blob: 20c2ce26bc9df3531f25e918eb321a81b3c124fe [file] [log] [blame]
/*
*************************************************************************
* Ralink Tech Inc.
* 5F., No.36, Taiyuan St., Jhubei City,
* Hsinchu County 302,
* Taiwan, R.O.C.
*
* (c) Copyright 2002-2007, Ralink Technology, Inc.
*
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
* *
*************************************************************************
Module Name:
rtmp_init.c
Abstract:
Miniport generic portion header file
Revision History:
Who When What
-------- ---------- ----------------------------------------------
Paul Lin 2002-08-01 created
John Chang 2004-08-20 RT2561/2661 use scatter-gather scheme
Jan Lee 2006-09-15 RT2860. Change for 802.11n , EEPROM, Led, BA, HT.
*/
#include "../rt_config.h"
#ifdef RT2860
#include "firmware.h"
#include <linux/bitrev.h>
#endif
#ifdef RT2870
/* New firmware handles both RT2870 and RT3070. */
#include "../../rt3070/firmware.h"
#endif
UCHAR BIT8[] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80};
ULONG BIT32[] = {0x00000001, 0x00000002, 0x00000004, 0x00000008,
0x00000010, 0x00000020, 0x00000040, 0x00000080,
0x00000100, 0x00000200, 0x00000400, 0x00000800,
0x00001000, 0x00002000, 0x00004000, 0x00008000,
0x00010000, 0x00020000, 0x00040000, 0x00080000,
0x00100000, 0x00200000, 0x00400000, 0x00800000,
0x01000000, 0x02000000, 0x04000000, 0x08000000,
0x10000000, 0x20000000, 0x40000000, 0x80000000};
char* CipherName[] = {"none","wep64","wep128","TKIP","AES","CKIP64","CKIP128"};
//
// BBP register initialization set
//
REG_PAIR BBPRegTable[] = {
{BBP_R65, 0x2C}, // fix rssi issue
{BBP_R66, 0x38}, // Also set this default value to pAd->BbpTuning.R66CurrentValue at initial
{BBP_R69, 0x12},
{BBP_R70, 0xa}, // BBP_R70 will change to 0x8 in ApStartUp and LinkUp for rt2860C, otherwise value is 0xa
{BBP_R73, 0x10},
{BBP_R81, 0x37},
{BBP_R82, 0x62},
{BBP_R83, 0x6A},
{BBP_R84, 0x99}, // 0x19 is for rt2860E and after. This is for extension channel overlapping IOT. 0x99 is for rt2860D and before
{BBP_R86, 0x00}, // middle range issue, Rory @2008-01-28
{BBP_R91, 0x04}, // middle range issue, Rory @2008-01-28
{BBP_R92, 0x00}, // middle range issue, Rory @2008-01-28
{BBP_R103, 0x00}, // near range high-power issue, requested from Gary @2008-0528
{BBP_R105, 0x05}, // 0x05 is for rt2860E to turn on FEQ control. It is safe for rt2860D and before, because Bit 7:2 are reserved in rt2860D and before.
};
#define NUM_BBP_REG_PARMS (sizeof(BBPRegTable) / sizeof(REG_PAIR))
//
// RF register initialization set
//
#ifdef RT2870
REG_PAIR RT30xx_RFRegTable[] = {
{RF_R04, 0x40},
{RF_R05, 0x03},
{RF_R06, 0x02},
{RF_R07, 0x70},
{RF_R09, 0x0F},
{RF_R10, 0x41},
{RF_R11, 0x21},
{RF_R12, 0x7B},
{RF_R14, 0x90},
{RF_R15, 0x58},
{RF_R16, 0xB3},
{RF_R17, 0x92},
{RF_R18, 0x2C},
{RF_R19, 0x02},
{RF_R20, 0xBA},
{RF_R21, 0xDB},
{RF_R24, 0x16},
{RF_R25, 0x01},
{RF_R29, 0x1F},
};
#define NUM_RF_REG_PARMS (sizeof(RT30xx_RFRegTable) / sizeof(REG_PAIR))
#endif // RT2870 //
//
// ASIC register initialization sets
//
RTMP_REG_PAIR MACRegTable[] = {
#if defined(HW_BEACON_OFFSET) && (HW_BEACON_OFFSET == 0x200)
{BCN_OFFSET0, 0xf8f0e8e0}, /* 0x3800(e0), 0x3A00(e8), 0x3C00(f0), 0x3E00(f8), 512B for each beacon */
{BCN_OFFSET1, 0x6f77d0c8}, /* 0x3200(c8), 0x3400(d0), 0x1DC0(77), 0x1BC0(6f), 512B for each beacon */
#elif defined(HW_BEACON_OFFSET) && (HW_BEACON_OFFSET == 0x100)
{BCN_OFFSET0, 0xece8e4e0}, /* 0x3800, 0x3A00, 0x3C00, 0x3E00, 512B for each beacon */
{BCN_OFFSET1, 0xfcf8f4f0}, /* 0x3800, 0x3A00, 0x3C00, 0x3E00, 512B for each beacon */
#else
#error You must re-calculate new value for BCN_OFFSET0 & BCN_OFFSET1 in MACRegTable[]!!!
#endif // HW_BEACON_OFFSET //
{LEGACY_BASIC_RATE, 0x0000013f}, // Basic rate set bitmap
{HT_BASIC_RATE, 0x00008003}, // Basic HT rate set , 20M, MCS=3, MM. Format is the same as in TXWI.
{MAC_SYS_CTRL, 0x00}, // 0x1004, , default Disable RX
{RX_FILTR_CFG, 0x17f97}, //0x1400 , RX filter control,
{BKOFF_SLOT_CFG, 0x209}, // default set short slot time, CC_DELAY_TIME should be 2
{TX_SW_CFG0, 0x0}, // Gary,2008-05-21 for CWC test
{TX_SW_CFG1, 0x80606}, // Gary,2006-08-23
{TX_LINK_CFG, 0x1020}, // Gary,2006-08-23
{TX_TIMEOUT_CFG, 0x000a2090}, // CCK has some problem. So increase timieout value. 2006-10-09// MArvek RT , Modify for 2860E ,2007-08-01
{MAX_LEN_CFG, MAX_AGGREGATION_SIZE | 0x00001000}, // 0x3018, MAX frame length. Max PSDU = 16kbytes.
{LED_CFG, 0x7f031e46}, // Gary, 2006-08-23
{PBF_MAX_PCNT, 0x1F3FBF9F}, //0x1F3f7f9f}, //Jan, 2006/04/20
{TX_RTY_CFG, 0x47d01f0f}, // Jan, 2006/11/16, Set TxWI->ACK =0 in Probe Rsp Modify for 2860E ,2007-08-03
{AUTO_RSP_CFG, 0x00000013}, // Initial Auto_Responder, because QA will turn off Auto-Responder
{CCK_PROT_CFG, 0x05740003 /*0x01740003*/}, // Initial Auto_Responder, because QA will turn off Auto-Responder. And RTS threshold is enabled.
{OFDM_PROT_CFG, 0x05740003 /*0x01740003*/}, // Initial Auto_Responder, because QA will turn off Auto-Responder. And RTS threshold is enabled.
//PS packets use Tx1Q (for HCCA) when dequeue from PS unicast queue (WiFi WPA2 MA9_DT1 for Marvell B STA)
#ifdef RT2870
{PBF_CFG, 0xf40006}, // Only enable Queue 2
{MM40_PROT_CFG, 0x3F44084}, // Initial Auto_Responder, because QA will turn off Auto-Responder
{WPDMA_GLO_CFG, 0x00000030},
#endif // RT2870 //
{GF20_PROT_CFG, 0x01744004}, // set 19:18 --> Short NAV for MIMO PS
{GF40_PROT_CFG, 0x03F44084},
{MM20_PROT_CFG, 0x01744004},
#ifdef RT2860
{MM40_PROT_CFG, 0x03F54084},
#endif
{TXOP_CTRL_CFG, 0x0000583f, /*0x0000243f*/ /*0x000024bf*/}, //Extension channel backoff.
{TX_RTS_CFG, 0x00092b20},
{EXP_ACK_TIME, 0x002400ca}, // default value
{TXOP_HLDR_ET, 0x00000002},
/* Jerry comments 2008/01/16: we use SIFS = 10us in CCK defaultly, but it seems that 10us
is too small for INTEL 2200bg card, so in MBSS mode, the delta time between beacon0
and beacon1 is SIFS (10us), so if INTEL 2200bg card connects to BSS0, the ping
will always lost. So we change the SIFS of CCK from 10us to 16us. */
{XIFS_TIME_CFG, 0x33a41010},
{PWR_PIN_CFG, 0x00000003}, // patch for 2880-E
};
RTMP_REG_PAIR STAMACRegTable[] = {
{WMM_AIFSN_CFG, 0x00002273},
{WMM_CWMIN_CFG, 0x00002344},
{WMM_CWMAX_CFG, 0x000034aa},
};
#define NUM_MAC_REG_PARMS (sizeof(MACRegTable) / sizeof(RTMP_REG_PAIR))
#define NUM_STA_MAC_REG_PARMS (sizeof(STAMACRegTable) / sizeof(RTMP_REG_PAIR))
#ifdef RT2870
//
// RT2870 Firmware Spec only used 1 oct for version expression
//
#define FIRMWARE_MINOR_VERSION 7
#endif // RT2870 //
// New 8k byte firmware size for RT3071/RT3072
#define FIRMWAREIMAGE_MAX_LENGTH 0x2000
#define FIRMWAREIMAGE_LENGTH (sizeof (FirmwareImage) / sizeof(UCHAR))
#define FIRMWARE_MAJOR_VERSION 0
#define FIRMWAREIMAGEV1_LENGTH 0x1000
#define FIRMWAREIMAGEV2_LENGTH 0x1000
#ifdef RT2860
#define FIRMWARE_MINOR_VERSION 2
#endif
/*
========================================================================
Routine Description:
Allocate RTMP_ADAPTER data block and do some initialization
Arguments:
Adapter Pointer to our adapter
Return Value:
NDIS_STATUS_SUCCESS
NDIS_STATUS_FAILURE
IRQL = PASSIVE_LEVEL
Note:
========================================================================
*/
NDIS_STATUS RTMPAllocAdapterBlock(
IN PVOID handle,
OUT PRTMP_ADAPTER *ppAdapter)
{
PRTMP_ADAPTER pAd;
NDIS_STATUS Status;
INT index;
UCHAR *pBeaconBuf = NULL;
DBGPRINT(RT_DEBUG_TRACE, ("--> RTMPAllocAdapterBlock\n"));
*ppAdapter = NULL;
do
{
// Allocate RTMP_ADAPTER memory block
pBeaconBuf = kmalloc(MAX_BEACON_SIZE, MEM_ALLOC_FLAG);
if (pBeaconBuf == NULL)
{
Status = NDIS_STATUS_FAILURE;
DBGPRINT_ERR(("Failed to allocate memory - BeaconBuf!\n"));
break;
}
Status = AdapterBlockAllocateMemory(handle, (PVOID *)&pAd);
if (Status != NDIS_STATUS_SUCCESS)
{
DBGPRINT_ERR(("Failed to allocate memory - ADAPTER\n"));
break;
}
pAd->BeaconBuf = pBeaconBuf;
printk("\n\n=== pAd = %p, size = %d ===\n\n", pAd, (UINT32)sizeof(RTMP_ADAPTER));
// Init spin locks
NdisAllocateSpinLock(&pAd->MgmtRingLock);
#ifdef RT2860
NdisAllocateSpinLock(&pAd->RxRingLock);
#endif
for (index =0 ; index < NUM_OF_TX_RING; index++)
{
NdisAllocateSpinLock(&pAd->TxSwQueueLock[index]);
NdisAllocateSpinLock(&pAd->DeQueueLock[index]);
pAd->DeQueueRunning[index] = FALSE;
}
NdisAllocateSpinLock(&pAd->irq_lock);
} while (FALSE);
if ((Status != NDIS_STATUS_SUCCESS) && (pBeaconBuf))
kfree(pBeaconBuf);
*ppAdapter = pAd;
DBGPRINT_S(Status, ("<-- RTMPAllocAdapterBlock, Status=%x\n", Status));
return Status;
}
/*
========================================================================
Routine Description:
Read initial Tx power per MCS and BW from EEPROM
Arguments:
Adapter Pointer to our adapter
Return Value:
None
IRQL = PASSIVE_LEVEL
Note:
========================================================================
*/
VOID RTMPReadTxPwrPerRate(
IN PRTMP_ADAPTER pAd)
{
ULONG data, Adata, Gdata;
USHORT i, value, value2;
INT Apwrdelta, Gpwrdelta;
UCHAR t1,t2,t3,t4;
BOOLEAN bValid, bApwrdeltaMinus = TRUE, bGpwrdeltaMinus = TRUE;
//
// Get power delta for 20MHz and 40MHz.
//
DBGPRINT(RT_DEBUG_TRACE, ("Txpower per Rate\n"));
RT28xx_EEPROM_READ16(pAd, EEPROM_TXPOWER_DELTA, value2);
Apwrdelta = 0;
Gpwrdelta = 0;
if ((value2 & 0xff) != 0xff)
{
if ((value2 & 0x80))
Gpwrdelta = (value2&0xf);
if ((value2 & 0x40))
bGpwrdeltaMinus = FALSE;
else
bGpwrdeltaMinus = TRUE;
}
if ((value2 & 0xff00) != 0xff00)
{
if ((value2 & 0x8000))
Apwrdelta = ((value2&0xf00)>>8);
if ((value2 & 0x4000))
bApwrdeltaMinus = FALSE;
else
bApwrdeltaMinus = TRUE;
}
DBGPRINT(RT_DEBUG_TRACE, ("Gpwrdelta = %x, Apwrdelta = %x .\n", Gpwrdelta, Apwrdelta));
//
// Get Txpower per MCS for 20MHz in 2.4G.
