| /* |
| * Copyright 2011 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| * Authors: Alex Deucher |
| */ |
| |
| #include "drmP.h" |
| #include "radeon.h" |
| #include "radeon_asic.h" |
| #include "r600d.h" |
| #include "r600_dpm.h" |
| #include "atom.h" |
| |
| const u32 r600_utc[R600_PM_NUMBER_OF_TC] = |
| { |
| R600_UTC_DFLT_00, |
| R600_UTC_DFLT_01, |
| R600_UTC_DFLT_02, |
| R600_UTC_DFLT_03, |
| R600_UTC_DFLT_04, |
| R600_UTC_DFLT_05, |
| R600_UTC_DFLT_06, |
| R600_UTC_DFLT_07, |
| R600_UTC_DFLT_08, |
| R600_UTC_DFLT_09, |
| R600_UTC_DFLT_10, |
| R600_UTC_DFLT_11, |
| R600_UTC_DFLT_12, |
| R600_UTC_DFLT_13, |
| R600_UTC_DFLT_14, |
| }; |
| |
| const u32 r600_dtc[R600_PM_NUMBER_OF_TC] = |
| { |
| R600_DTC_DFLT_00, |
| R600_DTC_DFLT_01, |
| R600_DTC_DFLT_02, |
| R600_DTC_DFLT_03, |
| R600_DTC_DFLT_04, |
| R600_DTC_DFLT_05, |
| R600_DTC_DFLT_06, |
| R600_DTC_DFLT_07, |
| R600_DTC_DFLT_08, |
| R600_DTC_DFLT_09, |
| R600_DTC_DFLT_10, |
| R600_DTC_DFLT_11, |
| R600_DTC_DFLT_12, |
| R600_DTC_DFLT_13, |
| R600_DTC_DFLT_14, |
| }; |
| |
| void r600_dpm_print_class_info(u32 class, u32 class2) |
| { |
| printk("\tui class: "); |
| switch (class & ATOM_PPLIB_CLASSIFICATION_UI_MASK) { |
| case ATOM_PPLIB_CLASSIFICATION_UI_NONE: |
| default: |
| printk("none\n"); |
| break; |
| case ATOM_PPLIB_CLASSIFICATION_UI_BATTERY: |
| printk("battery\n"); |
| break; |
| case ATOM_PPLIB_CLASSIFICATION_UI_BALANCED: |
| printk("balanced\n"); |
| break; |
| case ATOM_PPLIB_CLASSIFICATION_UI_PERFORMANCE: |
| printk("performance\n"); |
| break; |
| } |
| printk("\tinternal class: "); |
| if (((class & ~ATOM_PPLIB_CLASSIFICATION_UI_MASK) == 0) && |
| (class2 == 0)) |
| printk("none"); |
| else { |
| if (class & ATOM_PPLIB_CLASSIFICATION_BOOT) |
| printk("boot "); |
| if (class & ATOM_PPLIB_CLASSIFICATION_THERMAL) |
| printk("thermal "); |
| if (class & ATOM_PPLIB_CLASSIFICATION_LIMITEDPOWERSOURCE) |
| printk("limited_pwr "); |
| if (class & ATOM_PPLIB_CLASSIFICATION_REST) |
| printk("rest "); |
| if (class & ATOM_PPLIB_CLASSIFICATION_FORCED) |
| printk("forced "); |
| if (class & ATOM_PPLIB_CLASSIFICATION_3DPERFORMANCE) |
| printk("3d_perf "); |
| if (class & ATOM_PPLIB_CLASSIFICATION_OVERDRIVETEMPLATE) |
| printk("ovrdrv "); |
| if (class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE) |
| printk("uvd "); |
| if (class & ATOM_PPLIB_CLASSIFICATION_3DLOW) |
| printk("3d_low "); |
| if (class & ATOM_PPLIB_CLASSIFICATION_ACPI) |
| printk("acpi "); |
| if (class & ATOM_PPLIB_CLASSIFICATION_HD2STATE) |
| printk("uvd_hd2 "); |
| if (class & ATOM_PPLIB_CLASSIFICATION_HDSTATE) |
| printk("uvd_hd "); |
| if (class & ATOM_PPLIB_CLASSIFICATION_SDSTATE) |
| printk("uvd_sd "); |
| if (class2 & ATOM_PPLIB_CLASSIFICATION2_LIMITEDPOWERSOURCE_2) |
| printk("limited_pwr2 "); |
| if (class2 & ATOM_PPLIB_CLASSIFICATION2_ULV) |
| printk("ulv "); |
| if (class2 & ATOM_PPLIB_CLASSIFICATION2_MVC) |
| printk("uvd_mvc "); |
| } |
| printk("\n"); |
| } |
| |
| void r600_dpm_print_cap_info(u32 caps) |
| { |
| printk("\tcaps: "); |
| if (caps & ATOM_PPLIB_SINGLE_DISPLAY_ONLY) |
| printk("single_disp "); |
| if (caps & ATOM_PPLIB_SUPPORTS_VIDEO_PLAYBACK) |
| printk("video "); |
| if (caps & ATOM_PPLIB_DISALLOW_ON_DC) |
| printk("no_dc "); |
| printk("\n"); |
| } |
| |
| void r600_dpm_print_ps_status(struct radeon_device *rdev, |
| struct radeon_ps *rps) |
| { |
| printk("\tstatus: "); |
| if (rps == rdev->pm.dpm.current_ps) |
| printk("c "); |
| if (rps == rdev->pm.dpm.requested_ps) |
| printk("r "); |
| if (rps == rdev->pm.dpm.boot_ps) |
| printk("b "); |
| printk("\n"); |
| } |
| |
| u32 r600_dpm_get_vblank_time(struct radeon_device *rdev) |
| { |
| struct drm_device *dev = rdev->ddev; |
| struct drm_crtc *crtc; |
| struct radeon_crtc *radeon_crtc; |
| u32 line_time_us, vblank_lines; |
| u32 vblank_time_us = 0xffffffff; /* if the displays are off, vblank time is max */ |
| |
| if (rdev->num_crtc && rdev->mode_info.mode_config_initialized) { |
| list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { |
| radeon_crtc = to_radeon_crtc(crtc); |
| if (crtc->enabled && radeon_crtc->enabled && radeon_crtc->hw_mode.clock) { |
| line_time_us = (radeon_crtc->hw_mode.crtc_htotal * 1000) / |
| radeon_crtc->hw_mode.clock; |
| vblank_lines = radeon_crtc->hw_mode.crtc_vblank_end - |
| radeon_crtc->hw_mode.crtc_vdisplay + |
| (radeon_crtc->v_border * 2); |
| vblank_time_us = vblank_lines * line_time_us; |
| break; |
| } |
| } |
| } |
| |
| return vblank_time_us; |
| } |
| |
| u32 r600_dpm_get_vrefresh(struct radeon_device *rdev) |
| { |
| struct drm_device *dev = rdev->ddev; |
| struct drm_crtc *crtc; |
| struct radeon_crtc *radeon_crtc; |
| u32 vrefresh = 0; |
| |
| if (rdev->num_crtc && rdev->mode_info.mode_config_initialized) { |
| list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { |
| radeon_crtc = to_radeon_crtc(crtc); |
| if (crtc->enabled && radeon_crtc->enabled && radeon_crtc->hw_mode.clock) { |
| vrefresh = drm_mode_vrefresh(&radeon_crtc->hw_mode); |
| break; |
| } |
| } |
| } |
| return vrefresh; |
| } |
| |
| void r600_calculate_u_and_p(u32 i, u32 r_c, u32 p_b, |
| u32 *p, u32 *u) |
| { |
| u32 b_c = 0; |
| u32 i_c; |
| u32 tmp; |
| |
| i_c = (i * r_c) / 100; |
| tmp = i_c >> p_b; |
| |
| while (tmp) { |
| b_c++; |
| tmp >>= 1; |
| } |
| |
| *u = (b_c + 1) / 2; |
| *p = i_c / (1 << (2 * (*u))); |
| } |
| |
| int r600_calculate_at(u32 t, u32 h, u32 fh, u32 fl, u32 *tl, u32 *th) |
| { |
| u32 k, a, ah, al; |
| u32 t1; |
| |
| if ((fl == 0) || (fh == 0) || (fl > fh)) |
| return -EINVAL; |
| |
| k = (100 * fh) / fl; |
| t1 = (t * (k - 100)); |
| a = (1000 * (100 * h + t1)) / (10000 + (t1 / 100)); |
| a = (a + 5) / 10; |
| ah = ((a * t) + 5000) / 10000; |
