| /******************************************************************************* |
| * |
| * Intel Ethernet Controller XL710 Family Linux Driver |
| * Copyright(c) 2013 - 2016 Intel Corporation. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms and conditions of the GNU General Public License, |
| * version 2, as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this program. If not, see <http://www.gnu.org/licenses/>. |
| * |
| * The full GNU General Public License is included in this distribution in |
| * the file called "COPYING". |
| * |
| * Contact Information: |
| * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
| * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| * |
| ******************************************************************************/ |
| |
| #ifndef _I40E_TXRX_H_ |
| #define _I40E_TXRX_H_ |
| |
| /* Interrupt Throttling and Rate Limiting Goodies */ |
| |
| #define I40E_MAX_ITR 0x0FF0 /* reg uses 2 usec resolution */ |
| #define I40E_MIN_ITR 0x0001 /* reg uses 2 usec resolution */ |
| #define I40E_ITR_100K 0x0005 |
| #define I40E_ITR_50K 0x000A |
| #define I40E_ITR_20K 0x0019 |
| #define I40E_ITR_18K 0x001B |
| #define I40E_ITR_8K 0x003E |
| #define I40E_ITR_4K 0x007A |
| #define I40E_MAX_INTRL 0x3B /* reg uses 4 usec resolution */ |
| #define I40E_ITR_RX_DEF I40E_ITR_20K |
| #define I40E_ITR_TX_DEF I40E_ITR_20K |
| #define I40E_ITR_DYNAMIC 0x8000 /* use top bit as a flag */ |
| #define I40E_MIN_INT_RATE 250 /* ~= 1000000 / (I40E_MAX_ITR * 2) */ |
| #define I40E_MAX_INT_RATE 500000 /* == 1000000 / (I40E_MIN_ITR * 2) */ |
| #define I40E_DEFAULT_IRQ_WORK 256 |
| #define ITR_TO_REG(setting) ((setting & ~I40E_ITR_DYNAMIC) >> 1) |
| #define ITR_IS_DYNAMIC(setting) (!!(setting & I40E_ITR_DYNAMIC)) |
| #define ITR_REG_TO_USEC(itr_reg) (itr_reg << 1) |
| /* 0x40 is the enable bit for interrupt rate limiting, and must be set if |
| * the value of the rate limit is non-zero |
| */ |
| #define INTRL_ENA BIT(6) |
| #define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2) |
| #define INTRL_USEC_TO_REG(set) ((set) ? ((set) >> 2) | INTRL_ENA : 0) |
| #define I40E_INTRL_8K 125 /* 8000 ints/sec */ |
| #define I40E_INTRL_62K 16 /* 62500 ints/sec */ |
| #define I40E_INTRL_83K 12 /* 83333 ints/sec */ |
| |
| #define I40E_QUEUE_END_OF_LIST 0x7FF |
| |
| /* this enum matches hardware bits and is meant to be used by DYN_CTLN |
| * registers and QINT registers or more generally anywhere in the manual |
| * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any |
| * register but instead is a special value meaning "don't update" ITR0/1/2. |
| */ |
| enum i40e_dyn_idx_t { |
| I40E_IDX_ITR0 = 0, |
| I40E_IDX_ITR1 = 1, |
| I40E_IDX_ITR2 = 2, |
| I40E_ITR_NONE = 3 /* ITR_NONE must not be used as an index */ |
| }; |
| |
| /* these are indexes into ITRN registers */ |
| #define I40E_RX_ITR I40E_IDX_ITR0 |
| #define I40E_TX_ITR I40E_IDX_ITR1 |
| #define I40E_PE_ITR I40E_IDX_ITR2 |
| |
| /* Supported RSS offloads */ |
| #define I40E_DEFAULT_RSS_HENA ( \ |
| BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_UDP) | \ |
| BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) | \ |
| BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP) | \ |
| BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) | \ |
| BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV4) | \ |
| BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_UDP) | \ |
| BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP) | \ |
| BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) | \ |
| BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) | \ |
| BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV6) | \ |
| BIT_ULL(I40E_FILTER_PCTYPE_L2_PAYLOAD)) |
| |
| #define I40E_DEFAULT_RSS_HENA_EXPANDED (I40E_DEFAULT_RSS_HENA | \ |
| BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \ |
| BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \ |
| BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \ |
| BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \ |
| BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \ |
| BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP)) |
| |
| #define i40e_pf_get_default_rss_hena(pf) \ |
| (((pf)->flags & I40E_FLAG_MULTIPLE_TCP_UDP_RSS_PCTYPE) ? \ |
| I40E_DEFAULT_RSS_HENA_EXPANDED : I40E_DEFAULT_RSS_HENA) |
| |
| /* Supported Rx Buffer Sizes (a multiple of 128) */ |
| #define I40E_RXBUFFER_256 256 |
| #define I40E_RXBUFFER_2048 2048 |
| #define I40E_RXBUFFER_3072 3072 /* For FCoE MTU of 2158 */ |
| #define I40E_RXBUFFER_4096 4096 |
| #define I40E_RXBUFFER_8192 8192 |
| #define I40E_MAX_RXBUFFER 9728 /* largest size for single descriptor */ |
| |
| /* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we |
| * reserve 2 more, and skb_shared_info adds an additional 384 bytes more, |
| * this adds up to 512 bytes of extra data meaning the smallest allocation |
| * we could have is 1K. |
| * i.e. RXBUFFER_256 --> 960 byte skb (size-1024 slab) |
| * i.e. RXBUFFER_512 --> 1216 byte skb (size-2048 slab) |
| */ |
| #define I40E_RX_HDR_SIZE I40E_RXBUFFER_256 |
| #define i40e_rx_desc i40e_32byte_rx_desc |
| |
| /** |
| * i40e_test_staterr - tests bits in Rx descriptor status and error fields |
| * @rx_desc: pointer to receive descriptor (in le64 format) |
| * @stat_err_bits: value to mask |
| * |
| * This function does some fast chicanery in order to return the |
| * value of the mask which is really only used for boolean tests. |
| * The status_error_len doesn't need to be shifted because it begins |
| * at offset zero. |
| */ |
| static inline bool i40e_test_staterr(union i40e_rx_desc *rx_desc, |
| const u64 stat_err_bits) |
| { |
| return !!(rx_desc->wb.qword1.status_error_len & |
| cpu_to_le64(stat_err_bits)); |
| } |
| |
| /* How many Rx Buffers do we bundle into one write to the hardware ? */ |
| #define I40E_RX_BUFFER_WRITE 16 /* Must be power of 2 */ |
| #define I40E_RX_INCREMENT(r, i) \ |
| do { \ |
| (i)++; \ |
| if ((i) == (r)->count) \ |
| i = 0; \ |
| r->next_to_clean = i; \ |
| } while (0) |
| |
| #define I40E_RX_NEXT_DESC(r, i, n) \ |
| do { \ |
| (i)++; \ |
| if ((i) == (r)->count) \ |
| i = 0; \ |
| (n) = I40E_RX_DESC((r), (i)); \ |
| } while (0) |
| |
| #define I40E_RX_NEXT_DESC_PREFETCH(r, i, n) \ |
| do { \ |
| I40E_RX_NEXT_DESC((r), (i), (n)); \ |
| prefetch((n)); \ |
| } while (0) |
| |
| #define I40E_MAX_BUFFER_TXD 8 |
| #define I40E_MIN_TX_LEN 17 |
| |
| /* The size limit for a transmit buffer in a descriptor is (16K - 1). |