//
for (i=0; i<5; i++)
{
RT28xx_EEPROM_READ16(pAd, EEPROM_TXPOWER_BYRATE_20MHZ_2_4G + i*4, value);
data = value;
if (bApwrdeltaMinus == FALSE)
{
t1 = (value&0xf)+(Apwrdelta);
if (t1 > 0xf)
t1 = 0xf;
t2 = ((value&0xf0)>>4)+(Apwrdelta);
if (t2 > 0xf)
t2 = 0xf;
t3 = ((value&0xf00)>>8)+(Apwrdelta);
if (t3 > 0xf)
t3 = 0xf;
t4 = ((value&0xf000)>>12)+(Apwrdelta);
if (t4 > 0xf)
t4 = 0xf;
}
else
{
if ((value&0xf) > Apwrdelta)
t1 = (value&0xf)-(Apwrdelta);
else
t1 = 0;
if (((value&0xf0)>>4) > Apwrdelta)
t2 = ((value&0xf0)>>4)-(Apwrdelta);
else
t2 = 0;
if (((value&0xf00)>>8) > Apwrdelta)
t3 = ((value&0xf00)>>8)-(Apwrdelta);
else
t3 = 0;
if (((value&0xf000)>>12) > Apwrdelta)
t4 = ((value&0xf000)>>12)-(Apwrdelta);
else
t4 = 0;
}
Adata = t1 + (t2<<4) + (t3<<8) + (t4<<12);
if (bGpwrdeltaMinus == FALSE)
{
t1 = (value&0xf)+(Gpwrdelta);
if (t1 > 0xf)
t1 = 0xf;
t2 = ((value&0xf0)>>4)+(Gpwrdelta);
if (t2 > 0xf)
t2 = 0xf;
t3 = ((value&0xf00)>>8)+(Gpwrdelta);
if (t3 > 0xf)
t3 = 0xf;
t4 = ((value&0xf000)>>12)+(Gpwrdelta);
if (t4 > 0xf)
t4 = 0xf;
}
else
{
if ((value&0xf) > Gpwrdelta)
t1 = (value&0xf)-(Gpwrdelta);
else
t1 = 0;
if (((value&0xf0)>>4) > Gpwrdelta)
t2 = ((value&0xf0)>>4)-(Gpwrdelta);
else
t2 = 0;
if (((value&0xf00)>>8) > Gpwrdelta)
t3 = ((value&0xf00)>>8)-(Gpwrdelta);
else
t3 = 0;
if (((value&0xf000)>>12) > Gpwrdelta)
t4 = ((value&0xf000)>>12)-(Gpwrdelta);
else
t4 = 0;
}
Gdata = t1 + (t2<<4) + (t3<<8) + (t4<<12);
RT28xx_EEPROM_READ16(pAd, EEPROM_TXPOWER_BYRATE_20MHZ_2_4G + i*4 + 2, value);
if (bApwrdeltaMinus == FALSE)
{
t1 = (value&0xf)+(Apwrdelta);
if (t1 > 0xf)
t1 = 0xf;
t2 = ((value&0xf0)>>4)+(Apwrdelta);
if (t2 > 0xf)
t2 = 0xf;
t3 = ((value&0xf00)>>8)+(Apwrdelta);
if (t3 > 0xf)
t3 = 0xf;
t4 = ((value&0xf000)>>12)+(Apwrdelta);
if (t4 > 0xf)
t4 = 0xf;
}
else
{
if ((value&0xf) > Apwrdelta)
t1 = (value&0xf)-(Apwrdelta);
else
t1 = 0;
if (((value&0xf0)>>4) > Apwrdelta)
t2 = ((value&0xf0)>>4)-(Apwrdelta);
else
t2 = 0;
if (((value&0xf00)>>8) > Apwrdelta)
t3 = ((value&0xf00)>>8)-(Apwrdelta);
else
t3 = 0;
if (((value&0xf000)>>12) > Apwrdelta)
t4 = ((value&0xf000)>>12)-(Apwrdelta);
else
t4 = 0;
}
Adata |= ((t1<<16) + (t2<<20) + (t3<<24) + (t4<<28));
if (bGpwrdeltaMinus == FALSE)
{
t1 = (value&0xf)+(Gpwrdelta);
if (t1 > 0xf)
t1 = 0xf;
t2 = ((value&0xf0)>>4)+(Gpwrdelta);
if (t2 > 0xf)
t2 = 0xf;
t3 = ((value&0xf00)>>8)+(Gpwrdelta);
if (t3 > 0xf)
t3 = 0xf;
t4 = ((value&0xf000)>>12)+(Gpwrdelta);
if (t4 > 0xf)
t4 = 0xf;
}
else
{
if ((value&0xf) > Gpwrdelta)
t1 = (value&0xf)-(Gpwrdelta);
else
t1 = 0;
if (((value&0xf0)>>4) > Gpwrdelta)
t2 = ((value&0xf0)>>4)-(Gpwrdelta);
else
t2 = 0;
if (((value&0xf00)>>8) > Gpwrdelta)
t3 = ((value&0xf00)>>8)-(Gpwrdelta);
else
t3 = 0;
if (((value&0xf000)>>12) > Gpwrdelta)
t4 = ((value&0xf000)>>12)-(Gpwrdelta);
else
t4 = 0;
}
Gdata |= ((t1<<16) + (t2<<20) + (t3<<24) + (t4<<28));
data |= (value<<16);
pAd->Tx20MPwrCfgABand[i] = pAd->Tx40MPwrCfgABand[i] = Adata;
pAd->Tx20MPwrCfgGBand[i] = pAd->Tx40MPwrCfgGBand[i] = Gdata;
if (data != 0xffffffff)
RTMP_IO_WRITE32(pAd, TX_PWR_CFG_0 + i*4, data);
DBGPRINT_RAW(RT_DEBUG_TRACE, ("20MHz BW, 2.4G band-%lx, Adata = %lx, Gdata = %lx \n", data, Adata, Gdata));
}
//
// Check this block is valid for 40MHz in 2.4G. If invalid, use parameter for 20MHz in 2.4G
//
bValid = TRUE;
for (i=0; i<6; i++)
{
RT28xx_EEPROM_READ16(pAd, EEPROM_TXPOWER_BYRATE_40MHZ_2_4G + 2 + i*2, value);
if (((value & 0x00FF) == 0x00FF) || ((value & 0xFF00) == 0xFF00))
{
bValid = FALSE;
break;
}
}
//
// Get Txpower per MCS for 40MHz in 2.4G.
//
if (bValid)
{
for (i=0; i<4; i++)
{
RT28xx_EEPROM_READ16(pAd, EEPROM_TXPOWER_BYRATE_40MHZ_2_4G + i*4, value);
if (bGpwrdeltaMinus == FALSE)
{
t1 = (value&0xf)+(Gpwrdelta);
if (t1 > 0xf)
t1 = 0xf;
t2 = ((value&0xf0)>>4)+(Gpwrdelta);
if (t2 > 0xf)
t2 = 0xf;
t3 = ((value&0xf00)>>8)+(Gpwrdelta);
if (t3 > 0xf)
t3 = 0xf;
t4 = ((value&0xf000)>>12)+(Gpwrdelta);
if (t4 > 0xf)
t4 = 0xf;
}
else
{
if ((value&0xf) > Gpwrdelta)
t1 = (value&0xf)-(Gpwrdelta);
else
t1 = 0;
if (((value&0xf0)>>4) > Gpwrdelta)
t2 = ((value&0xf0)>>4)-(Gpwrdelta);
else
t2 = 0;
if (((value&0xf00)>>8) > Gpwrdelta)
t3 = ((value&0xf00)>>8)-(Gpwrdelta);
else
t3 = 0;
if (((value&0xf000)>>12) > Gpwrdelta)
t4 = ((value&0xf000)>>12)-(Gpwrdelta);
else
t4 = 0;
}
Gdata = t1 + (t2<<4) + (t3<<8) + (t4<<12);
RT28xx_EEPROM_READ16(pAd, EEPROM_TXPOWER_BYRATE_40MHZ_2_4G + i*4 + 2, value);
if (bGpwrdeltaMinus == FALSE)
{
t1 = (value&0xf)+(Gpwrdelta);
if (t1 > 0xf)
t1 = 0xf;
t2 = ((value&0xf0)>>4)+(Gpwrdelta);
if (t2 > 0xf)
t2 = 0xf;
t3 = ((value&0xf00)>>8)+(Gpwrdelta);
if (t3 > 0xf)
t3 = 0xf;
t4 = ((value&0xf000)>>12)+(Gpwrdelta);
if (t4 > 0xf)
t4 = 0xf;
}
else
{
if ((value&0xf) > Gpwrdelta)
t1 = (value&0xf)-(Gpwrdelta);
else
t1 = 0;
if (((value&0xf0)>>4) > Gpwrdelta)
t2 = ((value&0xf0)>>4)-(Gpwrdelta);
else
t2 = 0;
if (((value&0xf00)>>8) > Gpwrdelta)
t3 = ((value&0xf00)>>8)-(Gpwrdelta);
else
t3 = 0;
if (((value&0xf000)>>12) > Gpwrdelta)
t4 = ((value&0xf000)>>12)-(Gpwrdelta);
else
t4 = 0;
}
Gdata |= ((t1<<16) + (t2<<20) + (t3<<24) + (t4<<28));
if (i == 0)
pAd->Tx40MPwrCfgGBand[i+1] = (pAd->Tx40MPwrCfgGBand[i+1] & 0x0000FFFF) | (Gdata & 0xFFFF0000);
else
pAd->Tx40MPwrCfgGBand[i+1] = Gdata;
DBGPRINT_RAW(RT_DEBUG_TRACE, ("40MHz BW, 2.4G band, Gdata = %lx \n", Gdata));
}
}
//
// Check this block is valid for 20MHz in 5G. If invalid, use parameter for 20MHz in 2.4G
//
bValid = TRUE;
for (i=0; i<8; i++)
{
RT28xx_EEPROM_READ16(pAd, EEPROM_TXPOWER_BYRATE_20MHZ_5G + 2 + i*2, value);
if (((value & 0x00FF) == 0x00FF) || ((value & 0xFF00) == 0xFF00))
{
bValid = FALSE;
break;
}
}
//
// Get Txpower per MCS for 20MHz in 5G.
//
if (bValid)
{
for (i=0; i<5; i++)
{
RT28xx_EEPROM_READ16(pAd, EEPROM_TXPOWER_BYRATE_20MHZ_5G + i*4, value);
if (bApwrdeltaMinus == FALSE)
{
t1 = (value&0xf)+(Apwrdelta);
if (t1 > 0xf)
t1 = 0xf;
t2 = ((value&0xf0)>>4)+(Apwrdelta);
if (t2 > 0xf)
t2 = 0xf;
t3 = ((value&0xf00)>>8)+(Apwrdelta);
if (t3 > 0xf)
t3 = 0xf;
t4 = ((value&0xf000)>>12)+(Apwrdelta);
if (t4 > 0xf)
t4 = 0xf;
}
else
{
if ((value&0xf) > Apwrdelta)
t1 = (value&0xf)-(Apwrdelta);
else
t1 = 0;
if (((value&0xf0)>>4) > Apwrdelta)
t2 = ((value&0xf0)>>4)-(Apwrdelta);
else
t2 = 0;
if (((value&0xf00)>>8) > Apwrdelta)
t3 = ((value&0xf00)>>8)-(Apwrdelta);
else
t3 = 0;
if (((value&0xf000)>>12) > Apwrdelta)
t4 = ((value&0xf000)>>12)-(Apwrdelta);
else
t4 = 0;
}
Adata = t1 + (t2<<4) + (t3<<8) + (t4<<12);
RT28xx_EEPROM_READ16(pAd, EEPROM_TXPOWER_BYRATE_20MHZ_5G + i*4 + 2, value);
if (bApwrdeltaMinus == FALSE)
{
t1 = (value&0xf)+(Apwrdelta);
if (t1 > 0xf)
t1 = 0xf;
t2 = ((value&0xf0)>>4)+(Apwrdelta);
if (t2 > 0xf)
t2 = 0xf;
t3 = ((value&0xf00)>>8)+(Apwrdelta);
if (t3 > 0xf)
t3 = 0xf;
t4 = ((value&0xf000)>>12)+(Apwrdelta);
if (t4 > 0xf)
t4 = 0xf;
}
else
{
if ((value&0xf) > Apwrdelta)
t1 = (value&0xf)-(Apwrdelta);
else
t1 = 0;
if (((value&0xf0)>>4) > Apwrdelta)
t2 = ((value&0xf0)>>4)-(Apwrdelta);
else
t2 = 0;
if (((value&0xf00)>>8) > Apwrdelta)
t3 = ((value&0xf00)>>8)-(Apwrdelta);
else
t3 = 0;
if (((value&0xf000)>>12) > Apwrdelta)
t4 = ((value&0xf000)>>12)-(Apwrdelta);
else
t4 = 0;
}
Adata |= ((t1<<16) + (t2<<20) + (t3<<24) + (t4<<28));
if (i == 0)
pAd->Tx20MPwrCfgABand[i] = (pAd->Tx20MPwrCfgABand[i] & 0x0000FFFF) | (Adata & 0xFFFF0000);
else
pAd->Tx20MPwrCfgABand[i] = Adata;
DBGPRINT_RAW(RT_DEBUG_TRACE, ("20MHz BW, 5GHz band, Adata = %lx \n", Adata));
}
}
//
// Check this block is valid for 40MHz in 5G. If invalid, use parameter for 20MHz in 2.4G
//
bValid = TRUE;
for (i=0; i<6; i++)
{
RT28xx_EEPROM_READ16(pAd, EEPROM_TXPOWER_BYRATE_40MHZ_5G + 2 + i*2, value);
if (((value & 0x00FF) == 0x00FF) || ((value & 0xFF00) == 0xFF00))
{
bValid = FALSE;
break;
}
}
//
// Get Txpower per MCS for 40MHz in 5G.
//
if (bValid)
{
for (i=0; i<4; i++)
{
RT28xx_EEPROM_READ16(pAd, EEPROM_TXPOWER_BYRATE_40MHZ_5G + i*4, value);
if (bApwrdeltaMinus == FALSE)
{
t1 = (value&0xf)+(Apwrdelta);
if (t1 > 0xf)
t1 = 0xf;
t2 = ((value&0xf0)>>4)+(Apwrdelta);
if (t2 > 0xf)
t2 = 0xf;
t3 = ((value&0xf00)>>8)+(Apwrdelta);
if (t3 > 0xf)
t3 = 0xf;
t4 = ((value&0xf000)>>12)+(Apwrdelta);
if (t4 > 0xf)
t4 = 0xf;
}
else
{
if ((value&0xf) > Apwrdelta)
t1 = (value&0xf)-(Apwrdelta);
else
t1 = 0;
if (((value&0xf0)>>4) > Apwrdelta)
t2 = ((value&0xf0)>>4)-(Apwrdelta);
else
t2 = 0;
if (((value&0xf00)>>8) > Apwrdelta)
t3 = ((value&0xf00)>>8)-(Apwrdelta);
else
t3 = 0;
if (((value&0xf000)>>12) > Apwrdelta)
t4 = ((value&0xf000)>>12)-(Apwrdelta);
else
t4 = 0;
}
Adata = t1 + (t2<<4) + (t3<<8) + (t4<<12);
RT28xx_EEPROM_READ16(pAd, EEPROM_TXPOWER_BYRATE_40MHZ_5G + i*4 + 2, value);
if (bApwrdeltaMinus == FALSE)
{
t1 = (value&0xf)+(Apwrdelta);
if (t1 > 0xf)
t1 = 0xf;
t2 = ((value&0xf0)>>4)+(Apwrdelta);
if (t2 > 0xf)
t2 = 0xf;
t3 = ((value&0xf00)>>8)+(Apwrdelta);
if (t3 > 0xf)
t3 = 0xf;
t4 = ((value&0xf000)>>12)+(Apwrdelta);
if (t4 > 0xf)
t4 = 0xf;
}
else
{
if ((value&0xf) > Apwrdelta)
t1 = (value&0xf)-(Apwrdelta);
else
t1 = 0;
if (((value&0xf0)>>4) > Apwrdelta)
t2 = ((value&0xf0)>>4)-(Apwrdelta);
else
t2 = 0;
if (((value&0xf00)>>8) > Apwrdelta)
t3 = ((value&0xf00)>>8)-(Apwrdelta);
else
t3 = 0;
if (((value&0xf000)>>12) > Apwrdelta)
t4 = ((value&0xf000)>>12)-(Apwrdelta);
else
t4 = 0;
}
Adata |= ((t1<<16) + (t2<<20) + (t3<<24) + (t4<<28));
if (i == 0)
pAd->Tx40MPwrCfgABand[i+1] = (pAd->Tx40MPwrCfgABand[i+1] & 0x0000FFFF) | (Adata & 0xFFFF0000);
else
pAd->Tx40MPwrCfgABand[i+1] = Adata;
DBGPRINT_RAW(RT_DEBUG_TRACE, ("40MHz BW, 5GHz band, Adata = %lx \n", Adata));
}
}
}
/*
========================================================================
Routine Description:
Read initial channel power parameters from EEPROM
Arguments:
Adapter Pointer to our adapter
Return Value:
None
IRQL = PASSIVE_LEVEL
Note:
========================================================================
*/
VOID RTMPReadChannelPwr(
IN PRTMP_ADAPTER pAd)
{
UCHAR i, choffset;
EEPROM_TX_PWR_STRUC Power;
EEPROM_TX_PWR_STRUC Power2;
// Read Tx power value for all channels
// Value from 1 - 0x7f. Default value is 24.