| al = a - ah; |
| |
| *th = t - ah; |
| *tl = t + al; |
| |
| return 0; |
| } |
| |
| void r600_gfx_clockgating_enable(struct radeon_device *rdev, bool enable) |
| { |
| int i; |
| |
| if (enable) { |
| WREG32_P(SCLK_PWRMGT_CNTL, DYN_GFX_CLK_OFF_EN, ~DYN_GFX_CLK_OFF_EN); |
| } else { |
| WREG32_P(SCLK_PWRMGT_CNTL, 0, ~DYN_GFX_CLK_OFF_EN); |
| |
| WREG32(CG_RLC_REQ_AND_RSP, 0x2); |
| |
| for (i = 0; i < rdev->usec_timeout; i++) { |
| if (((RREG32(CG_RLC_REQ_AND_RSP) & CG_RLC_RSP_TYPE_MASK) >> CG_RLC_RSP_TYPE_SHIFT) == 1) |
| break; |
| udelay(1); |
| } |
| |
| WREG32(CG_RLC_REQ_AND_RSP, 0x0); |
| |
| WREG32(GRBM_PWR_CNTL, 0x1); |
| RREG32(GRBM_PWR_CNTL); |
| } |
| } |
| |
| void r600_dynamicpm_enable(struct radeon_device *rdev, bool enable) |
| { |
| if (enable) |
| WREG32_P(GENERAL_PWRMGT, GLOBAL_PWRMGT_EN, ~GLOBAL_PWRMGT_EN); |
| else |
| WREG32_P(GENERAL_PWRMGT, 0, ~GLOBAL_PWRMGT_EN); |
| } |
| |
| void r600_enable_thermal_protection(struct radeon_device *rdev, bool enable) |
| { |
| if (enable) |
| WREG32_P(GENERAL_PWRMGT, 0, ~THERMAL_PROTECTION_DIS); |
| else |
| WREG32_P(GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, ~THERMAL_PROTECTION_DIS); |
| } |
| |
| void r600_enable_acpi_pm(struct radeon_device *rdev) |
| { |
| WREG32_P(GENERAL_PWRMGT, STATIC_PM_EN, ~STATIC_PM_EN); |
| } |
| |
| void r600_enable_dynamic_pcie_gen2(struct radeon_device *rdev, bool enable) |
| { |
| if (enable) |
| WREG32_P(GENERAL_PWRMGT, ENABLE_GEN2PCIE, ~ENABLE_GEN2PCIE); |
| else |
| WREG32_P(GENERAL_PWRMGT, 0, ~ENABLE_GEN2PCIE); |
| } |
| |
| bool r600_dynamicpm_enabled(struct radeon_device *rdev) |
| { |
| if (RREG32(GENERAL_PWRMGT) & GLOBAL_PWRMGT_EN) |
| return true; |
| else |
| return false; |
| } |
| |
| void r600_enable_sclk_control(struct radeon_device *rdev, bool enable) |
| { |
| if (enable) |
| WREG32_P(SCLK_PWRMGT_CNTL, 0, ~SCLK_PWRMGT_OFF); |
| else |
| WREG32_P(SCLK_PWRMGT_CNTL, SCLK_PWRMGT_OFF, ~SCLK_PWRMGT_OFF); |
| } |
| |
| void r600_enable_mclk_control(struct radeon_device *rdev, bool enable) |
| { |
| if (enable) |
| WREG32_P(MCLK_PWRMGT_CNTL, 0, ~MPLL_PWRMGT_OFF); |
| else |
| WREG32_P(MCLK_PWRMGT_CNTL, MPLL_PWRMGT_OFF, ~MPLL_PWRMGT_OFF); |
| } |
| |
| void r600_enable_spll_bypass(struct radeon_device *rdev, bool enable) |
| { |
| if (enable) |
| WREG32_P(CG_SPLL_FUNC_CNTL, SPLL_BYPASS_EN, ~SPLL_BYPASS_EN); |
| else |
| WREG32_P(CG_SPLL_FUNC_CNTL, 0, ~SPLL_BYPASS_EN); |
| } |
| |
| void r600_wait_for_spll_change(struct radeon_device *rdev) |
| { |
| int i; |
| |
| for (i = 0; i < rdev->usec_timeout; i++) { |
| if (RREG32(CG_SPLL_FUNC_CNTL) & SPLL_CHG_STATUS) |
| break; |
| udelay(1); |
| } |
| } |
| |
| void r600_set_bsp(struct radeon_device *rdev, u32 u, u32 p) |
| { |
| WREG32(CG_BSP, BSP(p) | BSU(u)); |
| } |
| |
| void r600_set_at(struct radeon_device *rdev, |
| u32 l_to_m, u32 m_to_h, |
| u32 h_to_m, u32 m_to_l) |
| { |
| WREG32(CG_RT, FLS(l_to_m) | FMS(m_to_h)); |
| WREG32(CG_LT, FHS(h_to_m) | FMS(m_to_l)); |
| } |
| |
| void r600_set_tc(struct radeon_device *rdev, |
| u32 index, u32 u_t, u32 d_t) |
| { |
| WREG32(CG_FFCT_0 + (index * 4), UTC_0(u_t) | DTC_0(d_t)); |
| } |
| |
| void r600_select_td(struct radeon_device *rdev, |
| enum r600_td td) |
| { |
| if (td == R600_TD_AUTO) |
| WREG32_P(SCLK_PWRMGT_CNTL, 0, ~FIR_FORCE_TREND_SEL); |
| else |
| WREG32_P(SCLK_PWRMGT_CNTL, FIR_FORCE_TREND_SEL, ~FIR_FORCE_TREND_SEL); |
| if (td == R600_TD_UP) |
| WREG32_P(SCLK_PWRMGT_CNTL, 0, ~FIR_TREND_MODE); |
| if (td == R600_TD_DOWN) |
| WREG32_P(SCLK_PWRMGT_CNTL, FIR_TREND_MODE, ~FIR_TREND_MODE); |
| } |
| |
| void r600_set_vrc(struct radeon_device *rdev, u32 vrv) |
| { |
| WREG32(CG_FTV, vrv); |
| } |
| |
| void r600_set_tpu(struct radeon_device *rdev, u32 u) |
| { |
| WREG32_P(CG_TPC, TPU(u), ~TPU_MASK); |
| } |
| |
| void r600_set_tpc(struct radeon_device *rdev, u32 c) |
| { |
| WREG32_P(CG_TPC, TPCC(c), ~TPCC_MASK); |
| } |
| |
| void r600_set_sstu(struct radeon_device *rdev, u32 u) |
| { |
| WREG32_P(CG_SSP, CG_SSTU(u), ~CG_SSTU_MASK); |
| } |
| |
| void r600_set_sst(struct radeon_device *rdev, u32 t) |
| { |
| WREG32_P(CG_SSP, CG_SST(t), ~CG_SST_MASK); |
| } |
| |
| void r600_set_git(struct radeon_device *rdev, u32 t) |
| { |
| WREG32_P(CG_GIT, CG_GICST(t), ~CG_GICST_MASK); |
| } |
| |
| void r600_set_fctu(struct radeon_device *rdev, u32 u) |
| { |
| WREG32_P(CG_FC_T, FC_TU(u), ~FC_TU_MASK); |
| } |
| |
| void r600_set_fct(struct radeon_device *rdev, u32 t) |
| { |
| WREG32_P(CG_FC_T, FC_T(t), ~FC_T_MASK); |
| } |
| |
| void r600_set_ctxcgtt3d_rphc(struct radeon_device *rdev, u32 p) |
| { |
| WREG32_P(CG_CTX_CGTT3D_R, PHC(p), ~PHC_MASK); |
| } |
| |
| void r600_set_ctxcgtt3d_rsdc(struct radeon_device *rdev, u32 s) |
| { |
| WREG32_P(CG_CTX_CGTT3D_R, SDC(s), ~SDC_MASK); |
| } |
| |
| void r600_set_vddc3d_oorsu(struct radeon_device *rdev, u32 u) |
| { |
| WREG32_P(CG_VDDC3D_OOR, SU(u), ~SU_MASK); |
| } |
| |
| void r600_set_vddc3d_oorphc(struct radeon_device *rdev, u32 p) |
| { |
| WREG32_P(CG_VDDC3D_OOR, PHC(p), ~PHC_MASK); |
| } |
| |
| void r600_set_vddc3d_oorsdc(struct radeon_device *rdev, u32 s) |
| { |
| WREG32_P(CG_VDDC3D_OOR, SDC(s), ~SDC_MASK); |
| } |
| |
| void r600_set_mpll_lock_time(struct radeon_device *rdev, u32 lock_time) |
| { |
| WREG32_P(MPLL_TIME, MPLL_LOCK_TIME(lock_time), ~MPLL_LOCK_TIME_MASK); |
| } |
| |
| void r600_set_mpll_reset_time(struct radeon_device *rdev, u32 reset_time) |
| { |
| WREG32_P(MPLL_TIME, MPLL_RESET_TIME(reset_time), ~MPLL_RESET_TIME_MASK); |
| } |
| |
| void r600_engine_clock_entry_enable(struct radeon_device *rdev, |
| u32 index, bool enable) |
| { |
| if (enable) |
| WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART2 + (index * 4 * 2), |