| * In order to align with the read requests we will align the value to |
| * the nearest 4K which represents our maximum read request size. |
| */ |
| #define I40E_MAX_READ_REQ_SIZE 4096 |
| #define I40E_MAX_DATA_PER_TXD (16 * 1024 - 1) |
| #define I40E_MAX_DATA_PER_TXD_ALIGNED \ |
| (I40E_MAX_DATA_PER_TXD & ~(I40E_MAX_READ_REQ_SIZE - 1)) |
| |
| /* This ugly bit of math is equivalent to DIV_ROUNDUP(size, X) where X is |
| * the value I40E_MAX_DATA_PER_TXD_ALIGNED. It is needed due to the fact |
| * that 12K is not a power of 2 and division is expensive. It is used to |
| * approximate the number of descriptors used per linear buffer. Note |
| * that this will overestimate in some cases as it doesn't account for the |
| * fact that we will add up to 4K - 1 in aligning the 12K buffer, however |
| * the error should not impact things much as large buffers usually mean |
| * we will use fewer descriptors then there are frags in an skb. |
| */ |
| static inline unsigned int i40e_txd_use_count(unsigned int size) |
| { |
| const unsigned int max = I40E_MAX_DATA_PER_TXD_ALIGNED; |
| const unsigned int reciprocal = ((1ull << 32) - 1 + (max / 2)) / max; |
| unsigned int adjust = ~(u32)0; |
| |
| /* if we rounded up on the reciprocal pull down the adjustment */ |
| if ((max * reciprocal) > adjust) |
| adjust = ~(u32)(reciprocal - 1); |
| |
| return (u32)((((u64)size * reciprocal) + adjust) >> 32); |
| } |
| |
| /* Tx Descriptors needed, worst case */ |
| #define DESC_NEEDED (MAX_SKB_FRAGS + 4) |
| #define I40E_MIN_DESC_PENDING 4 |
| |
| #define I40E_TX_FLAGS_HW_VLAN BIT(1) |
| #define I40E_TX_FLAGS_SW_VLAN BIT(2) |
| #define I40E_TX_FLAGS_TSO BIT(3) |
| #define I40E_TX_FLAGS_IPV4 BIT(4) |
| #define I40E_TX_FLAGS_IPV6 BIT(5) |
| #define I40E_TX_FLAGS_FCCRC BIT(6) |
| #define I40E_TX_FLAGS_FSO BIT(7) |
| #define I40E_TX_FLAGS_TSYN BIT(8) |
| #define I40E_TX_FLAGS_FD_SB BIT(9) |
| #define I40E_TX_FLAGS_UDP_TUNNEL BIT(10) |
| #define I40E_TX_FLAGS_VLAN_MASK 0xffff0000 |
| #define I40E_TX_FLAGS_VLAN_PRIO_MASK 0xe0000000 |
| #define I40E_TX_FLAGS_VLAN_PRIO_SHIFT 29 |
| #define I40E_TX_FLAGS_VLAN_SHIFT 16 |
| |
| struct i40e_tx_buffer { |
| struct i40e_tx_desc *next_to_watch; |
| union { |
| struct sk_buff *skb; |
| void *raw_buf; |
| }; |
| unsigned int bytecount; |
| unsigned short gso_segs; |
| |
| DEFINE_DMA_UNMAP_ADDR(dma); |
| DEFINE_DMA_UNMAP_LEN(len); |
| u32 tx_flags; |
| }; |
| |
| struct i40e_rx_buffer { |
| struct sk_buff *skb; |
| dma_addr_t dma; |
| struct page *page; |
| unsigned int page_offset; |
| }; |
| |
| struct i40e_queue_stats { |
| u64 packets; |
| u64 bytes; |
| }; |
| |
| struct i40e_tx_queue_stats { |
| u64 restart_queue; |
| u64 tx_busy; |
| u64 tx_done_old; |
| u64 tx_linearize; |
| u64 tx_force_wb; |
| u64 tx_lost_interrupt; |
| }; |
| |
| struct i40e_rx_queue_stats { |
| u64 non_eop_descs; |
| u64 alloc_page_failed; |
| u64 alloc_buff_failed; |
| u64 page_reuse_count; |
| u64 realloc_count; |
| }; |
| |
| enum i40e_ring_state_t { |
| __I40E_TX_FDIR_INIT_DONE, |
| __I40E_TX_XPS_INIT_DONE, |
| }; |
| |
| /* some useful defines for virtchannel interface, which |
| * is the only remaining user of header split |
| */ |
| #define I40E_RX_DTYPE_NO_SPLIT 0 |
| #define I40E_RX_DTYPE_HEADER_SPLIT 1 |
| #define I40E_RX_DTYPE_SPLIT_ALWAYS 2 |