// Power value : 2.4G 0x00 (0) ~ 0x1F (31)
// : 5.5G 0xF9 (-7) ~ 0x0F (15)
// 0. 11b/g, ch1 - ch 14
for (i = 0; i < 7; i++)
{
RT28xx_EEPROM_READ16(pAd, EEPROM_G_TX_PWR_OFFSET + i * 2, Power.word);
RT28xx_EEPROM_READ16(pAd, EEPROM_G_TX2_PWR_OFFSET + i * 2, Power2.word);
pAd->TxPower[i * 2].Channel = i * 2 + 1;
pAd->TxPower[i * 2 + 1].Channel = i * 2 + 2;
if ((Power.field.Byte0 > 31) || (Power.field.Byte0 < 0))
pAd->TxPower[i * 2].Power = DEFAULT_RF_TX_POWER;
else
pAd->TxPower[i * 2].Power = Power.field.Byte0;
if ((Power.field.Byte1 > 31) || (Power.field.Byte1 < 0))
pAd->TxPower[i * 2 + 1].Power = DEFAULT_RF_TX_POWER;
else
pAd->TxPower[i * 2 + 1].Power = Power.field.Byte1;
if ((Power2.field.Byte0 > 31) || (Power2.field.Byte0 < 0))
pAd->TxPower[i * 2].Power2 = DEFAULT_RF_TX_POWER;
else
pAd->TxPower[i * 2].Power2 = Power2.field.Byte0;
if ((Power2.field.Byte1 > 31) || (Power2.field.Byte1 < 0))
pAd->TxPower[i * 2 + 1].Power2 = DEFAULT_RF_TX_POWER;
else
pAd->TxPower[i * 2 + 1].Power2 = Power2.field.Byte1;
}
// 1. U-NII lower/middle band: 36, 38, 40; 44, 46, 48; 52, 54, 56; 60, 62, 64 (including central frequency in BW 40MHz)
// 1.1 Fill up channel
choffset = 14;
for (i = 0; i < 4; i++)
{
pAd->TxPower[3 * i + choffset + 0].Channel = 36 + i * 8 + 0;
pAd->TxPower[3 * i + choffset + 0].Power = DEFAULT_RF_TX_POWER;
pAd->TxPower[3 * i + choffset + 0].Power2 = DEFAULT_RF_TX_POWER;
pAd->TxPower[3 * i + choffset + 1].Channel = 36 + i * 8 + 2;
pAd->TxPower[3 * i + choffset + 1].Power = DEFAULT_RF_TX_POWER;
pAd->TxPower[3 * i + choffset + 1].Power2 = DEFAULT_RF_TX_POWER;
pAd->TxPower[3 * i + choffset + 2].Channel = 36 + i * 8 + 4;
pAd->TxPower[3 * i + choffset + 2].Power = DEFAULT_RF_TX_POWER;
pAd->TxPower[3 * i + choffset + 2].Power2 = DEFAULT_RF_TX_POWER;
}
// 1.2 Fill up power
for (i = 0; i < 6; i++)
{
RT28xx_EEPROM_READ16(pAd, EEPROM_A_TX_PWR_OFFSET + i * 2, Power.word);
RT28xx_EEPROM_READ16(pAd, EEPROM_A_TX2_PWR_OFFSET + i * 2, Power2.word);
if ((Power.field.Byte0 < 16) && (Power.field.Byte0 >= -7))
pAd->TxPower[i * 2 + choffset + 0].Power = Power.field.Byte0;
if ((Power.field.Byte1 < 16) && (Power.field.Byte1 >= -7))
pAd->TxPower[i * 2 + choffset + 1].Power = Power.field.Byte1;
if ((Power2.field.Byte0 < 16) && (Power2.field.Byte0 >= -7))
pAd->TxPower[i * 2 + choffset + 0].Power2 = Power2.field.Byte0;
if ((Power2.field.Byte1 < 16) && (Power2.field.Byte1 >= -7))
pAd->TxPower[i * 2 + choffset + 1].Power2 = Power2.field.Byte1;
}
// 2. HipperLAN 2 100, 102 ,104; 108, 110, 112; 116, 118, 120; 124, 126, 128; 132, 134, 136; 140 (including central frequency in BW 40MHz)
// 2.1 Fill up channel
choffset = 14 + 12;
for (i = 0; i < 5; i++)
{
pAd->TxPower[3 * i + choffset + 0].Channel = 100 + i * 8 + 0;
pAd->TxPower[3 * i + choffset + 0].Power = DEFAULT_RF_TX_POWER;
pAd->TxPower[3 * i + choffset + 0].Power2 = DEFAULT_RF_TX_POWER;
pAd->TxPower[3 * i + choffset + 1].Channel = 100 + i * 8 + 2;
pAd->TxPower[3 * i + choffset + 1].Power = DEFAULT_RF_TX_POWER;
pAd->TxPower[3 * i + choffset + 1].Power2 = DEFAULT_RF_TX_POWER;
pAd->TxPower[3 * i + choffset + 2].Channel = 100 + i * 8 + 4;
pAd->TxPower[3 * i + choffset + 2].Power = DEFAULT_RF_TX_POWER;
pAd->TxPower[3 * i + choffset + 2].Power2 = DEFAULT_RF_TX_POWER;
}
pAd->TxPower[3 * 5 + choffset + 0].Channel = 140;
pAd->TxPower[3 * 5 + choffset + 0].Power = DEFAULT_RF_TX_POWER;
pAd->TxPower[3 * 5 + choffset + 0].Power2 = DEFAULT_RF_TX_POWER;
// 2.2 Fill up power
for (i = 0; i < 8; i++)
{
RT28xx_EEPROM_READ16(pAd, EEPROM_A_TX_PWR_OFFSET + (choffset - 14) + i * 2, Power.word);
RT28xx_EEPROM_READ16(pAd, EEPROM_A_TX2_PWR_OFFSET + (choffset - 14) + i * 2, Power2.word);
if ((Power.field.Byte0 < 16) && (Power.field.Byte0 >= -7))
pAd->TxPower[i * 2 + choffset + 0].Power = Power.field.Byte0;
if ((Power.field.Byte1 < 16) && (Power.field.Byte1 >= -7))
pAd->TxPower[i * 2 + choffset + 1].Power = Power.field.Byte1;
if ((Power2.field.Byte0 < 16) && (Power2.field.Byte0 >= -7))
pAd->TxPower[i * 2 + choffset + 0].Power2 = Power2.field.Byte0;
if ((Power2.field.Byte1 < 16) && (Power2.field.Byte1 >= -7))
pAd->TxPower[i * 2 + choffset + 1].Power2 = Power2.field.Byte1;
}
// 3. U-NII upper band: 149, 151, 153; 157, 159, 161; 165 (including central frequency in BW 40MHz)
// 3.1 Fill up channel
choffset = 14 + 12 + 16;
for (i = 0; i < 2; i++)
{
pAd->TxPower[3 * i + choffset + 0].Channel = 149 + i * 8 + 0;
pAd->TxPower[3 * i + choffset + 0].Power = DEFAULT_RF_TX_POWER;
pAd->TxPower[3 * i + choffset + 0].Power2 = DEFAULT_RF_TX_POWER;
pAd->TxPower[3 * i + choffset + 1].Channel = 149 + i * 8 + 2;
pAd->TxPower[3 * i + choffset + 1].Power = DEFAULT_RF_TX_POWER;
pAd->TxPower[3 * i + choffset + 1].Power2 = DEFAULT_RF_TX_POWER;
pAd->TxPower[3 * i + choffset + 2].Channel = 149 + i * 8 + 4;
pAd->TxPower[3 * i + choffset + 2].Power = DEFAULT_RF_TX_POWER;
pAd->TxPower[3 * i + choffset + 2].Power2 = DEFAULT_RF_TX_POWER;
}
pAd->TxPower[3 * 2 + choffset + 0].Channel = 165;
pAd->TxPower[3 * 2 + choffset + 0].Power = DEFAULT_RF_TX_POWER;
pAd->TxPower[3 * 2 + choffset + 0].Power2 = DEFAULT_RF_TX_POWER;
// 3.2 Fill up power
for (i = 0; i < 4; i++)
{
RT28xx_EEPROM_READ16(pAd, EEPROM_A_TX_PWR_OFFSET + (choffset - 14) + i * 2, Power.word);
RT28xx_EEPROM_READ16(pAd, EEPROM_A_TX2_PWR_OFFSET + (choffset - 14) + i * 2, Power2.word);
if ((Power.field.Byte0 < 16) && (Power.field.Byte0 >= -7))
pAd->TxPower[i * 2 + choffset + 0].Power = Power.field.Byte0;
if ((Power.field.Byte1 < 16) && (Power.field.Byte1 >= -7))
pAd->TxPower[i * 2 + choffset + 1].Power = Power.field.Byte1;
if ((Power2.field.Byte0 < 16) && (Power2.field.Byte0 >= -7))
pAd->TxPower[i * 2 + choffset + 0].Power2 = Power2.field.Byte0;
if ((Power2.field.Byte1 < 16) && (Power2.field.Byte1 >= -7))
pAd->TxPower[i * 2 + choffset + 1].Power2 = Power2.field.Byte1;
}
// 4. Print and Debug
choffset = 14 + 12 + 16 + 7;
}
/*
========================================================================
Routine Description:
Read the following from the registry
1. All the parameters
2. NetworkAddres
Arguments:
Adapter Pointer to our adapter
WrapperConfigurationContext For use by NdisOpenConfiguration
Return Value:
NDIS_STATUS_SUCCESS
NDIS_STATUS_FAILURE
NDIS_STATUS_RESOURCES
IRQL = PASSIVE_LEVEL
Note:
========================================================================
*/
NDIS_STATUS NICReadRegParameters(
IN PRTMP_ADAPTER pAd,
IN NDIS_HANDLE WrapperConfigurationContext
)
{
NDIS_STATUS Status = NDIS_STATUS_SUCCESS;
DBGPRINT_S(Status, ("<-- NICReadRegParameters, Status=%x\n", Status));
return Status;
}
#ifdef RT2870
/*
========================================================================
Routine Description:
For RF filter calibration purpose
Arguments:
pAd Pointer to our adapter
Return Value:
None
IRQL = PASSIVE_LEVEL
========================================================================
*/
VOID RTMPFilterCalibration(
IN PRTMP_ADAPTER pAd)
{
UCHAR R55x = 0, value, FilterTarget = 0x1E, BBPValue=0;
UINT loop = 0, count = 0, loopcnt = 0, ReTry = 0;
UCHAR RF_R24_Value = 0;
// Give bbp filter initial value
#ifndef RT2870
pAd->Mlme.CaliBW20RfR24 = 0x16;
pAd->Mlme.CaliBW40RfR24 = 0x36; //Bit[5] must be 1 for BW 40
#else
pAd->Mlme.CaliBW20RfR24 = 0x1F;
pAd->Mlme.CaliBW40RfR24 = 0x2F; //Bit[5] must be 1 for BW 40
#endif
do
{
if (loop == 1) //BandWidth = 40 MHz
{
// Write 0x27 to RF_R24 to program filter
RF_R24_Value = 0x27;
RT30xxWriteRFRegister(pAd, RF_R24, RF_R24_Value);
if (IS_RT3090(pAd))
FilterTarget = 0x15;
else
FilterTarget = 0x19;
// when calibrate BW40, BBP mask must set to BW40.
RTMP_BBP_IO_READ8_BY_REG_ID(pAd, BBP_R4, &BBPValue);
BBPValue&= (~0x18);
BBPValue|= (0x10);
RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R4, BBPValue);
#ifdef RT2870
// set to BW40
RT30xxReadRFRegister(pAd, RF_R31, &value);
value |= 0x20;
RT30xxWriteRFRegister(pAd, RF_R31, value);
#endif
}
else //BandWidth = 20 MHz
{
// Write 0x07 to RF_R24 to program filter
RF_R24_Value = 0x07;
RT30xxWriteRFRegister(pAd, RF_R24, RF_R24_Value);
if (IS_RT3090(pAd))
FilterTarget = 0x13;
else
FilterTarget = 0x16;
#ifdef RT2870
// set to BW20
RT30xxReadRFRegister(pAd, RF_R31, &value);
value &= (~0x20);
RT30xxWriteRFRegister(pAd, RF_R31, value);
#endif
}
// Write 0x01 to RF_R22 to enable baseband loopback mode
RT30xxReadRFRegister(pAd, RF_R22, &value);
value |= 0x01;
RT30xxWriteRFRegister(pAd, RF_R22, value);
// Write 0x00 to BBP_R24 to set power & frequency of passband test tone
RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R24, 0);
do
{
// Write 0x90 to BBP_R25 to transmit test tone
RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R25, 0x90);
RTMPusecDelay(1000);
// Read BBP_R55[6:0] for received power, set R55x = BBP_R55[6:0]
RTMP_BBP_IO_READ8_BY_REG_ID(pAd, BBP_R55, &value);
R55x = value & 0xFF;
} while ((ReTry++ < 100) && (R55x == 0));
// Write 0x06 to BBP_R24 to set power & frequency of stopband test tone
RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R24, 0x06);
while(TRUE)
{
// Write 0x90 to BBP_R25 to transmit test tone
RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R25, 0x90);
//We need to wait for calibration
RTMPusecDelay(1000);
RTMP_BBP_IO_READ8_BY_REG_ID(pAd, BBP_R55, &value);
value &= 0xFF;
if ((R55x - value) < FilterTarget)
{
RF_R24_Value ++;
}
else if ((R55x - value) == FilterTarget)
{
RF_R24_Value ++;
count ++;
}
else
{
break;
}
// prevent infinite loop cause driver hang.