| STEP_0_SPLL_ENTRY_VALID, ~STEP_0_SPLL_ENTRY_VALID); |
| else |
| WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART2 + (index * 4 * 2), |
| 0, ~STEP_0_SPLL_ENTRY_VALID); |
| } |
| |
| void r600_engine_clock_entry_enable_pulse_skipping(struct radeon_device *rdev, |
| u32 index, bool enable) |
| { |
| if (enable) |
| WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART2 + (index * 4 * 2), |
| STEP_0_SPLL_STEP_ENABLE, ~STEP_0_SPLL_STEP_ENABLE); |
| else |
| WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART2 + (index * 4 * 2), |
| 0, ~STEP_0_SPLL_STEP_ENABLE); |
| } |
| |
| void r600_engine_clock_entry_enable_post_divider(struct radeon_device *rdev, |
| u32 index, bool enable) |
| { |
| if (enable) |
| WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART2 + (index * 4 * 2), |
| STEP_0_POST_DIV_EN, ~STEP_0_POST_DIV_EN); |
| else |
| WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART2 + (index * 4 * 2), |
| 0, ~STEP_0_POST_DIV_EN); |
| } |
| |
| void r600_engine_clock_entry_set_post_divider(struct radeon_device *rdev, |
| u32 index, u32 divider) |
| { |
| WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART1 + (index * 4 * 2), |
| STEP_0_SPLL_POST_DIV(divider), ~STEP_0_SPLL_POST_DIV_MASK); |
| } |
| |
| void r600_engine_clock_entry_set_reference_divider(struct radeon_device *rdev, |
| u32 index, u32 divider) |
| { |
| WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART1 + (index * 4 * 2), |
| STEP_0_SPLL_REF_DIV(divider), ~STEP_0_SPLL_REF_DIV_MASK); |
| } |
| |
| void r600_engine_clock_entry_set_feedback_divider(struct radeon_device *rdev, |
| u32 index, u32 divider) |
| { |
| WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART1 + (index * 4 * 2), |
| STEP_0_SPLL_FB_DIV(divider), ~STEP_0_SPLL_FB_DIV_MASK); |
| } |
| |
| void r600_engine_clock_entry_set_step_time(struct radeon_device *rdev, |
| u32 index, u32 step_time) |
| { |
| WREG32_P(SCLK_FREQ_SETTING_STEP_0_PART1 + (index * 4 * 2), |
| STEP_0_SPLL_STEP_TIME(step_time), ~STEP_0_SPLL_STEP_TIME_MASK); |
| } |
| |
| void r600_vid_rt_set_ssu(struct radeon_device *rdev, u32 u) |
| { |
| WREG32_P(VID_RT, SSTU(u), ~SSTU_MASK); |
| } |
| |
| void r600_vid_rt_set_vru(struct radeon_device *rdev, u32 u) |
| { |
| WREG32_P(VID_RT, VID_CRTU(u), ~VID_CRTU_MASK); |
| } |
| |
| void r600_vid_rt_set_vrt(struct radeon_device *rdev, u32 rt) |
| { |
| WREG32_P(VID_RT, VID_CRT(rt), ~VID_CRT_MASK); |
| } |
| |
| void r600_voltage_control_enable_pins(struct radeon_device *rdev, |
| u64 mask) |
| { |
| WREG32(LOWER_GPIO_ENABLE, mask & 0xffffffff); |
| WREG32(UPPER_GPIO_ENABLE, upper_32_bits(mask)); |
| } |
| |
| |
| void r600_voltage_control_program_voltages(struct radeon_device *rdev, |
| enum r600_power_level index, u64 pins) |
| { |
| u32 tmp, mask; |
| u32 ix = 3 - (3 & index); |
| |
| WREG32(CTXSW_VID_LOWER_GPIO_CNTL + (ix * 4), pins & 0xffffffff); |
| |
| mask = 7 << (3 * ix); |
| tmp = RREG32(VID_UPPER_GPIO_CNTL); |
| tmp = (tmp & ~mask) | ((pins >> (32 - (3 * ix))) & mask); |
| WREG32(VID_UPPER_GPIO_CNTL, tmp); |
| } |
| |
| void r600_voltage_control_deactivate_static_control(struct radeon_device *rdev, |
| u64 mask) |
| { |
| u32 gpio; |
| |
| gpio = RREG32(GPIOPAD_MASK); |
| gpio &= ~mask; |
| WREG32(GPIOPAD_MASK, gpio); |
| |
| gpio = RREG32(GPIOPAD_EN); |
| gpio &= ~mask; |
| WREG32(GPIOPAD_EN, gpio); |
| |
| gpio = RREG32(GPIOPAD_A); |
| gpio &= ~mask; |
| WREG32(GPIOPAD_A, gpio); |
| } |
| |
| void r600_power_level_enable(struct radeon_device *rdev, |
| enum r600_power_level index, bool enable) |
| { |
| u32 ix = 3 - (3 & index); |
| |
| if (enable) |
| WREG32_P(CTXSW_PROFILE_INDEX + (ix * 4), CTXSW_FREQ_STATE_ENABLE, |
| ~CTXSW_FREQ_STATE_ENABLE); |
| else |
| WREG32_P(CTXSW_PROFILE_INDEX + (ix * 4), 0, |
| ~CTXSW_FREQ_STATE_ENABLE); |
| } |
| |
| void r600_power_level_set_voltage_index(struct radeon_device *rdev, |
| enum r600_power_level index, u32 voltage_index) |
| { |
| u32 ix = 3 - (3 & index); |
| |
| WREG32_P(CTXSW_PROFILE_INDEX + (ix * 4), |
| CTXSW_FREQ_VIDS_CFG_INDEX(voltage_index), ~CTXSW_FREQ_VIDS_CFG_INDEX_MASK); |
| } |
| |
| void r600_power_level_set_mem_clock_index(struct radeon_device *rdev, |
| enum r600_power_level index, u32 mem_clock_index) |
| { |
| u32 ix = 3 - (3 & index); |
| |
| WREG32_P(CTXSW_PROFILE_INDEX + (ix * 4), |
| CTXSW_FREQ_MCLK_CFG_INDEX(mem_clock_index), ~CTXSW_FREQ_MCLK_CFG_INDEX_MASK); |
| } |
| |
| void r600_power_level_set_eng_clock_index(struct radeon_device *rdev, |
| enum r600_power_level index, u32 eng_clock_index) |
| { |
| u32 ix = 3 - (3 & index); |
| |
| WREG32_P(CTXSW_PROFILE_INDEX + (ix * 4), |
| CTXSW_FREQ_SCLK_CFG_INDEX(eng_clock_index), ~CTXSW_FREQ_SCLK_CFG_INDEX_MASK); |
| } |
| |
| void r600_power_level_set_watermark_id(struct radeon_device *rdev, |
| enum r600_power_level index, |
| enum r600_display_watermark watermark_id) |
| { |
| u32 ix = 3 - (3 & index); |
| u32 tmp = 0; |
| |
| if (watermark_id == R600_DISPLAY_WATERMARK_HIGH) |
| tmp = CTXSW_FREQ_DISPLAY_WATERMARK; |
| WREG32_P(CTXSW_PROFILE_INDEX + (ix * 4), tmp, ~CTXSW_FREQ_DISPLAY_WATERMARK); |
| } |
| |
| void r600_power_level_set_pcie_gen2(struct radeon_device *rdev, |
| enum r600_power_level index, bool compatible) |
| { |
| u32 ix = 3 - (3 & index); |
| u32 tmp = 0; |
| |
| if (compatible) |
| tmp = CTXSW_FREQ_GEN2PCIE_VOLT; |
| WREG32_P(CTXSW_PROFILE_INDEX + (ix * 4), tmp, ~CTXSW_FREQ_GEN2PCIE_VOLT); |
| } |
| |
| enum r600_power_level r600_power_level_get_current_index(struct radeon_device *rdev) |
| { |
| u32 tmp; |
| |
| tmp = RREG32(TARGET_AND_CURRENT_PROFILE_INDEX) & CURRENT_PROFILE_INDEX_MASK; |
| tmp >>= CURRENT_PROFILE_INDEX_SHIFT; |
| return tmp; |
| } |
| |