| #define I40E_RX_SPLIT_L2 0x1 |
| #define I40E_RX_SPLIT_IP 0x2 |
| #define I40E_RX_SPLIT_TCP_UDP 0x4 |
| #define I40E_RX_SPLIT_SCTP 0x8 |
| |
| /* struct that defines a descriptor ring, associated with a VSI */ |
| struct i40e_ring { |
| struct i40e_ring *next; /* pointer to next ring in q_vector */ |
| void *desc; /* Descriptor ring memory */ |
| struct device *dev; /* Used for DMA mapping */ |
| struct net_device *netdev; /* netdev ring maps to */ |
| union { |
| struct i40e_tx_buffer *tx_bi; |
| struct i40e_rx_buffer *rx_bi; |
| }; |
| unsigned long state; |
| u16 queue_index; /* Queue number of ring */ |
| u8 dcb_tc; /* Traffic class of ring */ |
| u8 __iomem *tail; |
| |
| /* high bit set means dynamic, use accessor routines to read/write. |
| * hardware only supports 2us resolution for the ITR registers. |
| * these values always store the USER setting, and must be converted |
| * before programming to a register. |
| */ |
| u16 rx_itr_setting; |
| u16 tx_itr_setting; |
| |
| u16 count; /* Number of descriptors */ |
| u16 reg_idx; /* HW register index of the ring */ |
| u16 rx_buf_len; |
| |
| /* used in interrupt processing */ |
| u16 next_to_use; |
| u16 next_to_clean; |
| |
| u8 atr_sample_rate; |
| u8 atr_count; |
| |
| unsigned long last_rx_timestamp; |
| |
| bool ring_active; /* is ring online or not */ |
| bool arm_wb; /* do something to arm write back */ |
| u8 packet_stride; |
| |
| u16 flags; |
| #define I40E_TXR_FLAGS_WB_ON_ITR BIT(0) |
| #define I40E_TXR_FLAGS_LAST_XMIT_MORE_SET BIT(2) |
| |
| /* stats structs */ |
| struct i40e_queue_stats stats; |
| struct u64_stats_sync syncp; |
| union { |
| struct i40e_tx_queue_stats tx_stats; |
| struct i40e_rx_queue_stats rx_stats; |
| }; |
| |
| unsigned int size; /* length of descriptor ring in bytes */ |
| dma_addr_t dma; /* physical address of ring */ |
| |
| struct i40e_vsi *vsi; /* Backreference to associated VSI */ |
| struct i40e_q_vector *q_vector; /* Backreference to associated vector */ |
| |
| struct rcu_head rcu; /* to avoid race on free */ |
| u16 next_to_alloc; |
| } ____cacheline_internodealigned_in_smp; |
| |
| enum i40e_latency_range { |
| I40E_LOWEST_LATENCY = 0, |
| I40E_LOW_LATENCY = 1, |
| I40E_BULK_LATENCY = 2, |
| I40E_ULTRA_LATENCY = 3, |
| }; |
| |
| struct i40e_ring_container { |
| /* array of pointers to rings */ |
| struct i40e_ring *ring; |
| unsigned int total_bytes; /* total bytes processed this int */ |
| unsigned int total_packets; /* total packets processed this int */ |
| u16 count; |
| enum i40e_latency_range latency_range; |
| u16 itr; |
| }; |
| |
| /* iterator for handling rings in ring container */ |
| #define i40e_for_each_ring(pos, head) \ |
| for (pos = (head).ring; pos != NULL; pos = pos->next) |
| |
| bool i40e_alloc_rx_buffers(struct i40e_ring *rxr, u16 cleaned_count); |
| netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev); |
| void i40e_clean_tx_ring(struct i40e_ring *tx_ring); |
| void i40e_clean_rx_ring(struct i40e_ring *rx_ring); |
| int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring); |
| int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring); |
| void i40e_free_tx_resources(struct i40e_ring *tx_ring); |
| void i40e_free_rx_resources(struct i40e_ring *rx_ring); |