if (loopcnt++ > 100)
{
DBGPRINT(RT_DEBUG_ERROR, ("RTMPFilterCalibration - can't find a valid value, loopcnt=%d stop calibrating", loopcnt));
break;
}
// Write RF_R24 to program filter
RT30xxWriteRFRegister(pAd, RF_R24, RF_R24_Value);
}
if (count > 0)
{
RF_R24_Value = RF_R24_Value - ((count) ? (1) : (0));
}
// Store for future usage
if (loopcnt < 100)
{
if (loop++ == 0)
{
//BandWidth = 20 MHz
pAd->Mlme.CaliBW20RfR24 = (UCHAR)RF_R24_Value;
}
else
{
//BandWidth = 40 MHz
pAd->Mlme.CaliBW40RfR24 = (UCHAR)RF_R24_Value;
break;
}
}
else
break;
RT30xxWriteRFRegister(pAd, RF_R24, RF_R24_Value);
// reset count
count = 0;
} while(TRUE);
//
// Set back to initial state
//
RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R24, 0);
RT30xxReadRFRegister(pAd, RF_R22, &value);
value &= ~(0x01);
RT30xxWriteRFRegister(pAd, RF_R22, value);
// set BBP back to BW20
RTMP_BBP_IO_READ8_BY_REG_ID(pAd, BBP_R4, &BBPValue);
BBPValue&= (~0x18);
RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R4, BBPValue);
DBGPRINT(RT_DEBUG_TRACE, ("RTMPFilterCalibration - CaliBW20RfR24=0x%x, CaliBW40RfR24=0x%x\n", pAd->Mlme.CaliBW20RfR24, pAd->Mlme.CaliBW40RfR24));
}
VOID NICInitRT30xxRFRegisters(IN PRTMP_ADAPTER pAd)
{
INT i;
// Driver must read EEPROM to get RfIcType before initial RF registers
// Initialize RF register to default value
if (IS_RT3070(pAd) || IS_RT3071(pAd))
{
// Init RF calibration
// Driver should toggle RF R30 bit7 before init RF registers
UINT32 RfReg = 0;
UINT32 data;
RT30xxReadRFRegister(pAd, RF_R30, (PUCHAR)&RfReg);
RfReg |= 0x80;
RT30xxWriteRFRegister(pAd, RF_R30, (UCHAR)RfReg);
RTMPusecDelay(1000);
RfReg &= 0x7F;
RT30xxWriteRFRegister(pAd, RF_R30, (UCHAR)RfReg);
// Initialize RF register to default value
for (i = 0; i < NUM_RF_REG_PARMS; i++)
{
RT30xxWriteRFRegister(pAd, RT30xx_RFRegTable[i].Register, RT30xx_RFRegTable[i].Value);
}
if (IS_RT3070(pAd))
{
// Update MAC 0x05D4 from 01xxxxxx to 0Dxxxxxx (voltage 1.2V to 1.35V) for RT3070 to improve yield rate
RTUSBReadMACRegister(pAd, LDO_CFG0, &data);
data = ((data & 0xF0FFFFFF) | 0x0D000000);
RTUSBWriteMACRegister(pAd, LDO_CFG0, data);
}
else if (IS_RT3071(pAd))
{
// Driver should set RF R6 bit6 on before init RF registers
RT30xxReadRFRegister(pAd, RF_R06, (PUCHAR)&RfReg);
RfReg |= 0x40;
RT30xxWriteRFRegister(pAd, RF_R06, (UCHAR)RfReg);
// init R31
RT30xxWriteRFRegister(pAd, RF_R31, 0x14);
// RT3071 version E has fixed this issue
if ((pAd->NicConfig2.field.DACTestBit == 1) && ((pAd->MACVersion & 0xffff) < 0x0211))
{
// patch tx EVM issue temporarily
RTUSBReadMACRegister(pAd, LDO_CFG0, &data);
data = ((data & 0xE0FFFFFF) | 0x0D000000);
RTUSBWriteMACRegister(pAd, LDO_CFG0, data);
}
else
{
RTMP_IO_READ32(pAd, LDO_CFG0, &data);
data = ((data & 0xE0FFFFFF) | 0x01000000);
RTMP_IO_WRITE32(pAd, LDO_CFG0, data);
}
// patch LNA_PE_G1 failed issue
RTUSBReadMACRegister(pAd, GPIO_SWITCH, &data);
data &= ~(0x20);
RTUSBWriteMACRegister(pAd, GPIO_SWITCH, data);
}
//For RF filter Calibration
RTMPFilterCalibration(pAd);
// Initialize RF R27 register, set RF R27 must be behind RTMPFilterCalibration()
if ((pAd->MACVersion & 0xffff) < 0x0211)
RT30xxWriteRFRegister(pAd, RF_R27, 0x3);
// set led open drain enable
RTUSBReadMACRegister(pAd, OPT_14, &data);
data |= 0x01;
RTUSBWriteMACRegister(pAd, OPT_14, data);
if (IS_RT3071(pAd))
{
// add by johnli, RF power sequence setup, load RF normal operation-mode setup
RT30xxLoadRFNormalModeSetup(pAd);
}
}
}
#endif // RT2870 //
/*
========================================================================
Routine Description:
Read initial parameters from EEPROM
Arguments:
Adapter Pointer to our adapter
Return Value:
None
IRQL = PASSIVE_LEVEL
Note:
========================================================================
*/
VOID NICReadEEPROMParameters(
IN PRTMP_ADAPTER pAd,
IN PUCHAR mac_addr)
{
UINT32 data = 0;
USHORT i, value, value2;
UCHAR TmpPhy;
EEPROM_TX_PWR_STRUC Power;
EEPROM_VERSION_STRUC Version;
EEPROM_ANTENNA_STRUC Antenna;
EEPROM_NIC_CONFIG2_STRUC NicConfig2;
DBGPRINT(RT_DEBUG_TRACE, ("--> NICReadEEPROMParameters\n"));
// Init EEPROM Address Number, before access EEPROM; if 93c46, EEPROMAddressNum=6, else if 93c66, EEPROMAddressNum=8
RTMP_IO_READ32(pAd, E2PROM_CSR, &data);
DBGPRINT(RT_DEBUG_TRACE, ("--> E2PROM_CSR = 0x%x\n", data));
if((data & 0x30) == 0)
pAd->EEPROMAddressNum = 6; // 93C46
else if((data & 0x30) == 0x10)
pAd->EEPROMAddressNum = 8; // 93C66
else
pAd->EEPROMAddressNum = 8; // 93C86
DBGPRINT(RT_DEBUG_TRACE, ("--> EEPROMAddressNum = %d\n", pAd->EEPROMAddressNum ));
// RT2860 MAC no longer auto load MAC address from E2PROM. Driver has to intialize
// MAC address registers according to E2PROM setting
if (mac_addr == NULL ||
strlen(mac_addr) != 17 ||
mac_addr[2] != ':' || mac_addr[5] != ':' || mac_addr[8] != ':' ||
mac_addr[11] != ':' || mac_addr[14] != ':')
{
USHORT Addr01,Addr23,Addr45 ;
RT28xx_EEPROM_READ16(pAd, 0x04, Addr01);
RT28xx_EEPROM_READ16(pAd, 0x06, Addr23);
RT28xx_EEPROM_READ16(pAd, 0x08, Addr45);
pAd->PermanentAddress[0] = (UCHAR)(Addr01 & 0xff);
pAd->PermanentAddress[1] = (UCHAR)(Addr01 >> 8);
pAd->PermanentAddress[2] = (UCHAR)(Addr23 & 0xff);
pAd->PermanentAddress[3] = (UCHAR)(Addr23 >> 8);
pAd->PermanentAddress[4] = (UCHAR)(Addr45 & 0xff);
pAd->PermanentAddress[5] = (UCHAR)(Addr45 >> 8);
DBGPRINT(RT_DEBUG_TRACE, ("Initialize MAC Address from E2PROM \n"));
}
else
{
INT j;
PUCHAR macptr;
macptr = mac_addr;
for (j=0; j<MAC_ADDR_LEN; j++)
{
AtoH(macptr, &pAd->PermanentAddress[j], 1);
macptr=macptr+3;
}
DBGPRINT(RT_DEBUG_TRACE, ("Initialize MAC Address from module parameter \n"));
}
{
//more conveninet to test mbssid, so ap's bssid &0xf1
if (pAd->PermanentAddress[0] == 0xff)
pAd->PermanentAddress[0] = RandomByte(pAd)&0xf8;
//if (pAd->PermanentAddress[5] == 0xff)
// pAd->PermanentAddress[5] = RandomByte(pAd)&0xf8;
DBGPRINT_RAW(RT_DEBUG_TRACE,("E2PROM MAC: =%02x:%02x:%02x:%02x:%02x:%02x\n",
pAd->PermanentAddress[0], pAd->PermanentAddress[1],
pAd->PermanentAddress[2], pAd->PermanentAddress[3],
pAd->PermanentAddress[4], pAd->PermanentAddress[5]));
if (pAd->bLocalAdminMAC == FALSE)
{
MAC_DW0_STRUC csr2;
MAC_DW1_STRUC csr3;
COPY_MAC_ADDR(pAd->CurrentAddress, pAd->PermanentAddress);
csr2.field.Byte0 = pAd->CurrentAddress[0];
csr2.field.Byte1 = pAd->CurrentAddress[1];
csr2.field.Byte2 = pAd->CurrentAddress[2];
csr2.field.Byte3 = pAd->CurrentAddress[3];
RTMP_IO_WRITE32(pAd, MAC_ADDR_DW0, csr2.word);
csr3.word = 0;
csr3.field.Byte4 = pAd->CurrentAddress[4];
csr3.field.Byte5 = pAd->CurrentAddress[5];
csr3.field.U2MeMask = 0xff;
RTMP_IO_WRITE32(pAd, MAC_ADDR_DW1, csr3.word);
DBGPRINT_RAW(RT_DEBUG_TRACE,("E2PROM MAC: =%02x:%02x:%02x:%02x:%02x:%02x\n",
pAd->PermanentAddress[0], pAd->PermanentAddress[1],
pAd->PermanentAddress[2], pAd->PermanentAddress[3],
pAd->PermanentAddress[4], pAd->PermanentAddress[5]));
}
}
// if not return early. cause fail at emulation.
// Init the channel number for TX channel power
RTMPReadChannelPwr(pAd);
// if E2PROM version mismatch with driver's expectation, then skip
// all subsequent E2RPOM retieval and set a system error bit to notify GUI
RT28xx_EEPROM_READ16(pAd, EEPROM_VERSION_OFFSET, Version.word);
pAd->EepromVersion = Version.field.Version + Version.field.FaeReleaseNumber * 256;
DBGPRINT(RT_DEBUG_TRACE, ("E2PROM: Version = %d, FAE release #%d\n", Version.field.Version, Version.field.FaeReleaseNumber));
if (Version.field.Version > VALID_EEPROM_VERSION)
{
DBGPRINT_ERR(("E2PROM: WRONG VERSION 0x%x, should be %d\n",Version.field.Version, VALID_EEPROM_VERSION));
/*pAd->SystemErrorBitmap |= 0x00000001;
// hard-code default value when no proper E2PROM installed
pAd->bAutoTxAgcA = FALSE;
pAd->bAutoTxAgcG = FALSE;
// Default the channel power
for (i = 0; i < MAX_NUM_OF_CHANNELS; i++)
pAd->TxPower[i].Power = DEFAULT_RF_TX_POWER;
// Default the channel power
for (i = 0; i < MAX_NUM_OF_11JCHANNELS; i++)
pAd->TxPower11J[i].Power = DEFAULT_RF_TX_POWER;
for(i = 0; i < NUM_EEPROM_BBP_PARMS; i++)
pAd->EEPROMDefaultValue[i] = 0xffff;
return; */
}
// Read BBP default value from EEPROM and store to array(EEPROMDefaultValue) in pAd
RT28xx_EEPROM_READ16(pAd, EEPROM_NIC1_OFFSET, value);
pAd->EEPROMDefaultValue[0] = value;
RT28xx_EEPROM_READ16(pAd, EEPROM_NIC2_OFFSET, value);
pAd->EEPROMDefaultValue[1] = value;
RT28xx_EEPROM_READ16(pAd, 0x38, value); // Country Region
pAd->EEPROMDefaultValue[2] = value;
for(i = 0; i < 8; i++)
{
RT28xx_EEPROM_READ16(pAd, EEPROM_BBP_BASE_OFFSET + i*2, value);
pAd->EEPROMDefaultValue[i+3] = value;
}
// We have to parse NIC configuration 0 at here.
// If TSSI did not have preloaded value, it should reset the TxAutoAgc to false
// Therefore, we have to read TxAutoAgc control beforehand.
// Read Tx AGC control bit
Antenna.word = pAd->EEPROMDefaultValue[0];
if (Antenna.word == 0xFFFF)
{
if(IS_RT3090(pAd))
{
Antenna.word = 0;
Antenna.field.RfIcType = RFIC_3020;
Antenna.field.TxPath = 1;
Antenna.field.RxPath = 1;
}
else
{
Antenna.word = 0;
Antenna.field.RfIcType = RFIC_2820;
Antenna.field.TxPath = 1;
Antenna.field.RxPath = 2;
DBGPRINT(RT_DEBUG_WARN, ("E2PROM error, hard code as 0x%04x\n", Antenna.word));
}
}
// Choose the desired Tx&Rx stream.