| enum r600_power_level r600_power_level_get_target_index(struct radeon_device *rdev) |
| { |
| u32 tmp; |
| |
| tmp = RREG32(TARGET_AND_CURRENT_PROFILE_INDEX) & TARGET_PROFILE_INDEX_MASK; |
| tmp >>= TARGET_PROFILE_INDEX_SHIFT; |
| return tmp; |
| } |
| |
| void r600_power_level_set_enter_index(struct radeon_device *rdev, |
| enum r600_power_level index) |
| { |
| WREG32_P(TARGET_AND_CURRENT_PROFILE_INDEX, DYN_PWR_ENTER_INDEX(index), |
| ~DYN_PWR_ENTER_INDEX_MASK); |
| } |
| |
| void r600_wait_for_power_level_unequal(struct radeon_device *rdev, |
| enum r600_power_level index) |
| { |
| int i; |
| |
| for (i = 0; i < rdev->usec_timeout; i++) { |
| if (r600_power_level_get_target_index(rdev) != index) |
| break; |
| udelay(1); |
| } |
| |
| for (i = 0; i < rdev->usec_timeout; i++) { |
| if (r600_power_level_get_current_index(rdev) != index) |
| break; |
| udelay(1); |
| } |
| } |
| |
| void r600_wait_for_power_level(struct radeon_device *rdev, |
| enum r600_power_level index) |
| { |
| int i; |
| |
| for (i = 0; i < rdev->usec_timeout; i++) { |
| if (r600_power_level_get_target_index(rdev) == index) |
| break; |
| udelay(1); |
| } |
| |
| for (i = 0; i < rdev->usec_timeout; i++) { |
| if (r600_power_level_get_current_index(rdev) == index) |
| break; |
| udelay(1); |
| } |
| } |
| |
| void r600_start_dpm(struct radeon_device *rdev) |
| { |
| r600_enable_sclk_control(rdev, false); |
| r600_enable_mclk_control(rdev, false); |
| |
| r600_dynamicpm_enable(rdev, true); |
| |
| radeon_wait_for_vblank(rdev, 0); |
| radeon_wait_for_vblank(rdev, 1); |
| |
| r600_enable_spll_bypass(rdev, true); |
| r600_wait_for_spll_change(rdev); |
| r600_enable_spll_bypass(rdev, false); |
| r600_wait_for_spll_change(rdev); |
| |
| r600_enable_spll_bypass(rdev, true); |
| r600_wait_for_spll_change(rdev); |
| r600_enable_spll_bypass(rdev, false); |
| r600_wait_for_spll_change(rdev); |
| |
| r600_enable_sclk_control(rdev, true); |
| r600_enable_mclk_control(rdev, true); |
| } |
| |
| void r600_stop_dpm(struct radeon_device *rdev) |
| { |
| r600_dynamicpm_enable(rdev, false); |
| } |
| |
| int r600_dpm_pre_set_power_state(struct radeon_device *rdev) |
| { |
| return 0; |
| } |
| |
| void r600_dpm_post_set_power_state(struct radeon_device *rdev) |
| { |
| |
| } |
| |
| bool r600_is_uvd_state(u32 class, u32 class2) |
| { |
| if (class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE) |
| return true; |
| if (class & ATOM_PPLIB_CLASSIFICATION_HD2STATE) |
| return true; |
| if (class & ATOM_PPLIB_CLASSIFICATION_HDSTATE) |
| return true; |
| if (class & ATOM_PPLIB_CLASSIFICATION_SDSTATE) |
| return true; |
| if (class2 & ATOM_PPLIB_CLASSIFICATION2_MVC) |
| return true; |
| return false; |
| } |
| |
| static int r600_set_thermal_temperature_range(struct radeon_device *rdev, |
| int min_temp, int max_temp) |
| { |
| int low_temp = 0 * 1000; |
| int high_temp = 255 * 1000; |
| |
| if (low_temp < min_temp) |
| low_temp = min_temp; |
| if (high_temp > max_temp) |
| high_temp = max_temp; |
| if (high_temp < low_temp) { |
| DRM_ERROR("invalid thermal range: %d - %d\n", low_temp, high_temp); |
| return -EINVAL; |
| } |
| |
| WREG32_P(CG_THERMAL_INT, DIG_THERM_INTH(high_temp / 1000), ~DIG_THERM_INTH_MASK); |
| WREG32_P(CG_THERMAL_INT, DIG_THERM_INTL(low_temp / 1000), ~DIG_THERM_INTL_MASK); |
| WREG32_P(CG_THERMAL_CTRL, DIG_THERM_DPM(high_temp / 1000), ~DIG_THERM_DPM_MASK); |
| |
| rdev->pm.dpm.thermal.min_temp = low_temp; |
| rdev->pm.dpm.thermal.max_temp = high_temp; |
| |
| return 0; |
| } |
| |
| bool r600_is_internal_thermal_sensor(enum radeon_int_thermal_type sensor) |
| { |
| switch (sensor) { |
| case THERMAL_TYPE_RV6XX: |
| case THERMAL_TYPE_RV770: |
| case THERMAL_TYPE_EVERGREEN: |
| case THERMAL_TYPE_SUMO: |
| case THERMAL_TYPE_NI: |
| case THERMAL_TYPE_SI: |
| case THERMAL_TYPE_CI: |
| case THERMAL_TYPE_KV: |
| return true; |
| case THERMAL_TYPE_ADT7473_WITH_INTERNAL: |
| case THERMAL_TYPE_EMC2103_WITH_INTERNAL: |
| return false; /* need special handling */ |
| case THERMAL_TYPE_NONE: |
| case THERMAL_TYPE_EXTERNAL: |
| case THERMAL_TYPE_EXTERNAL_GPIO: |
| default: |
| return false; |
| } |
| } |
| |
| int r600_dpm_late_enable(struct radeon_device *rdev) |
| { |
| int ret; |
| |
| if (rdev->irq.installed && |
| r600_is_internal_thermal_sensor(rdev->pm.int_thermal_type)) { |
| ret = r600_set_thermal_temperature_range(rdev, R600_TEMP_RANGE_MIN, R600_TEMP_RANGE_MAX); |
| if (ret) |
| return ret; |
| rdev->irq.dpm_thermal = true; |
| radeon_irq_set(rdev); |
| } |
| |
| return 0; |
| } |
| |
| union power_info { |
| struct _ATOM_POWERPLAY_INFO info; |
| struct _ATOM_POWERPLAY_INFO_V2 info_2; |
| struct _ATOM_POWERPLAY_INFO_V3 info_3; |
| struct _ATOM_PPLIB_POWERPLAYTABLE pplib; |
| struct _ATOM_PPLIB_POWERPLAYTABLE2 pplib2; |
| struct _ATOM_PPLIB_POWERPLAYTABLE3 pplib3; |
| struct _ATOM_PPLIB_POWERPLAYTABLE4 pplib4; |
| struct _ATOM_PPLIB_POWERPLAYTABLE5 pplib5; |
| }; |
| |
| union fan_info { |
| struct _ATOM_PPLIB_FANTABLE fan; |
| struct _ATOM_PPLIB_FANTABLE2 fan2; |
| struct _ATOM_PPLIB_FANTABLE3 fan3; |
| }; |
| |
| static int r600_parse_clk_voltage_dep_table(struct radeon_clock_voltage_dependency_table *radeon_table, |
| ATOM_PPLIB_Clock_Voltage_Dependency_Table *atom_table) |
| { |
| u32 size = atom_table->ucNumEntries * |
| sizeof(struct radeon_clock_voltage_dependency_entry); |
| int i; |
| ATOM_PPLIB_Clock_Voltage_Dependency_Record *entry; |
| |
| radeon_table->entries = kzalloc(size, GFP_KERNEL); |
| if (!radeon_table->entries) |
| return -ENOMEM; |
| |
| entry = &atom_table->entries[0]; |
| for (i = 0; i < atom_table->ucNumEntries; i++) { |
| radeon_table->entries[i].clk = le16_to_cpu(entry->usClockLow) | |
| (entry->ucClockHigh << 16); |