| int i40e_napi_poll(struct napi_struct *napi, int budget); |
| #ifdef I40E_FCOE |
| void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb, |
| struct i40e_tx_buffer *first, u32 tx_flags, |
| const u8 hdr_len, u32 td_cmd, u32 td_offset); |
| int i40e_tx_prepare_vlan_flags(struct sk_buff *skb, |
| struct i40e_ring *tx_ring, u32 *flags); |
| #endif |
| void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector); |
| u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw); |
| int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size); |
| bool __i40e_chk_linearize(struct sk_buff *skb); |
| |
| /** |
| * i40e_get_head - Retrieve head from head writeback |
| * @tx_ring: tx ring to fetch head of |
| * |
| * Returns value of Tx ring head based on value stored |
| * in head write-back location |
| **/ |
| static inline u32 i40e_get_head(struct i40e_ring *tx_ring) |
| { |
| void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count; |
| |
| return le32_to_cpu(*(volatile __le32 *)head); |
| } |
| |
| /** |
| * i40e_xmit_descriptor_count - calculate number of Tx descriptors needed |
| * @skb: send buffer |
| * @tx_ring: ring to send buffer on |
| * |
| * Returns number of data descriptors needed for this skb. Returns 0 to indicate |
| * there is not enough descriptors available in this ring since we need at least |
| * one descriptor. |
| **/ |
| static inline int i40e_xmit_descriptor_count(struct sk_buff *skb) |
| { |
| const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0]; |
| unsigned int nr_frags = skb_shinfo(skb)->nr_frags; |
| int count = 0, size = skb_headlen(skb); |
| |
| for (;;) { |
| count += i40e_txd_use_count(size); |
| |
| if (!nr_frags--) |
| break; |
| |
| size = skb_frag_size(frag++); |
| } |
| |
| return count; |
| } |
| |
| /** |
| * i40e_maybe_stop_tx - 1st level check for Tx stop conditions |
| * @tx_ring: the ring to be checked |
| * @size: the size buffer we want to assure is available |
| * |
| * Returns 0 if stop is not needed |
| **/ |
| static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size) |
| { |
| if (likely(I40E_DESC_UNUSED(tx_ring) >= size)) |
| return 0; |
| return __i40e_maybe_stop_tx(tx_ring, size); |
| } |
| |
| /** |
| * i40e_chk_linearize - Check if there are more than 8 fragments per packet |
| * @skb: send buffer |
| * @count: number of buffers used |
| * |
| * Note: Our HW can't scatter-gather more than 8 fragments to build |
| * a packet on the wire and so we need to figure out the cases where we |
| * need to linearize the skb. |
| **/ |
| static inline bool i40e_chk_linearize(struct sk_buff *skb, int count) |
| { |
| /* Both TSO and single send will work if count is less than 8 */ |
| if (likely(count < I40E_MAX_BUFFER_TXD)) |
| return false; |
| |
| if (skb_is_gso(skb)) |
| return __i40e_chk_linearize(skb); |
| |
| /* we can support up to 8 data buffers for a single send */ |
| return count != I40E_MAX_BUFFER_TXD; |
| } |
| |
| /** |
| * i40e_rx_is_fcoe - returns true if the Rx packet type is FCoE |
| * @ptype: the packet type field from Rx descriptor write-back |
| **/ |
| static inline bool i40e_rx_is_fcoe(u16 ptype) |
| { |
| return (ptype >= I40E_RX_PTYPE_L2_FCOE_PAY3) && |
| (ptype <= I40E_RX_PTYPE_L2_FCOE_VFT_FCOTHER); |
| } |
| #endif /* _I40E_TXRX_H_ */ |