if ((pAd->CommonCfg.TxStream == 0) || (pAd->CommonCfg.TxStream > Antenna.field.TxPath))
pAd->CommonCfg.TxStream = Antenna.field.TxPath;
if ((pAd->CommonCfg.RxStream == 0) || (pAd->CommonCfg.RxStream > Antenna.field.RxPath))
{
pAd->CommonCfg.RxStream = Antenna.field.RxPath;
if ((pAd->MACVersion < RALINK_2883_VERSION) &&
(pAd->CommonCfg.RxStream > 2))
{
// only 2 Rx streams for RT2860 series
pAd->CommonCfg.RxStream = 2;
}
}
// 3*3
// read value from EEPROM and set them to CSR174 ~ 177 in chain0 ~ chain2
// yet implement
for(i=0; i<3; i++)
{
}
NicConfig2.word = pAd->EEPROMDefaultValue[1];
{
if ((NicConfig2.word & 0x00ff) == 0xff)
{
NicConfig2.word &= 0xff00;
}
if ((NicConfig2.word >> 8) == 0xff)
{
NicConfig2.word &= 0x00ff;
}
}
if (NicConfig2.field.DynamicTxAgcControl == 1)
pAd->bAutoTxAgcA = pAd->bAutoTxAgcG = TRUE;
else
pAd->bAutoTxAgcA = pAd->bAutoTxAgcG = FALSE;
DBGPRINT_RAW(RT_DEBUG_TRACE, ("NICReadEEPROMParameters: RxPath = %d, TxPath = %d\n", Antenna.field.RxPath, Antenna.field.TxPath));
// Save the antenna for future use
pAd->Antenna.word = Antenna.word;
//
// Reset PhyMode if we don't support 802.11a
// Only RFIC_2850 & RFIC_2750 support 802.11a
//
if ((Antenna.field.RfIcType != RFIC_2850) && (Antenna.field.RfIcType != RFIC_2750))
{
if ((pAd->CommonCfg.PhyMode == PHY_11ABG_MIXED) ||
(pAd->CommonCfg.PhyMode == PHY_11A))
pAd->CommonCfg.PhyMode = PHY_11BG_MIXED;
else if ((pAd->CommonCfg.PhyMode == PHY_11ABGN_MIXED) ||
(pAd->CommonCfg.PhyMode == PHY_11AN_MIXED) ||
(pAd->CommonCfg.PhyMode == PHY_11AGN_MIXED) ||
(pAd->CommonCfg.PhyMode == PHY_11N_5G))
pAd->CommonCfg.PhyMode = PHY_11BGN_MIXED;
}
// Read TSSI reference and TSSI boundary for temperature compensation. This is ugly
// 0. 11b/g
{
/* these are tempature reference value (0x00 ~ 0xFE)
ex: 0x00 0x15 0x25 0x45 0x88 0xA0 0xB5 0xD0 0xF0
TssiPlusBoundaryG [4] [3] [2] [1] [0] (smaller) +
TssiMinusBoundaryG[0] [1] [2] [3] [4] (larger) */
RT28xx_EEPROM_READ16(pAd, 0x6E, Power.word);
pAd->TssiMinusBoundaryG[4] = Power.field.Byte0;
pAd->TssiMinusBoundaryG[3] = Power.field.Byte1;
RT28xx_EEPROM_READ16(pAd, 0x70, Power.word);
pAd->TssiMinusBoundaryG[2] = Power.field.Byte0;
pAd->TssiMinusBoundaryG[1] = Power.field.Byte1;
RT28xx_EEPROM_READ16(pAd, 0x72, Power.word);
pAd->TssiRefG = Power.field.Byte0; /* reference value [0] */
pAd->TssiPlusBoundaryG[1] = Power.field.Byte1;
RT28xx_EEPROM_READ16(pAd, 0x74, Power.word);
pAd->TssiPlusBoundaryG[2] = Power.field.Byte0;
pAd->TssiPlusBoundaryG[3] = Power.field.Byte1;
RT28xx_EEPROM_READ16(pAd, 0x76, Power.word);
pAd->TssiPlusBoundaryG[4] = Power.field.Byte0;
pAd->TxAgcStepG = Power.field.Byte1;
pAd->TxAgcCompensateG = 0;
pAd->TssiMinusBoundaryG[0] = pAd->TssiRefG;
pAd->TssiPlusBoundaryG[0] = pAd->TssiRefG;
// Disable TxAgc if the based value is not right
if (pAd->TssiRefG == 0xff)
pAd->bAutoTxAgcG = FALSE;
DBGPRINT(RT_DEBUG_TRACE,("E2PROM: G Tssi[-4 .. +4] = %d %d %d %d - %d -%d %d %d %d, step=%d, tuning=%d\n",
pAd->TssiMinusBoundaryG[4], pAd->TssiMinusBoundaryG[3], pAd->TssiMinusBoundaryG[2], pAd->TssiMinusBoundaryG[1],
pAd->TssiRefG,
pAd->TssiPlusBoundaryG[1], pAd->TssiPlusBoundaryG[2], pAd->TssiPlusBoundaryG[3], pAd->TssiPlusBoundaryG[4],
pAd->TxAgcStepG, pAd->bAutoTxAgcG));
}
// 1. 11a
{
RT28xx_EEPROM_READ16(pAd, 0xD4, Power.word);
pAd->TssiMinusBoundaryA[4] = Power.field.Byte0;
pAd->TssiMinusBoundaryA[3] = Power.field.Byte1;
RT28xx_EEPROM_READ16(pAd, 0xD6, Power.word);
pAd->TssiMinusBoundaryA[2] = Power.field.Byte0;
pAd->TssiMinusBoundaryA[1] = Power.field.Byte1;
RT28xx_EEPROM_READ16(pAd, 0xD8, Power.word);
pAd->TssiRefA = Power.field.Byte0;
pAd->TssiPlusBoundaryA[1] = Power.field.Byte1;
RT28xx_EEPROM_READ16(pAd, 0xDA, Power.word);
pAd->TssiPlusBoundaryA[2] = Power.field.Byte0;
pAd->TssiPlusBoundaryA[3] = Power.field.Byte1;
RT28xx_EEPROM_READ16(pAd, 0xDC, Power.word);
pAd->TssiPlusBoundaryA[4] = Power.field.Byte0;
pAd->TxAgcStepA = Power.field.Byte1;
pAd->TxAgcCompensateA = 0;
pAd->TssiMinusBoundaryA[0] = pAd->TssiRefA;
pAd->TssiPlusBoundaryA[0] = pAd->TssiRefA;
// Disable TxAgc if the based value is not right
if (pAd->TssiRefA == 0xff)
pAd->bAutoTxAgcA = FALSE;
DBGPRINT(RT_DEBUG_TRACE,("E2PROM: A Tssi[-4 .. +4] = %d %d %d %d - %d -%d %d %d %d, step=%d, tuning=%d\n",
pAd->TssiMinusBoundaryA[4], pAd->TssiMinusBoundaryA[3], pAd->TssiMinusBoundaryA[2], pAd->TssiMinusBoundaryA[1],
pAd->TssiRefA,
pAd->TssiPlusBoundaryA[1], pAd->TssiPlusBoundaryA[2], pAd->TssiPlusBoundaryA[3], pAd->TssiPlusBoundaryA[4],
pAd->TxAgcStepA, pAd->bAutoTxAgcA));
}
pAd->BbpRssiToDbmDelta = 0x0;
// Read frequency offset setting for RF
RT28xx_EEPROM_READ16(pAd, EEPROM_FREQ_OFFSET, value);
if ((value & 0x00FF) != 0x00FF)
pAd->RfFreqOffset = (ULONG) (value & 0x00FF);
else
pAd->RfFreqOffset = 0;
DBGPRINT(RT_DEBUG_TRACE, ("E2PROM: RF FreqOffset=0x%lx \n", pAd->RfFreqOffset));
//CountryRegion byte offset (38h)
value = pAd->EEPROMDefaultValue[2] >> 8; // 2.4G band
value2 = pAd->EEPROMDefaultValue[2] & 0x00FF; // 5G band
if ((value <= REGION_MAXIMUM_BG_BAND) && (value2 <= REGION_MAXIMUM_A_BAND))
{
pAd->CommonCfg.CountryRegion = ((UCHAR) value) | 0x80;
pAd->CommonCfg.CountryRegionForABand = ((UCHAR) value2) | 0x80;
TmpPhy = pAd->CommonCfg.PhyMode;
pAd->CommonCfg.PhyMode = 0xff;
RTMPSetPhyMode(pAd, TmpPhy);
SetCommonHT(pAd);
}
//
// Get RSSI Offset on EEPROM 0x9Ah & 0x9Ch.
// The valid value are (-10 ~ 10)
//
RT28xx_EEPROM_READ16(pAd, EEPROM_RSSI_BG_OFFSET, value);
pAd->BGRssiOffset0 = value & 0x00ff;
pAd->BGRssiOffset1 = (value >> 8);
RT28xx_EEPROM_READ16(pAd, EEPROM_RSSI_BG_OFFSET+2, value);
pAd->BGRssiOffset2 = value & 0x00ff;
pAd->ALNAGain1 = (value >> 8);
RT28xx_EEPROM_READ16(pAd, EEPROM_LNA_OFFSET, value);
pAd->BLNAGain = value & 0x00ff;
pAd->ALNAGain0 = (value >> 8);
// Validate 11b/g RSSI_0 offset.
if ((pAd->BGRssiOffset0 < -10) || (pAd->BGRssiOffset0 > 10))
pAd->BGRssiOffset0 = 0;
// Validate 11b/g RSSI_1 offset.
if ((pAd->BGRssiOffset1 < -10) || (pAd->BGRssiOffset1 > 10))
pAd->BGRssiOffset1 = 0;
// Validate 11b/g RSSI_2 offset.
if ((pAd->BGRssiOffset2 < -10) || (pAd->BGRssiOffset2 > 10))
pAd->BGRssiOffset2 = 0;
RT28xx_EEPROM_READ16(pAd, EEPROM_RSSI_A_OFFSET, value);
pAd->ARssiOffset0 = value & 0x00ff;
pAd->ARssiOffset1 = (value >> 8);
RT28xx_EEPROM_READ16(pAd, (EEPROM_RSSI_A_OFFSET+2), value);
pAd->ARssiOffset2 = value & 0x00ff;
pAd->ALNAGain2 = (value >> 8);
if (((UCHAR)pAd->ALNAGain1 == 0xFF) || (pAd->ALNAGain1 == 0x00))
pAd->ALNAGain1 = pAd->ALNAGain0;
if (((UCHAR)pAd->ALNAGain2 == 0xFF) || (pAd->ALNAGain2 == 0x00))
pAd->ALNAGain2 = pAd->ALNAGain0;
// Validate 11a RSSI_0 offset.
if ((pAd->ARssiOffset0 < -10) || (pAd->ARssiOffset0 > 10))
pAd->ARssiOffset0 = 0;
// Validate 11a RSSI_1 offset.
if ((pAd->ARssiOffset1 < -10) || (pAd->ARssiOffset1 > 10))
pAd->ARssiOffset1 = 0;
//Validate 11a RSSI_2 offset.
if ((pAd->ARssiOffset2 < -10) || (pAd->ARssiOffset2 > 10))
pAd->ARssiOffset2 = 0;
//
// Get LED Setting.
//
RT28xx_EEPROM_READ16(pAd, 0x3a, value);
pAd->LedCntl.word = (value&0xff00) >> 8;
RT28xx_EEPROM_READ16(pAd, EEPROM_LED1_OFFSET, value);
pAd->Led1 = value;
RT28xx_EEPROM_READ16(pAd, EEPROM_LED2_OFFSET, value);
pAd->Led2 = value;
RT28xx_EEPROM_READ16(pAd, EEPROM_LED3_OFFSET, value);
pAd->Led3 = value;
RTMPReadTxPwrPerRate(pAd);
DBGPRINT(RT_DEBUG_TRACE, ("<-- NICReadEEPROMParameters\n"));
}
/*
========================================================================
Routine Description:
Set default value from EEPROM
Arguments:
Adapter Pointer to our adapter
Return Value:
None
IRQL = PASSIVE_LEVEL
Note:
========================================================================
*/
VOID NICInitAsicFromEEPROM(
IN PRTMP_ADAPTER pAd)
{
UINT32 data = 0;
UCHAR BBPR1 = 0;
USHORT i;
EEPROM_ANTENNA_STRUC Antenna;
EEPROM_NIC_CONFIG2_STRUC NicConfig2;
UCHAR BBPR3 = 0;
DBGPRINT(RT_DEBUG_TRACE, ("--> NICInitAsicFromEEPROM\n"));
for(i = 3; i < NUM_EEPROM_BBP_PARMS; i++)
{
UCHAR BbpRegIdx, BbpValue;
if ((pAd->EEPROMDefaultValue[i] != 0xFFFF) && (pAd->EEPROMDefaultValue[i] != 0))
{
BbpRegIdx = (UCHAR)(pAd->EEPROMDefaultValue[i] >> 8);
BbpValue = (UCHAR)(pAd->EEPROMDefaultValue[i] & 0xff);
RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BbpRegIdx, BbpValue);
}
}
#ifndef RT2870
Antenna.word = pAd->Antenna.word;
#else
Antenna.word = pAd->EEPROMDefaultValue[0];
if (Antenna.word == 0xFFFF)
{
DBGPRINT(RT_DEBUG_ERROR, ("E2PROM error, hard code as 0x%04x\n", Antenna.word));
BUG_ON(Antenna.word == 0xFFFF);
}
#endif
pAd->Mlme.RealRxPath = (UCHAR) Antenna.field.RxPath;
pAd->RfIcType = (UCHAR) Antenna.field.RfIcType;
#ifdef RT2870
DBGPRINT(RT_DEBUG_WARN, ("pAd->RfIcType = %d, RealRxPath=%d, TxPath = %d\n", pAd->RfIcType, pAd->Mlme.RealRxPath,Antenna.field.TxPath));
// Save the antenna for future use
pAd->Antenna.word = Antenna.word;
#endif
NicConfig2.word = pAd->EEPROMDefaultValue[1];
#ifdef RT2870
{
if ((NicConfig2.word & 0x00ff) == 0xff)
{
NicConfig2.word &= 0xff00;
}
if ((NicConfig2.word >> 8) == 0xff)
{
NicConfig2.word &= 0x00ff;
}
}
#endif
// Save the antenna for future use
pAd->NicConfig2.word = NicConfig2.word;
#ifdef RT2870
// set default antenna as main
if (pAd->RfIcType == RFIC_3020)
AsicSetRxAnt(pAd, pAd->RxAnt.Pair1PrimaryRxAnt);
#endif
//
// Send LED Setting to MCU.
//
if (pAd->LedCntl.word == 0xFF)
{
pAd->LedCntl.word = 0x01;
pAd->Led1 = 0x5555;
pAd->Led2 = 0x2221;
#ifdef RT2860
pAd->Led3 = 0xA9F8;
#endif
#ifdef RT2870
pAd->Led3 = 0x5627;
#endif // RT2870 //
}
AsicSendCommandToMcu(pAd, 0x52, 0xff, (UCHAR)pAd->Led1, (UCHAR)(pAd->Led1 >> 8));
AsicSendCommandToMcu(pAd, 0x53, 0xff, (UCHAR)pAd->Led2, (UCHAR)(pAd->Led2 >> 8));
AsicSendCommandToMcu(pAd, 0x54, 0xff, (UCHAR)pAd->Led3, (UCHAR)(pAd->Led3 >> 8));
pAd->LedIndicatorStregth = 0xFF;
RTMPSetSignalLED(pAd, -100); // Force signal strength Led to be turned off, before link up
{
// Read Hardware controlled Radio state enable bit
if (NicConfig2.field.HardwareRadioControl == 1)
{
pAd->StaCfg.bHardwareRadio = TRUE;
// Read GPIO pin2 as Hardware controlled radio state
RTMP_IO_READ32(pAd, GPIO_CTRL_CFG, &data);
if ((data & 0x04) == 0)
{
pAd->StaCfg.bHwRadio = FALSE;
pAd->StaCfg.bRadio = FALSE;
RTMP_SET_FLAG(pAd, fRTMP_ADAPTER_RADIO_OFF);
}
}
else
pAd->StaCfg.bHardwareRadio = FALSE;
if (pAd->StaCfg.bRadio == FALSE)
{
RTMPSetLED(pAd, LED_RADIO_OFF);
}
else
{
RTMPSetLED(pAd, LED_RADIO_ON);
#ifdef RT2860
AsicSendCommandToMcu(pAd, 0x30, 0xff, 0xff, 0x02);
AsicSendCommandToMcu(pAd, 0x31, PowerWakeCID, 0x00, 0x00);
// 2-1. wait command ok.