| radeon_table->entries[i].v = le16_to_cpu(entry->usVoltage); |
| entry = (ATOM_PPLIB_Clock_Voltage_Dependency_Record *) |
| ((u8 *)entry + sizeof(ATOM_PPLIB_Clock_Voltage_Dependency_Record)); |
| } |
| radeon_table->count = atom_table->ucNumEntries; |
| |
| return 0; |
| } |
| |
| int r600_get_platform_caps(struct radeon_device *rdev) |
| { |
| struct radeon_mode_info *mode_info = &rdev->mode_info; |
| union power_info *power_info; |
| int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo); |
| u16 data_offset; |
| u8 frev, crev; |
| |
| if (!atom_parse_data_header(mode_info->atom_context, index, NULL, |
| &frev, &crev, &data_offset)) |
| return -EINVAL; |
| power_info = (union power_info *)(mode_info->atom_context->bios + data_offset); |
| |
| rdev->pm.dpm.platform_caps = le32_to_cpu(power_info->pplib.ulPlatformCaps); |
| rdev->pm.dpm.backbias_response_time = le16_to_cpu(power_info->pplib.usBackbiasTime); |
| rdev->pm.dpm.voltage_response_time = le16_to_cpu(power_info->pplib.usVoltageTime); |
| |
| return 0; |
| } |
| |
| /* sizeof(ATOM_PPLIB_EXTENDEDHEADER) */ |
| #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V2 12 |
| #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V3 14 |
| #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V4 16 |
| #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V5 18 |
| #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V6 20 |
| #define SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V7 22 |
| |
| int r600_parse_extended_power_table(struct radeon_device *rdev) |
| { |
| struct radeon_mode_info *mode_info = &rdev->mode_info; |
| union power_info *power_info; |
| union fan_info *fan_info; |
| ATOM_PPLIB_Clock_Voltage_Dependency_Table *dep_table; |
| int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo); |
| u16 data_offset; |
| u8 frev, crev; |
| int ret, i; |
| |
| if (!atom_parse_data_header(mode_info->atom_context, index, NULL, |
| &frev, &crev, &data_offset)) |
| return -EINVAL; |
| power_info = (union power_info *)(mode_info->atom_context->bios + data_offset); |
| |
| /* fan table */ |
| if (le16_to_cpu(power_info->pplib.usTableSize) >= |
| sizeof(struct _ATOM_PPLIB_POWERPLAYTABLE3)) { |
| if (power_info->pplib3.usFanTableOffset) { |
| fan_info = (union fan_info *)(mode_info->atom_context->bios + data_offset + |
| le16_to_cpu(power_info->pplib3.usFanTableOffset)); |
| rdev->pm.dpm.fan.t_hyst = fan_info->fan.ucTHyst; |
| rdev->pm.dpm.fan.t_min = le16_to_cpu(fan_info->fan.usTMin); |
| rdev->pm.dpm.fan.t_med = le16_to_cpu(fan_info->fan.usTMed); |
| rdev->pm.dpm.fan.t_high = le16_to_cpu(fan_info->fan.usTHigh); |
| rdev->pm.dpm.fan.pwm_min = le16_to_cpu(fan_info->fan.usPWMMin); |
| rdev->pm.dpm.fan.pwm_med = le16_to_cpu(fan_info->fan.usPWMMed); |
| rdev->pm.dpm.fan.pwm_high = le16_to_cpu(fan_info->fan.usPWMHigh); |
| if (fan_info->fan.ucFanTableFormat >= 2) |
| rdev->pm.dpm.fan.t_max = le16_to_cpu(fan_info->fan2.usTMax); |
| else |
| rdev->pm.dpm.fan.t_max = 10900; |
| rdev->pm.dpm.fan.cycle_delay = 100000; |
| if (fan_info->fan.ucFanTableFormat >= 3) { |
| rdev->pm.dpm.fan.control_mode = fan_info->fan3.ucFanControlMode; |
| rdev->pm.dpm.fan.default_max_fan_pwm = |
| le16_to_cpu(fan_info->fan3.usFanPWMMax); |
| rdev->pm.dpm.fan.default_fan_output_sensitivity = 4836; |
| rdev->pm.dpm.fan.fan_output_sensitivity = |
| le16_to_cpu(fan_info->fan3.usFanOutputSensitivity); |
| } |
| rdev->pm.dpm.fan.ucode_fan_control = true; |
| } |
| } |
| |
| /* clock dependancy tables, shedding tables */ |
| if (le16_to_cpu(power_info->pplib.usTableSize) >= |
| sizeof(struct _ATOM_PPLIB_POWERPLAYTABLE4)) { |
| if (power_info->pplib4.usVddcDependencyOnSCLKOffset) { |
| dep_table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *) |
| (mode_info->atom_context->bios + data_offset + |
| le16_to_cpu(power_info->pplib4.usVddcDependencyOnSCLKOffset)); |
| ret = r600_parse_clk_voltage_dep_table(&rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk, |
| dep_table); |
| if (ret) |
| return ret; |
| } |
| if (power_info->pplib4.usVddciDependencyOnMCLKOffset) { |
| dep_table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *) |
| (mode_info->atom_context->bios + data_offset + |
| le16_to_cpu(power_info->pplib4.usVddciDependencyOnMCLKOffset)); |
| ret = r600_parse_clk_voltage_dep_table(&rdev->pm.dpm.dyn_state.vddci_dependency_on_mclk, |
| dep_table); |
| if (ret) { |
| kfree(rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries); |
| return ret; |
| } |
| } |
| if (power_info->pplib4.usVddcDependencyOnMCLKOffset) { |
| dep_table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *) |
| (mode_info->atom_context->bios + data_offset + |
| le16_to_cpu(power_info->pplib4.usVddcDependencyOnMCLKOffset)); |
| ret = r600_parse_clk_voltage_dep_table(&rdev->pm.dpm.dyn_state.vddc_dependency_on_mclk, |
| dep_table); |
| if (ret) { |
| kfree(rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries); |
| kfree(rdev->pm.dpm.dyn_state.vddci_dependency_on_mclk.entries); |
| return ret; |
| } |
| } |
| if (power_info->pplib4.usMvddDependencyOnMCLKOffset) { |
| dep_table = (ATOM_PPLIB_Clock_Voltage_Dependency_Table *) |
| (mode_info->atom_context->bios + data_offset + |
| le16_to_cpu(power_info->pplib4.usMvddDependencyOnMCLKOffset)); |
| ret = r600_parse_clk_voltage_dep_table(&rdev->pm.dpm.dyn_state.mvdd_dependency_on_mclk, |
| dep_table); |
| if (ret) { |
| kfree(rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk.entries); |
| kfree(rdev->pm.dpm.dyn_state.vddci_dependency_on_mclk.entries); |
| kfree(rdev->pm.dpm.dyn_state.vddc_dependency_on_mclk.entries); |
| return ret; |
| } |
| } |
| if (power_info->pplib4.usMaxClockVoltageOnDCOffset) { |
