| /* |
| * IEEE754 floating point arithmetic |
| * double precision: MADDF.f (Fused Multiply Add) |
| * MADDF.fmt: FPR[fd] = FPR[fd] + (FPR[fs] x FPR[ft]) |
| * |
| * MIPS floating point support |
| * Copyright (C) 2015 Imagination Technologies, Ltd. |
| * Author: Markos Chandras <markos.chandras@imgtec.com> |
| * |
| * This program is free software; you can distribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the |
| * Free Software Foundation; version 2 of the License. |
| */ |
| |
| #include "ieee754dp.h" |
| |
| enum maddf_flags { |
| maddf_negate_product = 1 << 0, |
| }; |
| |
| static union ieee754dp _dp_maddf(union ieee754dp z, union ieee754dp x, |
| union ieee754dp y, enum maddf_flags flags) |
| { |
| int re; |
| int rs; |
| u64 rm; |
| unsigned lxm; |
| unsigned hxm; |
| unsigned lym; |
| unsigned hym; |
| u64 lrm; |
| u64 hrm; |
| u64 t; |
| u64 at; |
| int s; |
| |
| COMPXDP; |
| COMPYDP; |
| COMPZDP; |
| |
| EXPLODEXDP; |
| EXPLODEYDP; |
| EXPLODEZDP; |
| |
| FLUSHXDP; |
| FLUSHYDP; |
| FLUSHZDP; |
| |
| ieee754_clearcx(); |
| |
| switch (zc) { |
| case IEEE754_CLASS_SNAN: |
| ieee754_setcx(IEEE754_INVALID_OPERATION); |
| return ieee754dp_nanxcpt(z); |
| case IEEE754_CLASS_DNORM: |
| DPDNORMZ; |
| /* QNAN is handled separately below */ |
| } |
| |
| switch (CLPAIR(xc, yc)) { |
| case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_SNAN): |
| case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_SNAN): |
| case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_SNAN): |
| case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_SNAN): |
| case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_SNAN): |
| return ieee754dp_nanxcpt(y); |
| |
| case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_SNAN): |
| case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_QNAN): |
| case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_ZERO): |
| case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_NORM): |
| case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_DNORM): |
| case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_INF): |
| return ieee754dp_nanxcpt(x); |
| |
| case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_QNAN): |
| case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_QNAN): |
| case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_QNAN): |
| case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_QNAN): |
| return y; |
| |
| case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_QNAN): |
| case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_ZERO): |
| case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_NORM): |
| case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_DNORM): |
| case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_INF): |
| return x; |
| |
| |
| /* |
| * Infinity handling |
| */ |
| case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO): |
| case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF): |
| if (zc == IEEE754_CLASS_QNAN) |
| return z; |
| ieee754_setcx(IEEE754_INVALID_OPERATION); |
| return ieee754dp_indef(); |
| |
| case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF): |
| case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF): |
| case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM): |
| case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM): |
| case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF): |
| if (zc == IEEE754_CLASS_QNAN) |
| return z; |
| return ieee754dp_inf(xs ^ ys); |
| |
| case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO): |
| case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM): |
| case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM): |
| case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO): |