AsicCheckCommanOk(pAd, PowerWakeCID);
#endif
}
}
// Turn off patching for cardbus controller
if (NicConfig2.field.CardbusAcceleration == 1)
{
}
if (NicConfig2.field.DynamicTxAgcControl == 1)
pAd->bAutoTxAgcA = pAd->bAutoTxAgcG = TRUE;
else
pAd->bAutoTxAgcA = pAd->bAutoTxAgcG = FALSE;
/* BBP has been programmed so reset to UNKNOWN_BAND */
pAd->CommonCfg.BandState = UNKNOWN_BAND;
RTMP_BBP_IO_READ8_BY_REG_ID(pAd, BBP_R3, &BBPR3);
BBPR3 &= (~0x18);
if(pAd->Antenna.field.RxPath == 3)
{
BBPR3 |= (0x10);
}
else if(pAd->Antenna.field.RxPath == 2)
{
BBPR3 |= (0x8);
}
else if(pAd->Antenna.field.RxPath == 1)
{
BBPR3 |= (0x0);
}
RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R3, BBPR3);
{
// Handle the difference when 1T
RTMP_BBP_IO_READ8_BY_REG_ID(pAd, BBP_R1, &BBPR1);
if(pAd->Antenna.field.TxPath == 1)
{
BBPR1 &= (~0x18);
}
RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R1, BBPR1);
DBGPRINT(RT_DEBUG_TRACE, ("Use Hw Radio Control Pin=%d; if used Pin=%d;\n", pAd->CommonCfg.bHardwareRadio, pAd->CommonCfg.bHardwareRadio));
}
DBGPRINT(RT_DEBUG_TRACE, ("TxPath = %d, RxPath = %d, RFIC=%d, Polar+LED mode=%x\n", pAd->Antenna.field.TxPath, pAd->Antenna.field.RxPath, pAd->RfIcType, pAd->LedCntl.word));
DBGPRINT(RT_DEBUG_TRACE, ("<-- NICInitAsicFromEEPROM\n"));
}
/*
========================================================================
Routine Description:
Initialize NIC hardware
Arguments:
Adapter Pointer to our adapter
Return Value:
None
IRQL = PASSIVE_LEVEL
Note:
========================================================================
*/
NDIS_STATUS NICInitializeAdapter(
IN PRTMP_ADAPTER pAd,
IN BOOLEAN bHardReset)
{
NDIS_STATUS Status = NDIS_STATUS_SUCCESS;
WPDMA_GLO_CFG_STRUC GloCfg;
#ifdef RT2860
UINT32 Value;
DELAY_INT_CFG_STRUC IntCfg;
#endif
ULONG i =0, j=0;
AC_TXOP_CSR0_STRUC csr0;
DBGPRINT(RT_DEBUG_TRACE, ("--> NICInitializeAdapter\n"));
// 3. Set DMA global configuration except TX_DMA_EN and RX_DMA_EN bits:
retry:
i = 0;
do
{
RTMP_IO_READ32(pAd, WPDMA_GLO_CFG, &GloCfg.word);
if ((GloCfg.field.TxDMABusy == 0) && (GloCfg.field.RxDMABusy == 0))
break;
RTMPusecDelay(1000);
i++;
}while ( i<100);
DBGPRINT(RT_DEBUG_TRACE, ("<== DMA offset 0x208 = 0x%x\n", GloCfg.word));
GloCfg.word &= 0xff0;
GloCfg.field.EnTXWriteBackDDONE =1;
RTMP_IO_WRITE32(pAd, WPDMA_GLO_CFG, GloCfg.word);
// Record HW Beacon offset
pAd->BeaconOffset[0] = HW_BEACON_BASE0;
pAd->BeaconOffset[1] = HW_BEACON_BASE1;
pAd->BeaconOffset[2] = HW_BEACON_BASE2;
pAd->BeaconOffset[3] = HW_BEACON_BASE3;
pAd->BeaconOffset[4] = HW_BEACON_BASE4;
pAd->BeaconOffset[5] = HW_BEACON_BASE5;
pAd->BeaconOffset[6] = HW_BEACON_BASE6;
pAd->BeaconOffset[7] = HW_BEACON_BASE7;
//
// write all shared Ring's base address into ASIC
//
// asic simulation sequence put this ahead before loading firmware.
// pbf hardware reset
#ifdef RT2860
RTMP_IO_WRITE32(pAd, WPDMA_RST_IDX, 0x1003f); // 0x10000 for reset rx, 0x3f resets all 6 tx rings.
RTMP_IO_WRITE32(pAd, PBF_SYS_CTRL, 0xe1f);
RTMP_IO_WRITE32(pAd, PBF_SYS_CTRL, 0xe00);
#endif
// Initialze ASIC for TX & Rx operation
if (NICInitializeAsic(pAd , bHardReset) != NDIS_STATUS_SUCCESS)
{
if (j++ == 0)
{
NICLoadFirmware(pAd);
goto retry;
}
return NDIS_STATUS_FAILURE;
}
#ifdef RT2860
// Write AC_BK base address register
Value = RTMP_GetPhysicalAddressLow(pAd->TxRing[QID_AC_BK].Cell[0].AllocPa);
RTMP_IO_WRITE32(pAd, TX_BASE_PTR1, Value);
DBGPRINT(RT_DEBUG_TRACE, ("--> TX_BASE_PTR1 : 0x%x\n", Value));
// Write AC_BE base address register
Value = RTMP_GetPhysicalAddressLow(pAd->TxRing[QID_AC_BE].Cell[0].AllocPa);
RTMP_IO_WRITE32(pAd, TX_BASE_PTR0, Value);
DBGPRINT(RT_DEBUG_TRACE, ("--> TX_BASE_PTR0 : 0x%x\n", Value));
// Write AC_VI base address register
Value = RTMP_GetPhysicalAddressLow(pAd->TxRing[QID_AC_VI].Cell[0].AllocPa);
RTMP_IO_WRITE32(pAd, TX_BASE_PTR2, Value);
DBGPRINT(RT_DEBUG_TRACE, ("--> TX_BASE_PTR2 : 0x%x\n", Value));
// Write AC_VO base address register
Value = RTMP_GetPhysicalAddressLow(pAd->TxRing[QID_AC_VO].Cell[0].AllocPa);
RTMP_IO_WRITE32(pAd, TX_BASE_PTR3, Value);
DBGPRINT(RT_DEBUG_TRACE, ("--> TX_BASE_PTR3 : 0x%x\n", Value));
// Write HCCA base address register
Value = RTMP_GetPhysicalAddressLow(pAd->TxRing[QID_HCCA].Cell[0].AllocPa);
RTMP_IO_WRITE32(pAd, TX_BASE_PTR4, Value);
DBGPRINT(RT_DEBUG_TRACE, ("--> TX_BASE_PTR4 : 0x%x\n", Value));
// Write MGMT_BASE_CSR register
Value = RTMP_GetPhysicalAddressLow(pAd->MgmtRing.Cell[0].AllocPa);
RTMP_IO_WRITE32(pAd, TX_BASE_PTR5, Value);
DBGPRINT(RT_DEBUG_TRACE, ("--> TX_BASE_PTR5 : 0x%x\n", Value));
// Write RX_BASE_CSR register
Value = RTMP_GetPhysicalAddressLow(pAd->RxRing.Cell[0].AllocPa);
RTMP_IO_WRITE32(pAd, RX_BASE_PTR, Value);
DBGPRINT(RT_DEBUG_TRACE, ("--> RX_BASE_PTR : 0x%x\n", Value));
// Init RX Ring index pointer
pAd->RxRing.RxSwReadIdx = 0;
pAd->RxRing.RxCpuIdx = RX_RING_SIZE-1;
RTMP_IO_WRITE32(pAd, RX_CRX_IDX, pAd->RxRing.RxCpuIdx);
// Init TX rings index pointer
{
for (i=0; i<NUM_OF_TX_RING; i++)
{
pAd->TxRing[i].TxSwFreeIdx = 0;
pAd->TxRing[i].TxCpuIdx = 0;
RTMP_IO_WRITE32(pAd, (TX_CTX_IDX0 + i * 0x10) , pAd->TxRing[i].TxCpuIdx);
}
}
// init MGMT ring index pointer
pAd->MgmtRing.TxSwFreeIdx = 0;
pAd->MgmtRing.TxCpuIdx = 0;
RTMP_IO_WRITE32(pAd, TX_MGMTCTX_IDX, pAd->MgmtRing.TxCpuIdx);
//
// set each Ring's SIZE into ASIC. Descriptor Size is fixed by design.
//
// Write TX_RING_CSR0 register
Value = TX_RING_SIZE;
RTMP_IO_WRITE32(pAd, TX_MAX_CNT0, Value);
RTMP_IO_WRITE32(pAd, TX_MAX_CNT1, Value);
RTMP_IO_WRITE32(pAd, TX_MAX_CNT2, Value);
RTMP_IO_WRITE32(pAd, TX_MAX_CNT3, Value);
RTMP_IO_WRITE32(pAd, TX_MAX_CNT4, Value);
Value = MGMT_RING_SIZE;
RTMP_IO_WRITE32(pAd, TX_MGMTMAX_CNT, Value);
// Write RX_RING_CSR register
Value = RX_RING_SIZE;
RTMP_IO_WRITE32(pAd, RX_MAX_CNT, Value);
#endif /* RT2860 */
// WMM parameter
csr0.word = 0;
RTMP_IO_WRITE32(pAd, WMM_TXOP0_CFG, csr0.word);
if (pAd->CommonCfg.PhyMode == PHY_11B)
{
csr0.field.Ac0Txop = 192; // AC_VI: 192*32us ~= 6ms
csr0.field.Ac1Txop = 96; // AC_VO: 96*32us ~= 3ms
}
else
{
csr0.field.Ac0Txop = 96; // AC_VI: 96*32us ~= 3ms
csr0.field.Ac1Txop = 48; // AC_VO: 48*32us ~= 1.5ms
}
RTMP_IO_WRITE32(pAd, WMM_TXOP1_CFG, csr0.word);
#ifdef RT2860
// 3. Set DMA global configuration except TX_DMA_EN and RX_DMA_EN bits:
i = 0;
do
{
RTMP_IO_READ32(pAd, WPDMA_GLO_CFG, &GloCfg.word);
if ((GloCfg.field.TxDMABusy == 0) && (GloCfg.field.RxDMABusy == 0))
break;
RTMPusecDelay(1000);
i++;
}while ( i < 100);
GloCfg.word &= 0xff0;
GloCfg.field.EnTXWriteBackDDONE =1;
RTMP_IO_WRITE32(pAd, WPDMA_GLO_CFG, GloCfg.word);
IntCfg.word = 0;
RTMP_IO_WRITE32(pAd, DELAY_INT_CFG, IntCfg.word);
#endif
// reset action
// Load firmware
// Status = NICLoadFirmware(pAd);
DBGPRINT(RT_DEBUG_TRACE, ("<-- NICInitializeAdapter\n"));
return Status;
}
/*
========================================================================
Routine Description:
Initialize ASIC
Arguments:
Adapter Pointer to our adapter
Return Value:
None
IRQL = PASSIVE_LEVEL
Note:
========================================================================
*/
NDIS_STATUS NICInitializeAsic(
IN PRTMP_ADAPTER pAd,
IN BOOLEAN bHardReset)
{
ULONG Index = 0;
UCHAR R0 = 0xff;
UINT32 MacCsr12 = 0, Counter = 0;
#ifdef RT2870
UINT32 MacCsr0 = 0;
NTSTATUS Status;
UCHAR Value = 0xff;
UINT32 eFuseCtrl;
#endif
USHORT KeyIdx;
INT i,apidx;
DBGPRINT(RT_DEBUG_TRACE, ("--> NICInitializeAsic\n"));
#ifdef RT2860
if (bHardReset == TRUE)
{
RTMP_IO_WRITE32(pAd, MAC_SYS_CTRL, 0x3);
}
else
RTMP_IO_WRITE32(pAd, MAC_SYS_CTRL, 0x1);
#endif
#ifdef RT2870
//
// Make sure MAC gets ready after NICLoadFirmware().
//
Index = 0;
//To avoid hang-on issue when interface up in kernel 2.4,
//we use a local variable "MacCsr0" instead of using "pAd->MACVersion" directly.
do
{
RTMP_IO_READ32(pAd, MAC_CSR0, &MacCsr0);
if ((MacCsr0 != 0x00) && (MacCsr0 != 0xFFFFFFFF))
break;
RTMPusecDelay(10);
} while (Index++ < 100);
pAd->MACVersion = MacCsr0;
DBGPRINT(RT_DEBUG_TRACE, ("MAC_CSR0 [ Ver:Rev=0x%08x]\n", pAd->MACVersion));
// turn on bit13 (set to zero) after rt2860D. This is to solve high-current issue.
RTMP_IO_READ32(pAd, PBF_SYS_CTRL, &MacCsr12);
MacCsr12 &= (~0x2000);
RTMP_IO_WRITE32(pAd, PBF_SYS_CTRL, MacCsr12);
RTMP_IO_WRITE32(pAd, MAC_SYS_CTRL, 0x3);
RTMP_IO_WRITE32(pAd, USB_DMA_CFG, 0x0);
Status = RTUSBVenderReset(pAd);
#endif
RTMP_IO_WRITE32(pAd, MAC_SYS_CTRL, 0x0);
// Initialize MAC register to default value
#ifdef RT2860
for (Index = 0; Index < NUM_MAC_REG_PARMS; Index++)
{
RTMP_IO_WRITE32(pAd, MACRegTable[Index].Register, MACRegTable[Index].Value);
}
#endif
#ifdef RT2870
for(Index=0; Index<NUM_MAC_REG_PARMS; Index++)
{
#ifdef RT3070
if ((MACRegTable[Index].Register == TX_SW_CFG0) && (IS_RT3070(pAd) || IS_RT3071(pAd)))
{
MACRegTable[Index].Value = 0x00000400;
}
#endif // RT3070 //
RTMP_IO_WRITE32(pAd, (USHORT)MACRegTable[Index].Register, MACRegTable[Index].Value);
}
#endif // RT2870 //
{
for (Index = 0; Index < NUM_STA_MAC_REG_PARMS; Index++)
{
#ifdef RT2860
RTMP_IO_WRITE32(pAd, STAMACRegTable[Index].Register, STAMACRegTable[Index].Value);
#endif
#ifdef RT2870
RTMP_IO_WRITE32(pAd, (USHORT)STAMACRegTable[Index].Register, STAMACRegTable[Index].Value);
#endif
}
}
// Initialize RT3070 serial MAc registers which is different from RT2870 serial
if (IS_RT3090(pAd))
{
RTMP_IO_WRITE32(pAd, TX_SW_CFG1, 0);
// RT3071 version E has fixed this issue
if ((pAd->MACVersion & 0xffff) < 0x0211)
{
if (pAd->NicConfig2.field.DACTestBit == 1)
{
RTMP_IO_WRITE32(pAd, TX_SW_CFG2, 0x1F); // To fix throughput drop drastically
}
else
{
RTMP_IO_WRITE32(pAd, TX_SW_CFG2, 0x0F); // To fix throughput drop drastically
}
}
else
{
RTMP_IO_WRITE32(pAd, TX_SW_CFG2, 0x0);
}
}
#ifdef RT2870
else if (IS_RT3070(pAd))
{
RTMP_IO_WRITE32(pAd, TX_SW_CFG1, 0);
RTMP_IO_WRITE32(pAd, TX_SW_CFG2, 0x1F); // To fix throughput drop drastically
}
#endif // RT30xx //
//
// Before program BBP, we need to wait BBP/RF get wake up.