| ATOM_PPLIB_Clock_Voltage_Limit_Table *clk_v = |
| (ATOM_PPLIB_Clock_Voltage_Limit_Table *) |
| (mode_info->atom_context->bios + data_offset + |
| le16_to_cpu(power_info->pplib4.usMaxClockVoltageOnDCOffset)); |
| if (clk_v->ucNumEntries) { |
| rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc.sclk = |
| le16_to_cpu(clk_v->entries[0].usSclkLow) | |
| (clk_v->entries[0].ucSclkHigh << 16); |
| rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc.mclk = |
| le16_to_cpu(clk_v->entries[0].usMclkLow) | |
| (clk_v->entries[0].ucMclkHigh << 16); |
| rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc.vddc = |
| le16_to_cpu(clk_v->entries[0].usVddc); |
| rdev->pm.dpm.dyn_state.max_clock_voltage_on_dc.vddci = |
| le16_to_cpu(clk_v->entries[0].usVddci); |
| } |
| } |
| if (power_info->pplib4.usVddcPhaseShedLimitsTableOffset) { |
| ATOM_PPLIB_PhaseSheddingLimits_Table *psl = |
| (ATOM_PPLIB_PhaseSheddingLimits_Table *) |
| (mode_info->atom_context->bios + data_offset + |
| le16_to_cpu(power_info->pplib4.usVddcPhaseShedLimitsTableOffset)); |
| ATOM_PPLIB_PhaseSheddingLimits_Record *entry; |
| |
| rdev->pm.dpm.dyn_state.phase_shedding_limits_table.entries = |
| kzalloc(psl->ucNumEntries * |
| sizeof(struct radeon_phase_shedding_limits_entry), |
| GFP_KERNEL); |
| if (!rdev->pm.dpm.dyn_state.phase_shedding_limits_table.entries) { |
| r600_free_extended_power_table(rdev); |
| return -ENOMEM; |
| } |
| |
| entry = &psl->entries[0]; |
| for (i = 0; i < psl->ucNumEntries; i++) { |
| rdev->pm.dpm.dyn_state.phase_shedding_limits_table.entries[i].sclk = |
| le16_to_cpu(entry->usSclkLow) | (entry->ucSclkHigh << 16); |
| rdev->pm.dpm.dyn_state.phase_shedding_limits_table.entries[i].mclk = |
| le16_to_cpu(entry->usMclkLow) | (entry->ucMclkHigh << 16); |
| rdev->pm.dpm.dyn_state.phase_shedding_limits_table.entries[i].voltage = |
| le16_to_cpu(entry->usVoltage); |
| entry = (ATOM_PPLIB_PhaseSheddingLimits_Record *) |
| ((u8 *)entry + sizeof(ATOM_PPLIB_PhaseSheddingLimits_Record)); |
| } |
| rdev->pm.dpm.dyn_state.phase_shedding_limits_table.count = |
| psl->ucNumEntries; |
| } |
| } |
| |
| /* cac data */ |
| if (le16_to_cpu(power_info->pplib.usTableSize) >= |
| sizeof(struct _ATOM_PPLIB_POWERPLAYTABLE5)) { |
| rdev->pm.dpm.tdp_limit = le32_to_cpu(power_info->pplib5.ulTDPLimit); |
| rdev->pm.dpm.near_tdp_limit = le32_to_cpu(power_info->pplib5.ulNearTDPLimit); |
| rdev->pm.dpm.near_tdp_limit_adjusted = rdev->pm.dpm.near_tdp_limit; |
| rdev->pm.dpm.tdp_od_limit = le16_to_cpu(power_info->pplib5.usTDPODLimit); |
| if (rdev->pm.dpm.tdp_od_limit) |
| rdev->pm.dpm.power_control = true; |
| else |
| rdev->pm.dpm.power_control = false; |
| rdev->pm.dpm.tdp_adjustment = 0; |
| rdev->pm.dpm.sq_ramping_threshold = le32_to_cpu(power_info->pplib5.ulSQRampingThreshold); |
| rdev->pm.dpm.cac_leakage = le32_to_cpu(power_info->pplib5.ulCACLeakage); |
| rdev->pm.dpm.load_line_slope = le16_to_cpu(power_info->pplib5.usLoadLineSlope); |
| if (power_info->pplib5.usCACLeakageTableOffset) { |
| ATOM_PPLIB_CAC_Leakage_Table *cac_table = |
| (ATOM_PPLIB_CAC_Leakage_Table *) |
| (mode_info->atom_context->bios + data_offset + |
| le16_to_cpu(power_info->pplib5.usCACLeakageTableOffset)); |
| ATOM_PPLIB_CAC_Leakage_Record *entry; |
| u32 size = cac_table->ucNumEntries * sizeof(struct radeon_cac_leakage_table); |
| rdev->pm.dpm.dyn_state.cac_leakage_table.entries = kzalloc(size, GFP_KERNEL); |
| if (!rdev->pm.dpm.dyn_state.cac_leakage_table.entries) { |
| r600_free_extended_power_table(rdev); |
| return -ENOMEM; |
| } |
| entry = &cac_table->entries[0]; |
| for (i = 0; i < cac_table->ucNumEntries; i++) { |
| if (rdev->pm.dpm.platform_caps & ATOM_PP_PLATFORM_CAP_EVV) { |
| rdev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc1 = |
| le16_to_cpu(entry->usVddc1); |
| rdev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc2 = |
| le16_to_cpu(entry->usVddc2); |
| rdev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc3 = |
| le16_to_cpu(entry->usVddc3); |
| } else { |
| rdev->pm.dpm.dyn_state.cac_leakage_table.entries[i].vddc = |
| le16_to_cpu(entry->usVddc); |
| rdev->pm.dpm.dyn_state.cac_leakage_table.entries[i].leakage = |
| le32_to_cpu(entry->ulLeakageValue); |
| } |
| entry = (ATOM_PPLIB_CAC_Leakage_Record *) |
| ((u8 *)entry + sizeof(ATOM_PPLIB_CAC_Leakage_Record)); |
| } |
| rdev->pm.dpm.dyn_state.cac_leakage_table.count = cac_table->ucNumEntries; |
| } |
| } |
| |
| /* ext tables */ |
| if (le16_to_cpu(power_info->pplib.usTableSize) >= |
| sizeof(struct _ATOM_PPLIB_POWERPLAYTABLE3)) { |
| ATOM_PPLIB_EXTENDEDHEADER *ext_hdr = (ATOM_PPLIB_EXTENDEDHEADER *) |
| (mode_info->atom_context->bios + data_offset + |
| le16_to_cpu(power_info->pplib3.usExtendendedHeaderOffset)); |
| if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V2) && |
| ext_hdr->usVCETableOffset) { |
| VCEClockInfoArray *array = (VCEClockInfoArray *) |
| (mode_info->atom_context->bios + data_offset + |
| le16_to_cpu(ext_hdr->usVCETableOffset) + 1); |
| ATOM_PPLIB_VCE_Clock_Voltage_Limit_Table *limits = |
| (ATOM_PPLIB_VCE_Clock_Voltage_Limit_Table *) |
| (mode_info->atom_context->bios + data_offset + |
| le16_to_cpu(ext_hdr->usVCETableOffset) + 1 + |
| 1 + array->ucNumEntries * sizeof(VCEClockInfo)); |
| ATOM_PPLIB_VCE_State_Table *states = |
| (ATOM_PPLIB_VCE_State_Table *) |
| (mode_info->atom_context->bios + data_offset + |
| le16_to_cpu(ext_hdr->usVCETableOffset) + 1 + |
| 1 + (array->ucNumEntries * sizeof (VCEClockInfo)) + |
| 1 + (limits->numEntries * sizeof(ATOM_PPLIB_VCE_Clock_Voltage_Limit_Record))); |
| ATOM_PPLIB_VCE_Clock_Voltage_Limit_Record *entry; |
| ATOM_PPLIB_VCE_State_Record *state_entry; |
| VCEClockInfo *vce_clk; |
| u32 size = limits->numEntries * |