| case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO): |
| if (zc == IEEE754_CLASS_INF) |
| return ieee754dp_inf(zs); |
| /* Multiplication is 0 so just return z */ |
| return z; |
| |
| case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM): |
| DPDNORMX; |
| |
| case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM): |
| if (zc == IEEE754_CLASS_QNAN) |
| return z; |
| else if (zc == IEEE754_CLASS_INF) |
| return ieee754dp_inf(zs); |
| DPDNORMY; |
| break; |
| |
| case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM): |
| if (zc == IEEE754_CLASS_QNAN) |
| return z; |
| else if (zc == IEEE754_CLASS_INF) |
| return ieee754dp_inf(zs); |
| DPDNORMX; |
| break; |
| |
| case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_NORM): |
| if (zc == IEEE754_CLASS_QNAN) |
| return z; |
| else if (zc == IEEE754_CLASS_INF) |
| return ieee754dp_inf(zs); |
| /* fall through to real computations */ |
| } |
| |
| /* Finally get to do some computation */ |
| |
| /* |
| * Do the multiplication bit first |
| * |
| * rm = xm * ym, re = xe + ye basically |
| * |
| * At this point xm and ym should have been normalized. |
| */ |
| assert(xm & DP_HIDDEN_BIT); |
| assert(ym & DP_HIDDEN_BIT); |
| |
| re = xe + ye; |
| rs = xs ^ ys; |
| if (flags & maddf_negate_product) |
| rs ^= 1; |
| |
| /* shunt to top of word */ |
| xm <<= 64 - (DP_FBITS + 1); |
| ym <<= 64 - (DP_FBITS + 1); |
| |
| /* |
| * Multiply 64 bits xm, ym to give high 64 bits rm with stickness. |
| */ |
| |
| /* 32 * 32 => 64 */ |
| #define DPXMULT(x, y) ((u64)(x) * (u64)y) |
| |
| lxm = xm; |
| hxm = xm >> 32; |
| lym = ym; |
| hym = ym >> 32; |
| |
| lrm = DPXMULT(lxm, lym); |
| hrm = DPXMULT(hxm, hym); |
| |
| t = DPXMULT(lxm, hym); |
| |
| at = lrm + (t << 32); |
| hrm += at < lrm; |
| lrm = at; |
| |
| hrm = hrm + (t >> 32); |
| |
| t = DPXMULT(hxm, lym); |
| |
| at = lrm + (t << 32); |
| hrm += at < lrm; |
| lrm = at; |
| |
| hrm = hrm + (t >> 32); |
| |
| rm = hrm | (lrm != 0); |
| |
| /* |
| * Sticky shift down to normal rounding precision. |
| */ |
| if ((s64) rm < 0) { |
| rm = (rm >> (64 - (DP_FBITS + 1 + 3))) | |
| ((rm << (DP_FBITS + 1 + 3)) != 0); |
| re++; |
| } else { |
| rm = (rm >> (64 - (DP_FBITS + 1 + 3 + 1))) | |
| ((rm << (DP_FBITS + 1 + 3 + 1)) != 0); |
| } |
| assert(rm & (DP_HIDDEN_BIT << 3)); |
| |
| /* And now the addition */ |
| assert(zm & DP_HIDDEN_BIT); |
| |
| /* |
| * Provide guard,round and stick bit space. |
| */ |
| zm <<= 3; |
| |
| if (ze > re) { |
| /* |
| * Have to shift y fraction right to align. |
| */ |
| s = ze - re; |
| rm = XDPSRS(rm, s); |
| re += s; |
| } else if (re > ze) { |
| /* |
| * Have to shift x fraction right to align. |
| */ |
| s = re - ze; |
| zm = XDPSRS(zm, s); |
| ze += s; |
| } |
| assert(ze == re); |
| assert(ze <= DP_EMAX); |
| |
| if (zs == rs) { |
| /* |
| * Generate 28 bit result of adding two 27 bit numbers |
| * leaving result in xm, xs and xe. |
| */ |
| zm = zm + rm; |
| |
| if (zm >> (DP_FBITS + 1 + 3)) { /* carry out */ |
| zm = XDPSRS1(zm); |
| ze++; |
| } |
| } else { |
| if (zm >= rm) { |
| zm = zm - rm; |
| } else { |
| zm = rm - zm; |
| zs = rs; |
| } |
| if (zm == 0) |
| return ieee754dp_zero(ieee754_csr.rm == FPU_CSR_RD); |
| |
| /* |
| * Normalize to rounding precision. |
| */ |
| while ((zm >> (DP_FBITS + 3)) == 0) { |
| zm <<= 1; |
| ze--; |
| } |
| } |
| |
| return ieee754dp_format(zs, ze, zm); |
| } |
| |
| union ieee754dp ieee754dp_maddf(union ieee754dp z, union ieee754dp x, |
| union ieee754dp y) |
| { |
| return _dp_maddf(z, x, y, 0); |
| } |
| |
| union ieee754dp ieee754dp_msubf(union ieee754dp z, union ieee754dp x, |
| union ieee754dp y) |
| { |
| return _dp_maddf(z, x, y, maddf_negate_product); |
| } |