//
Index = 0;
do
{
RTMP_IO_READ32(pAd, MAC_STATUS_CFG, &MacCsr12);
if ((MacCsr12 & 0x03) == 0) // if BB.RF is stable
break;
DBGPRINT(RT_DEBUG_TRACE, ("Check MAC_STATUS_CFG = Busy = %x\n", MacCsr12));
RTMPusecDelay(1000);
} while (Index++ < 100);
// The commands to firmware should be after these commands, these commands will init firmware
// PCI and USB are not the same because PCI driver needs to wait for PCI bus ready
RTMP_IO_WRITE32(pAd, H2M_BBP_AGENT, 0); // initialize BBP R/W access agent
RTMP_IO_WRITE32(pAd, H2M_MAILBOX_CSR, 0);
RTMPusecDelay(1000);
// Read BBP register, make sure BBP is up and running before write new data
Index = 0;
do
{
RTMP_BBP_IO_READ8_BY_REG_ID(pAd, BBP_R0, &R0);
DBGPRINT(RT_DEBUG_TRACE, ("BBP version = %x\n", R0));
} while ((++Index < 20) && ((R0 == 0xff) || (R0 == 0x00)));
//ASSERT(Index < 20); //this will cause BSOD on Check-build driver
if ((R0 == 0xff) || (R0 == 0x00))
return NDIS_STATUS_FAILURE;
// Initialize BBP register to default value
for (Index = 0; Index < NUM_BBP_REG_PARMS; Index++)
{
RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBPRegTable[Index].Register, BBPRegTable[Index].Value);
}
#ifndef RT2870
// for rt2860E and after, init BBP_R84 with 0x19. This is for extension channel overlapping IOT.
if ((pAd->MACVersion&0xffff) != 0x0101)
RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R84, 0x19);
#else
// for rt2860E and after, init BBP_R84 with 0x19. This is for extension channel overlapping IOT.
// RT3090 should not program BBP R84 to 0x19, otherwise TX will block.
if (((pAd->MACVersion&0xffff) != 0x0101) && (!IS_RT30xx(pAd)))
RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R84, 0x19);
// add by johnli, RF power sequence setup
if (IS_RT30xx(pAd))
{ //update for RT3070/71/72/90/91/92.
RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R79, 0x13);
RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R80, 0x05);
RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R81, 0x33);
}
if (IS_RT3090(pAd))
{
UCHAR bbpreg=0;
// enable DC filter
if ((pAd->MACVersion & 0xffff) >= 0x0211)
{
RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R103, 0xc0);
}
// improve power consumption
RTMP_BBP_IO_READ8_BY_REG_ID(pAd, BBP_R138, &bbpreg);
if (pAd->Antenna.field.TxPath == 1)
{
// turn off tx DAC_1
bbpreg = (bbpreg | 0x20);
}
if (pAd->Antenna.field.RxPath == 1)
{
// turn off tx ADC_1
bbpreg &= (~0x2);
}
RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R138, bbpreg);
// improve power consumption in RT3071 Ver.E
if ((pAd->MACVersion & 0xffff) >= 0x0211)
{
RTMP_BBP_IO_READ8_BY_REG_ID(pAd, BBP_R31, &bbpreg);
bbpreg &= (~0x3);
RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R31, bbpreg);
}
}
#endif
if (pAd->MACVersion == 0x28600100)
{
RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R69, 0x16);
RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R73, 0x12);
}
if (pAd->MACVersion >= RALINK_2880E_VERSION && pAd->MACVersion < RALINK_3070_VERSION) // 3*3
{
// enlarge MAX_LEN_CFG
UINT32 csr;
RTMP_IO_READ32(pAd, MAX_LEN_CFG, &csr);
csr &= 0xFFF;
csr |= 0x2000;
RTMP_IO_WRITE32(pAd, MAX_LEN_CFG, csr);
}
#ifdef RT2870
{
UCHAR MAC_Value[]={0xff,0xff,0xff,0xff,0xff,0xff,0xff,0,0};
//Initialize WCID table
Value = 0xff;
for(Index =0 ;Index < 254;Index++)
{
RTUSBMultiWrite(pAd, (USHORT)(MAC_WCID_BASE + Index * 8), MAC_Value, 8);
}
}
#endif // RT2870 //
// Add radio off control
{
if (pAd->StaCfg.bRadio == FALSE)
{
// RTMP_IO_WRITE32(pAd, PWR_PIN_CFG, 0x00001818);
RTMP_SET_FLAG(pAd, fRTMP_ADAPTER_RADIO_OFF);
DBGPRINT(RT_DEBUG_TRACE, ("Set Radio Off\n"));
}
}
// Clear raw counters
RTMP_IO_READ32(pAd, RX_STA_CNT0, &Counter);
RTMP_IO_READ32(pAd, RX_STA_CNT1, &Counter);
RTMP_IO_READ32(pAd, RX_STA_CNT2, &Counter);
RTMP_IO_READ32(pAd, TX_STA_CNT0, &Counter);
RTMP_IO_READ32(pAd, TX_STA_CNT1, &Counter);
RTMP_IO_READ32(pAd, TX_STA_CNT2, &Counter);
// ASIC will keep garbage value after boot
// Clear all seared key table when initial
// This routine can be ignored in radio-ON/OFF operation.
if (bHardReset)
{
for (KeyIdx = 0; KeyIdx < 4; KeyIdx++)
{
RTMP_IO_WRITE32(pAd, SHARED_KEY_MODE_BASE + 4*KeyIdx, 0);
}
// Clear all pairwise key table when initial
for (KeyIdx = 0; KeyIdx < 256; KeyIdx++)
{
RTMP_IO_WRITE32(pAd, MAC_WCID_ATTRIBUTE_BASE + (KeyIdx * HW_WCID_ATTRI_SIZE), 1);
}
}
// It isn't necessary to clear this space when not hard reset.
if (bHardReset == TRUE)
{
// clear all on-chip BEACON frame space
for (apidx = 0; apidx < HW_BEACON_MAX_COUNT; apidx++)
{
for (i = 0; i < HW_BEACON_OFFSET>>2; i+=4)
RTMP_IO_WRITE32(pAd, pAd->BeaconOffset[apidx] + i, 0x00);
}
}
#ifdef RT2870
AsicDisableSync(pAd);
// Clear raw counters
RTMP_IO_READ32(pAd, RX_STA_CNT0, &Counter);
RTMP_IO_READ32(pAd, RX_STA_CNT1, &Counter);
RTMP_IO_READ32(pAd, RX_STA_CNT2, &Counter);
RTMP_IO_READ32(pAd, TX_STA_CNT0, &Counter);
RTMP_IO_READ32(pAd, TX_STA_CNT1, &Counter);
RTMP_IO_READ32(pAd, TX_STA_CNT2, &Counter);
// Default PCI clock cycle per ms is different as default setting, which is based on PCI.
RTMP_IO_READ32(pAd, USB_CYC_CFG, &Counter);
Counter&=0xffffff00;
Counter|=0x000001e;
RTMP_IO_WRITE32(pAd, USB_CYC_CFG, Counter);
pAd->bUseEfuse=FALSE;
RTMP_IO_READ32(pAd, EFUSE_CTRL, &eFuseCtrl);
pAd->bUseEfuse = ( (eFuseCtrl & 0x80000000) == 0x80000000) ? 1 : 0;
if(pAd->bUseEfuse)
{
DBGPRINT(RT_DEBUG_TRACE, ("NVM is Efuse\n"));
}
else
{
DBGPRINT(RT_DEBUG_TRACE, ("NVM is EEPROM\n"));
}
#endif
{
// for rt2860E and after, init TXOP_CTRL_CFG with 0x583f. This is for extension channel overlapping IOT.
if ((pAd->MACVersion&0xffff) != 0x0101)
RTMP_IO_WRITE32(pAd, TXOP_CTRL_CFG, 0x583f);
}
DBGPRINT(RT_DEBUG_TRACE, ("<-- NICInitializeAsic\n"));
return NDIS_STATUS_SUCCESS;
}
#ifdef RT2860
VOID NICRestoreBBPValue(
IN PRTMP_ADAPTER pAd)
{
UCHAR index;
UCHAR Value = 0;
ULONG Data;
DBGPRINT(RT_DEBUG_TRACE, ("---> NICRestoreBBPValue !!!!!!!!!!!!!!!!!!!!!!! \n"));
// Initialize BBP register to default value (rtmp_init.c)
for (index = 0; index < NUM_BBP_REG_PARMS; index++)
{
RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBPRegTable[index].Register, BBPRegTable[index].Value);
}
// copy from (rtmp_init.c)
if (pAd->MACVersion == 0x28600100)
{
RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R69, 0x16);
RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R73, 0x12);
}
// copy from (connect.c LinkUp function)
if (INFRA_ON(pAd))
{
// Change to AP channel
if ((pAd->CommonCfg.CentralChannel > pAd->CommonCfg.Channel) && (pAd->MlmeAux.HtCapability.HtCapInfo.ChannelWidth == BW_40))
{
// Must using 40MHz.
pAd->CommonCfg.BBPCurrentBW = BW_40;
AsicSwitchChannel(pAd, pAd->CommonCfg.CentralChannel, FALSE);
AsicLockChannel(pAd, pAd->CommonCfg.CentralChannel);
RTMP_BBP_IO_READ8_BY_REG_ID(pAd, BBP_R4, &Value);
Value &= (~0x18);
Value |= 0x10;
RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R4, Value);
// RX : control channel at lower
RTMP_BBP_IO_READ8_BY_REG_ID(pAd, BBP_R3, &Value);
Value &= (~0x20);
RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R3, Value);
// Record BBPR3 setting, But don't keep R Antenna # information.
pAd->StaCfg.BBPR3 = Value;
RTMP_IO_READ32(pAd, TX_BAND_CFG, &Data);
Data &= 0xfffffffe;
RTMP_IO_WRITE32(pAd, TX_BAND_CFG, Data);
if (pAd->MACVersion == 0x28600100)
{
RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R69, 0x1A);
RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R70, 0x0A);
RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R73, 0x16);
DBGPRINT(RT_DEBUG_TRACE, ("!!!rt2860C !!! \n" ));
}
DBGPRINT(RT_DEBUG_TRACE, ("!!!40MHz Lower LINK UP !!! Control Channel at Below. Central = %d \n", pAd->CommonCfg.CentralChannel ));
}
else if ((pAd->CommonCfg.CentralChannel < pAd->CommonCfg.Channel) && (pAd->MlmeAux.HtCapability.HtCapInfo.ChannelWidth == BW_40))
{
// Must using 40MHz.
pAd->CommonCfg.BBPCurrentBW = BW_40;
AsicSwitchChannel(pAd, pAd->CommonCfg.CentralChannel, FALSE);
AsicLockChannel(pAd, pAd->CommonCfg.CentralChannel);
RTMP_BBP_IO_READ8_BY_REG_ID(pAd, BBP_R4, &Value);
Value &= (~0x18);
Value |= 0x10;
RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R4, Value);
RTMP_IO_READ32(pAd, TX_BAND_CFG, &Data);
Data |= 0x1;
RTMP_IO_WRITE32(pAd, TX_BAND_CFG, Data);
RTMP_BBP_IO_READ8_BY_REG_ID(pAd, BBP_R3, &Value);
Value |= (0x20);
RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R3, Value);
// Record BBPR3 setting, But don't keep R Antenna # information.
pAd->StaCfg.BBPR3 = Value;
if (pAd->MACVersion == 0x28600100)
{
RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R69, 0x1A);
RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R70, 0x0A);
RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R73, 0x16);
DBGPRINT(RT_DEBUG_TRACE, ("!!!rt2860C !!! \n" ));
}
DBGPRINT(RT_DEBUG_TRACE, ("!!!40MHz Upper LINK UP !!! Control Channel at UpperCentral = %d \n", pAd->CommonCfg.CentralChannel ));
}
else
{
pAd->CommonCfg.BBPCurrentBW = BW_20;
AsicSwitchChannel(pAd, pAd->CommonCfg.Channel, FALSE);
AsicLockChannel(pAd, pAd->CommonCfg.Channel);
RTMP_BBP_IO_READ8_BY_REG_ID(pAd, BBP_R4, &Value);
Value &= (~0x18);
RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R4, Value);
RTMP_IO_READ32(pAd, TX_BAND_CFG, &Data);
Data &= 0xfffffffe;
RTMP_IO_WRITE32(pAd, TX_BAND_CFG, Data);
RTMP_BBP_IO_READ8_BY_REG_ID(pAd, BBP_R3, &Value);
Value &= (~0x20);
RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R3, Value);
// Record BBPR3 setting, But don't keep R Antenna # information.
pAd->StaCfg.BBPR3 = Value;
if (pAd->MACVersion == 0x28600100)
{
RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R69, 0x16);
RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R70, 0x08);
RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R73, 0x11);
DBGPRINT(RT_DEBUG_TRACE, ("!!!rt2860C !!! \n" ));
}
DBGPRINT(RT_DEBUG_TRACE, ("!!!20MHz LINK UP !!! \n" ));
}
}
DBGPRINT(RT_DEBUG_TRACE, ("<--- NICRestoreBBPValue !!!!!!!!!!!!!!!!!!!!!!! \n"));
}
#endif /* RT2860 */
/*
========================================================================
Routine Description:
Reset NIC Asics
Arguments:
Adapter Pointer to our adapter
Return Value:
None
IRQL = PASSIVE_LEVEL
Note:
Reset NIC to initial state AS IS system boot up time.