| sizeof(struct radeon_vce_clock_voltage_dependency_entry); |
| rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries = |
| kzalloc(size, GFP_KERNEL); |
| if (!rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries) { |
| r600_free_extended_power_table(rdev); |
| return -ENOMEM; |
| } |
| rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.count = |
| limits->numEntries; |
| entry = &limits->entries[0]; |
| state_entry = &states->entries[0]; |
| for (i = 0; i < limits->numEntries; i++) { |
| vce_clk = (VCEClockInfo *) |
| ((u8 *)&array->entries[0] + |
| (entry->ucVCEClockInfoIndex * sizeof(VCEClockInfo))); |
| rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries[i].evclk = |
| le16_to_cpu(vce_clk->usEVClkLow) | (vce_clk->ucEVClkHigh << 16); |
| rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries[i].ecclk = |
| le16_to_cpu(vce_clk->usECClkLow) | (vce_clk->ucECClkHigh << 16); |
| rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table.entries[i].v = |
| le16_to_cpu(entry->usVoltage); |
| entry = (ATOM_PPLIB_VCE_Clock_Voltage_Limit_Record *) |
| ((u8 *)entry + sizeof(ATOM_PPLIB_VCE_Clock_Voltage_Limit_Record)); |
| } |
| for (i = 0; i < states->numEntries; i++) { |
| if (i >= RADEON_MAX_VCE_LEVELS) |
| break; |
| vce_clk = (VCEClockInfo *) |
| ((u8 *)&array->entries[0] + |
| (state_entry->ucVCEClockInfoIndex * sizeof(VCEClockInfo))); |
| rdev->pm.dpm.vce_states[i].evclk = |
| le16_to_cpu(vce_clk->usEVClkLow) | (vce_clk->ucEVClkHigh << 16); |
| rdev->pm.dpm.vce_states[i].ecclk = |
| le16_to_cpu(vce_clk->usECClkLow) | (vce_clk->ucECClkHigh << 16); |
| rdev->pm.dpm.vce_states[i].clk_idx = |
| state_entry->ucClockInfoIndex & 0x3f; |
| rdev->pm.dpm.vce_states[i].pstate = |
| (state_entry->ucClockInfoIndex & 0xc0) >> 6; |
| state_entry = (ATOM_PPLIB_VCE_State_Record *) |
| ((u8 *)state_entry + sizeof(ATOM_PPLIB_VCE_State_Record)); |
| } |
| } |
| if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V3) && |
| ext_hdr->usUVDTableOffset) { |
| UVDClockInfoArray *array = (UVDClockInfoArray *) |
| (mode_info->atom_context->bios + data_offset + |
| le16_to_cpu(ext_hdr->usUVDTableOffset) + 1); |
| ATOM_PPLIB_UVD_Clock_Voltage_Limit_Table *limits = |
| (ATOM_PPLIB_UVD_Clock_Voltage_Limit_Table *) |
| (mode_info->atom_context->bios + data_offset + |
| le16_to_cpu(ext_hdr->usUVDTableOffset) + 1 + |
| 1 + (array->ucNumEntries * sizeof (UVDClockInfo))); |
| ATOM_PPLIB_UVD_Clock_Voltage_Limit_Record *entry; |
| u32 size = limits->numEntries * |
| sizeof(struct radeon_uvd_clock_voltage_dependency_entry); |
| rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries = |
| kzalloc(size, GFP_KERNEL); |
| if (!rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries) { |
| r600_free_extended_power_table(rdev); |
| return -ENOMEM; |
| } |
| rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.count = |
| limits->numEntries; |
| entry = &limits->entries[0]; |
| for (i = 0; i < limits->numEntries; i++) { |
| UVDClockInfo *uvd_clk = (UVDClockInfo *) |
| ((u8 *)&array->entries[0] + |
| (entry->ucUVDClockInfoIndex * sizeof(UVDClockInfo))); |
| rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries[i].vclk = |
| le16_to_cpu(uvd_clk->usVClkLow) | (uvd_clk->ucVClkHigh << 16); |
| rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries[i].dclk = |
| le16_to_cpu(uvd_clk->usDClkLow) | (uvd_clk->ucDClkHigh << 16); |
| rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table.entries[i].v = |
| le16_to_cpu(entry->usVoltage); |
| entry = (ATOM_PPLIB_UVD_Clock_Voltage_Limit_Record *) |
| ((u8 *)entry + sizeof(ATOM_PPLIB_UVD_Clock_Voltage_Limit_Record)); |
| } |
| } |
| if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V4) && |
| ext_hdr->usSAMUTableOffset) { |
| ATOM_PPLIB_SAMClk_Voltage_Limit_Table *limits = |
| (ATOM_PPLIB_SAMClk_Voltage_Limit_Table *) |
| (mode_info->atom_context->bios + data_offset + |
| le16_to_cpu(ext_hdr->usSAMUTableOffset) + 1); |
| ATOM_PPLIB_SAMClk_Voltage_Limit_Record *entry; |
| u32 size = limits->numEntries * |
| sizeof(struct radeon_clock_voltage_dependency_entry); |
| rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.entries = |
| kzalloc(size, GFP_KERNEL); |
| if (!rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.entries) { |
| r600_free_extended_power_table(rdev); |
| return -ENOMEM; |
| } |
| rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.count = |
| limits->numEntries; |
| entry = &limits->entries[0]; |
| for (i = 0; i < limits->numEntries; i++) { |
| rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.entries[i].clk = |
| le16_to_cpu(entry->usSAMClockLow) | (entry->ucSAMClockHigh << 16); |
| rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table.entries[i].v = |
| le16_to_cpu(entry->usVoltage); |
| entry = (ATOM_PPLIB_SAMClk_Voltage_Limit_Record *) |
| ((u8 *)entry + sizeof(ATOM_PPLIB_SAMClk_Voltage_Limit_Record)); |
| } |
| } |
| if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V5) && |
| ext_hdr->usPPMTableOffset) { |
| ATOM_PPLIB_PPM_Table *ppm = (ATOM_PPLIB_PPM_Table *) |
| (mode_info->atom_context->bios + data_offset + |
| le16_to_cpu(ext_hdr->usPPMTableOffset)); |
| rdev->pm.dpm.dyn_state.ppm_table = |
| kzalloc(sizeof(struct radeon_ppm_table), GFP_KERNEL); |
| if (!rdev->pm.dpm.dyn_state.ppm_table) { |
| r600_free_extended_power_table(rdev); |
| return -ENOMEM; |
| } |
| rdev->pm.dpm.dyn_state.ppm_table->ppm_design = ppm->ucPpmDesign; |
| rdev->pm.dpm.dyn_state.ppm_table->cpu_core_number = |
| le16_to_cpu(ppm->usCpuCoreNumber); |
| rdev->pm.dpm.dyn_state.ppm_table->platform_tdp = |
| le32_to_cpu(ppm->ulPlatformTDP); |
| rdev->pm.dpm.dyn_state.ppm_table->small_ac_platform_tdp = |
| le32_to_cpu(ppm->ulSmallACPlatformTDP); |
