
| * @brief qed_chain_sge_inc_cons_prod |
| * |
| * for sge chains, producer isn't increased serially, the ring |
| * is expected to be full at all times. Once elements are |
| * consumed, they are immediately produced. |
| * |
| * @param p_chain |
| * @param cnt |
| * |
| * @return inline void |
| */ |
| static inline void |
| qed_chain_sge_inc_cons_prod(struct qed_chain *p_chain, |
| u16 cnt) |
| { |
| p_chain->prod_idx += cnt; |
| p_chain->cons_idx += cnt; |
| } |
| |
| #endif |