| rdev->pm.dpm.dyn_state.ppm_table->platform_tdc = |
| le32_to_cpu(ppm->ulPlatformTDC); |
| rdev->pm.dpm.dyn_state.ppm_table->small_ac_platform_tdc = |
| le32_to_cpu(ppm->ulSmallACPlatformTDC); |
| rdev->pm.dpm.dyn_state.ppm_table->apu_tdp = |
| le32_to_cpu(ppm->ulApuTDP); |
| rdev->pm.dpm.dyn_state.ppm_table->dgpu_tdp = |
| le32_to_cpu(ppm->ulDGpuTDP); |
| rdev->pm.dpm.dyn_state.ppm_table->dgpu_ulv_power = |
| le32_to_cpu(ppm->ulDGpuUlvPower); |
| rdev->pm.dpm.dyn_state.ppm_table->tj_max = |
| le32_to_cpu(ppm->ulTjmax); |
| } |
| if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V6) && |
| ext_hdr->usACPTableOffset) { |
| ATOM_PPLIB_ACPClk_Voltage_Limit_Table *limits = |
| (ATOM_PPLIB_ACPClk_Voltage_Limit_Table *) |
| (mode_info->atom_context->bios + data_offset + |
| le16_to_cpu(ext_hdr->usACPTableOffset) + 1); |
| ATOM_PPLIB_ACPClk_Voltage_Limit_Record *entry; |
| u32 size = limits->numEntries * |
| sizeof(struct radeon_clock_voltage_dependency_entry); |
| rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.entries = |
| kzalloc(size, GFP_KERNEL); |
| if (!rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.entries) { |
| r600_free_extended_power_table(rdev); |
| return -ENOMEM; |
| } |
| rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.count = |
| limits->numEntries; |
| entry = &limits->entries[0]; |
| for (i = 0; i < limits->numEntries; i++) { |
| rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.entries[i].clk = |
| le16_to_cpu(entry->usACPClockLow) | (entry->ucACPClockHigh << 16); |
| rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table.entries[i].v = |
| le16_to_cpu(entry->usVoltage); |
| entry = (ATOM_PPLIB_ACPClk_Voltage_Limit_Record *) |
| ((u8 *)entry + sizeof(ATOM_PPLIB_ACPClk_Voltage_Limit_Record)); |
| } |
| } |
| if ((le16_to_cpu(ext_hdr->usSize) >= SIZE_OF_ATOM_PPLIB_EXTENDEDHEADER_V7) && |
| ext_hdr->usPowerTuneTableOffset) { |
| u8 rev = *(u8 *)(mode_info->atom_context->bios + data_offset + |
| le16_to_cpu(ext_hdr->usPowerTuneTableOffset)); |
| ATOM_PowerTune_Table *pt; |
| rdev->pm.dpm.dyn_state.cac_tdp_table = |
| kzalloc(sizeof(struct radeon_cac_tdp_table), GFP_KERNEL); |
| if (!rdev->pm.dpm.dyn_state.cac_tdp_table) { |
| r600_free_extended_power_table(rdev); |
| return -ENOMEM; |
| } |
| if (rev > 0) { |
| ATOM_PPLIB_POWERTUNE_Table_V1 *ppt = (ATOM_PPLIB_POWERTUNE_Table_V1 *) |
| (mode_info->atom_context->bios + data_offset + |
| le16_to_cpu(ext_hdr->usPowerTuneTableOffset)); |
| rdev->pm.dpm.dyn_state.cac_tdp_table->maximum_power_delivery_limit = |
| le16_to_cpu(ppt->usMaximumPowerDeliveryLimit); |
| pt = &ppt->power_tune_table; |
| } else { |
| ATOM_PPLIB_POWERTUNE_Table *ppt = (ATOM_PPLIB_POWERTUNE_Table *) |
| (mode_info->atom_context->bios + data_offset + |
| le16_to_cpu(ext_hdr->usPowerTuneTableOffset)); |
| rdev->pm.dpm.dyn_state.cac_tdp_table->maximum_power_delivery_limit = 255; |
| pt = &ppt->power_tune_table; |
| } |
| rdev->pm.dpm.dyn_state.cac_tdp_table->tdp = le16_to_cpu(pt->usTDP); |
| rdev->pm.dpm.dyn_state.cac_tdp_table->configurable_tdp = |
| le16_to_cpu(pt->usConfigurableTDP); |
| rdev->pm.dpm.dyn_state.cac_tdp_table->tdc = le16_to_cpu(pt->usTDC); |
| rdev->pm.dpm.dyn_state.cac_tdp_table->battery_power_limit = |
| le16_to_cpu(pt->usBatteryPowerLimit); |
| rdev->pm.dpm.dyn_state.cac_tdp_table->small_power_limit = |
| le16_to_cpu(pt->usSmallPowerLimit); |
| rdev->pm.dpm.dyn_state.cac_tdp_table->low_cac_leakage = |
| le16_to_cpu(pt->usLowCACLeakage); |
| rdev->pm.dpm.dyn_state.cac_tdp_table->high_cac_leakage = |
| le16_to_cpu(pt->usHighCACLeakage); |
| } |
| } |
| |
| return 0; |
| } |
| |
| void r600_free_extended_power_table(struct radeon_device *rdev) |
| { |
| struct radeon_dpm_dynamic_state *dyn_state = &rdev->pm.dpm.dyn_state; |
| |
| kfree(dyn_state->vddc_dependency_on_sclk.entries); |
| kfree(dyn_state->vddci_dependency_on_mclk.entries); |
| kfree(dyn_state->vddc_dependency_on_mclk.entries); |
| kfree(dyn_state->mvdd_dependency_on_mclk.entries); |
| kfree(dyn_state->cac_leakage_table.entries); |
| kfree(dyn_state->phase_shedding_limits_table.entries); |
| kfree(dyn_state->ppm_table); |
| kfree(dyn_state->cac_tdp_table); |
| kfree(dyn_state->vce_clock_voltage_dependency_table.entries); |
| kfree(dyn_state->uvd_clock_voltage_dependency_table.entries); |
| kfree(dyn_state->samu_clock_voltage_dependency_table.entries); |
| kfree(dyn_state->acp_clock_voltage_dependency_table.entries); |
| } |
| |
| enum radeon_pcie_gen r600_get_pcie_gen_support(struct radeon_device *rdev, |
| u32 sys_mask, |
| enum radeon_pcie_gen asic_gen, |
| enum radeon_pcie_gen default_gen) |
| { |
| switch (asic_gen) { |
| case RADEON_PCIE_GEN1: |
| return RADEON_PCIE_GEN1; |
| case RADEON_PCIE_GEN2: |
| return RADEON_PCIE_GEN2; |
| case RADEON_PCIE_GEN3: |
| return RADEON_PCIE_GEN3; |
| default: |
| if ((sys_mask & DRM_PCIE_SPEED_80) && (default_gen == RADEON_PCIE_GEN3)) |
| return RADEON_PCIE_GEN3; |
| else if ((sys_mask & DRM_PCIE_SPEED_50) && (default_gen == RADEON_PCIE_GEN2)) |
| return RADEON_PCIE_GEN2; |
| else |
| return RADEON_PCIE_GEN1; |
| } |
| return RADEON_PCIE_GEN1; |
| } |
| |
| u16 r600_get_pcie_lane_support(struct radeon_device *rdev, |
| u16 asic_lanes, |
| u16 default_lanes) |
| { |
| switch (asic_lanes) { |
| case 0: |
| default: |
| return default_lanes; |
| case 1: |
| return 1; |
| case 2: |
| return 2; |
| case 4: |
| return 4; |
| case 8: |
| return 8; |
| case 12: |
| return 12; |
| case 16: |
| return 16; |
| } |
| } |
| |
| u8 r600_encode_pci_lane_width(u32 lanes) |
| { |
| u8 encoded_lanes[] = { 0, 1, 2, 0, 3, 0, 0, 0, 4, 0, 0, 0, 5, 0, 0, 0, 6 }; |
| |
| if (lanes > 16) |
| return 0; |
| |
| return encoded_lanes[lanes]; |
| } |