========================================================================
*/
VOID NICIssueReset(
IN PRTMP_ADAPTER pAd)
{
UINT32 Value = 0;
DBGPRINT(RT_DEBUG_TRACE, ("--> NICIssueReset\n"));
// Disable Rx, register value supposed will remain after reset
RTMP_IO_READ32(pAd, MAC_SYS_CTRL, &Value);
Value &= (0xfffffff3);
RTMP_IO_WRITE32(pAd, MAC_SYS_CTRL, Value);
// Issue reset and clear from reset state
RTMP_IO_WRITE32(pAd, MAC_SYS_CTRL, 0x03); // 2004-09-17 change from 0x01
RTMP_IO_WRITE32(pAd, MAC_SYS_CTRL, 0x00);
DBGPRINT(RT_DEBUG_TRACE, ("<-- NICIssueReset\n"));
}
/*
========================================================================
Routine Description:
Check ASIC registers and find any reason the system might hang
Arguments:
Adapter Pointer to our adapter
Return Value:
None
IRQL = DISPATCH_LEVEL
========================================================================
*/
BOOLEAN NICCheckForHang(
IN PRTMP_ADAPTER pAd)
{
return (FALSE);
}
VOID NICUpdateFifoStaCounters(
IN PRTMP_ADAPTER pAd)
{
TX_STA_FIFO_STRUC StaFifo;
MAC_TABLE_ENTRY *pEntry;
UCHAR i = 0;
UCHAR pid = 0, wcid = 0;
CHAR reTry;
UCHAR succMCS;
do
{
RTMP_IO_READ32(pAd, TX_STA_FIFO, &StaFifo.word);
if (StaFifo.field.bValid == 0)
break;
wcid = (UCHAR)StaFifo.field.wcid;
/* ignore NoACK and MGMT frame use 0xFF as WCID */
if ((StaFifo.field.TxAckRequired == 0) || (wcid >= MAX_LEN_OF_MAC_TABLE))
{
i++;
continue;
}
/* PID store Tx MCS Rate */
pid = (UCHAR)StaFifo.field.PidType;
pEntry = &pAd->MacTab.Content[wcid];
pEntry->DebugFIFOCount++;
if (StaFifo.field.TxBF) // 3*3
pEntry->TxBFCount++;
#ifdef UAPSD_AP_SUPPORT
UAPSD_SP_AUE_Handle(pAd, pEntry, StaFifo.field.TxSuccess);
#endif // UAPSD_AP_SUPPORT //
if (!StaFifo.field.TxSuccess)
{
pEntry->FIFOCount++;
pEntry->OneSecTxFailCount++;
if (pEntry->FIFOCount >= 1)
{
DBGPRINT(RT_DEBUG_TRACE, ("#"));
pEntry->NoBADataCountDown = 64;
if(pEntry->PsMode == PWR_ACTIVE)
{
int tid;
for (tid=0; tid<NUM_OF_TID; tid++)
{
BAOriSessionTearDown(pAd, pEntry->Aid, tid, FALSE, FALSE);
}
// Update the continuous transmission counter except PS mode
pEntry->ContinueTxFailCnt++;
}
else
{
// Clear the FIFOCount when sta in Power Save mode. Basically we assume
// this tx error happened due to sta just go to sleep.
pEntry->FIFOCount = 0;
pEntry->ContinueTxFailCnt = 0;
}
}
}
else
{
if ((pEntry->PsMode != PWR_SAVE) && (pEntry->NoBADataCountDown > 0))
{
pEntry->NoBADataCountDown--;
if (pEntry->NoBADataCountDown==0)
{
DBGPRINT(RT_DEBUG_TRACE, ("@\n"));
}
}
pEntry->FIFOCount = 0;
pEntry->OneSecTxNoRetryOkCount++;
// update NoDataIdleCount when sucessful send packet to STA.
pEntry->NoDataIdleCount = 0;
pEntry->ContinueTxFailCnt = 0;
}
succMCS = StaFifo.field.SuccessRate & 0x7F;
reTry = pid - succMCS;
if (StaFifo.field.TxSuccess)
{
pEntry->TXMCSExpected[pid]++;
if (pid == succMCS)
{
pEntry->TXMCSSuccessful[pid]++;
}
else
{
pEntry->TXMCSAutoFallBack[pid][succMCS]++;
}
}
else
{
pEntry->TXMCSFailed[pid]++;
}
if (reTry > 0)
{
if ((pid >= 12) && succMCS <=7)
{
reTry -= 4;
}
pEntry->OneSecTxRetryOkCount += reTry;
}
i++;
// ASIC store 16 stack
} while ( i < (2*TX_RING_SIZE) );
}
/*
========================================================================
Routine Description:
Read statistical counters from hardware registers and record them
in software variables for later on query
Arguments:
pAd Pointer to our adapter
Return Value:
None
IRQL = DISPATCH_LEVEL
========================================================================
*/
VOID NICUpdateRawCounters(
IN PRTMP_ADAPTER pAd)
{
UINT32 OldValue;
RX_STA_CNT0_STRUC RxStaCnt0;
RX_STA_CNT1_STRUC RxStaCnt1;
RX_STA_CNT2_STRUC RxStaCnt2;
TX_STA_CNT0_STRUC TxStaCnt0;
TX_STA_CNT1_STRUC StaTx1;
TX_STA_CNT2_STRUC StaTx2;
TX_AGG_CNT_STRUC TxAggCnt;
TX_AGG_CNT0_STRUC TxAggCnt0;
TX_AGG_CNT1_STRUC TxAggCnt1;
TX_AGG_CNT2_STRUC TxAggCnt2;
TX_AGG_CNT3_STRUC TxAggCnt3;
TX_AGG_CNT4_STRUC TxAggCnt4;
TX_AGG_CNT5_STRUC TxAggCnt5;
TX_AGG_CNT6_STRUC TxAggCnt6;
TX_AGG_CNT7_STRUC TxAggCnt7;
RTMP_IO_READ32(pAd, RX_STA_CNT0, &RxStaCnt0.word);
RTMP_IO_READ32(pAd, RX_STA_CNT2, &RxStaCnt2.word);
{
RTMP_IO_READ32(pAd, RX_STA_CNT1, &RxStaCnt1.word);
// Update RX PLCP error counter
pAd->PrivateInfo.PhyRxErrCnt += RxStaCnt1.field.PlcpErr;
// Update False CCA counter
pAd->RalinkCounters.OneSecFalseCCACnt += RxStaCnt1.field.FalseCca;
}
// Update FCS counters
OldValue= pAd->WlanCounters.FCSErrorCount.u.LowPart;
pAd->WlanCounters.FCSErrorCount.u.LowPart += (RxStaCnt0.field.CrcErr); // >> 7);
if (pAd->WlanCounters.FCSErrorCount.u.LowPart < OldValue)
pAd->WlanCounters.FCSErrorCount.u.HighPart++;
// Add FCS error count to private counters
pAd->RalinkCounters.OneSecRxFcsErrCnt += RxStaCnt0.field.CrcErr;
OldValue = pAd->RalinkCounters.RealFcsErrCount.u.LowPart;
pAd->RalinkCounters.RealFcsErrCount.u.LowPart += RxStaCnt0.field.CrcErr;
if (pAd->RalinkCounters.RealFcsErrCount.u.LowPart < OldValue)
pAd->RalinkCounters.RealFcsErrCount.u.HighPart++;
// Update Duplicate Rcv check
pAd->RalinkCounters.DuplicateRcv += RxStaCnt2.field.RxDupliCount;
pAd->WlanCounters.FrameDuplicateCount.u.LowPart += RxStaCnt2.field.RxDupliCount;
// Update RX Overflow counter
pAd->Counters8023.RxNoBuffer += (RxStaCnt2.field.RxFifoOverflowCount);
#ifdef RT2870
if (pAd->RalinkCounters.RxCount != pAd->watchDogRxCnt)
{
pAd->watchDogRxCnt = pAd->RalinkCounters.RxCount;
pAd->watchDogRxOverFlowCnt = 0;
}
else
{
if (RxStaCnt2.field.RxFifoOverflowCount)
pAd->watchDogRxOverFlowCnt++;
else
pAd->watchDogRxOverFlowCnt = 0;
}
#endif // RT2870 //
if (!pAd->bUpdateBcnCntDone)
{
// Update BEACON sent count
RTMP_IO_READ32(pAd, TX_STA_CNT0, &TxStaCnt0.word);
RTMP_IO_READ32(pAd, TX_STA_CNT1, &StaTx1.word);
RTMP_IO_READ32(pAd, TX_STA_CNT2, &StaTx2.word);
pAd->RalinkCounters.OneSecBeaconSentCnt += TxStaCnt0.field.TxBeaconCount;
pAd->RalinkCounters.OneSecTxRetryOkCount += StaTx1.field.TxRetransmit;
pAd->RalinkCounters.OneSecTxNoRetryOkCount += StaTx1.field.TxSuccess;
pAd->RalinkCounters.OneSecTxFailCount += TxStaCnt0.field.TxFailCount;
pAd->WlanCounters.TransmittedFragmentCount.u.LowPart += StaTx1.field.TxSuccess;
pAd->WlanCounters.RetryCount.u.LowPart += StaTx1.field.TxRetransmit;
pAd->WlanCounters.FailedCount.u.LowPart += TxStaCnt0.field.TxFailCount;
}
{
RTMP_IO_READ32(pAd, TX_AGG_CNT, &TxAggCnt.word);
RTMP_IO_READ32(pAd, TX_AGG_CNT0, &TxAggCnt0.word);
RTMP_IO_READ32(pAd, TX_AGG_CNT1, &TxAggCnt1.word);
RTMP_IO_READ32(pAd, TX_AGG_CNT2, &TxAggCnt2.word);
RTMP_IO_READ32(pAd, TX_AGG_CNT3, &TxAggCnt3.word);
RTMP_IO_READ32(pAd, TX_AGG_CNT4, &TxAggCnt4.word);
RTMP_IO_READ32(pAd, TX_AGG_CNT5, &TxAggCnt5.word);
RTMP_IO_READ32(pAd, TX_AGG_CNT6, &TxAggCnt6.word);
RTMP_IO_READ32(pAd, TX_AGG_CNT7, &TxAggCnt7.word);
pAd->RalinkCounters.TxAggCount += TxAggCnt.field.AggTxCount;
pAd->RalinkCounters.TxNonAggCount += TxAggCnt.field.NonAggTxCount;
pAd->RalinkCounters.TxAgg1MPDUCount += TxAggCnt0.field.AggSize1Count;
pAd->RalinkCounters.TxAgg2MPDUCount += TxAggCnt0.field.AggSize2Count;
pAd->RalinkCounters.TxAgg3MPDUCount += TxAggCnt1.field.AggSize3Count;
pAd->RalinkCounters.TxAgg4MPDUCount += TxAggCnt1.field.AggSize4Count;
pAd->RalinkCounters.TxAgg5MPDUCount += TxAggCnt2.field.AggSize5Count;
pAd->RalinkCounters.TxAgg6MPDUCount += TxAggCnt2.field.AggSize6Count;
pAd->RalinkCounters.TxAgg7MPDUCount += TxAggCnt3.field.AggSize7Count;
pAd->RalinkCounters.TxAgg8MPDUCount += TxAggCnt3.field.AggSize8Count;
pAd->RalinkCounters.TxAgg9MPDUCount += TxAggCnt4.field.AggSize9Count;
pAd->RalinkCounters.TxAgg10MPDUCount += TxAggCnt4.field.AggSize10Count;
pAd->RalinkCounters.TxAgg11MPDUCount += TxAggCnt5.field.AggSize11Count;
pAd->RalinkCounters.TxAgg12MPDUCount += TxAggCnt5.field.AggSize12Count;
pAd->RalinkCounters.TxAgg13MPDUCount += TxAggCnt6.field.AggSize13Count;
pAd->RalinkCounters.TxAgg14MPDUCount += TxAggCnt6.field.AggSize14Count;
pAd->RalinkCounters.TxAgg15MPDUCount += TxAggCnt7.field.AggSize15Count;
pAd->RalinkCounters.TxAgg16MPDUCount += TxAggCnt7.field.AggSize16Count;
// Calculate the transmitted A-MPDU count
pAd->RalinkCounters.TransmittedAMPDUCount.u.LowPart += TxAggCnt0.field.AggSize1Count;
pAd->RalinkCounters.TransmittedAMPDUCount.u.LowPart += (TxAggCnt0.field.AggSize2Count / 2);
pAd->RalinkCounters.TransmittedAMPDUCount.u.LowPart += (TxAggCnt1.field.AggSize3Count / 3);
pAd->RalinkCounters.TransmittedAMPDUCount.u.LowPart += (TxAggCnt1.field.AggSize4Count / 4);
pAd->RalinkCounters.TransmittedAMPDUCount.u.LowPart += (TxAggCnt2.field.AggSize5Count / 5);
pAd->RalinkCounters.TransmittedAMPDUCount.u.LowPart += (TxAggCnt2.field.AggSize6Count / 6);
pAd->RalinkCounters.TransmittedAMPDUCount.u.LowPart += (TxAggCnt3.field.AggSize7Count / 7);
pAd->RalinkCounters.TransmittedAMPDUCount.u.LowPart += (TxAggCnt3.field.AggSize8Count / 8);
pAd->RalinkCounters.TransmittedAMPDUCount.u.LowPart += (TxAggCnt4.field.AggSize9Count / 9);
pAd->RalinkCounters.TransmittedAMPDUCount.u.LowPart += (TxAggCnt4.field.AggSize10Count / 10);
pAd->RalinkCounters.TransmittedAMPDUCount.u.LowPart += (TxAggCnt5.field.AggSize11Count / 11);
pAd->RalinkCounters.TransmittedAMPDUCount.u.LowPart += (TxAggCnt5.field.AggSize12Count / 12);
pAd->RalinkCounters.TransmittedAMPDUCount.u.LowPart += (TxAggCnt6.field.AggSize13Count / 13);
pAd->RalinkCounters.TransmittedAMPDUCount.u.LowPart += (TxAggCnt6.field.AggSize14Count / 14);
pAd->RalinkCounters.TransmittedAMPDUCount.u.LowPart += (TxAggCnt7.field.AggSize15Count / 15);
pAd->RalinkCounters.TransmittedAMPDUCount.u.LowPart += (TxAggCnt7.field.AggSize16Count / 16);
}
}
/*
========================================================================
Routine Description:
Reset NIC from error
Arguments:
Adapter Pointer to our adapter
Return Value:
None
IRQL = PASSIVE_LEVEL
Note:
Reset NIC from error state
========================================================================
*/
VOID NICResetFromError(
IN PRTMP_ADAPTER pAd)
{
// Reset BBP (according to alex, reset ASIC will force reset BBP
// Therefore, skip the reset BBP
// RTMP_IO_WRITE32(pAd, MAC_CSR1, 0x2);
RTMP_IO_WRITE32(pAd, MAC_SYS_CTRL, 0x1);
// Remove ASIC from reset state
RTMP_IO_WRITE32(pAd, MAC_SYS_CTRL, 0x0);
NICInitializeAdapter(pAd, FALSE);
NICInitAsicFromEEPROM(pAd);
// Switch to current channel, since during reset process, the connection should remains on.
AsicSwitchChannel(pAd, pAd->CommonCfg.CentralChannel, FALSE);
AsicLockChannel(pAd, pAd->CommonCfg.CentralChannel);
}
/*
========================================================================
Routine Description:
erase 8051 firmware image in MAC ASIC
Arguments:
Adapter Pointer to our adapter
IRQL = PASSIVE_LEVEL
========================================================================
*/
VOID NICEraseFirmware(
IN PRTMP_ADAPTER pAd)
{
ULONG i;
for(i=0; i<MAX_FIRMWARE_IMAGE_SIZE; i+=4)
RTMP_IO_WRITE32(pAd, FIRMWARE_IMAGE_BASE + i, 0);
}/* End of NICEraseFirmware */
/*
========================================================================
Routine Description:
Load 8051 firmware RT2561.BIN file into MAC ASIC
Arguments:
Adapter Pointer to our adapter
Return Value:
NDIS_STATUS_SUCCESS firmware image load ok
NDIS_STATUS_FAILURE image not found
IRQL = PASSIVE_LEVEL
========================================================================
*/
NDIS_STATUS NICLoadFirmware(
IN PRTMP_ADAPTER pAd)
{
NDIS_STATUS Status = NDIS_STATUS_SUCCESS;
PUCHAR pFirmwareImage;
ULONG FileLength, Index;
//ULONG firm;
UINT32 MacReg = 0;
#ifdef RT2870
UINT32 Version = (pAd->MACVersion >> 16);
#endif // RT2870 //
pFirmwareImage = FirmwareImage;
FileLength = sizeof(FirmwareImage);
#ifdef RT2870
// New 8k byte firmware size for RT3071/RT3072
//printk("Usb Chip\n");
if (FIRMWAREIMAGE_LENGTH == FIRMWAREIMAGE_MAX_LENGTH)
//The firmware image consists of two parts. One is the origianl and the other is the new.
//Use Second Part
{
if ((Version != 0x2860) && (Version != 0x2872) && (Version != 0x3070))
{ // Use Firmware V2.
//printk("KH:Use New Version,part2\n");
pFirmwareImage = (PUCHAR)&FirmwareImage[FIRMWAREIMAGEV1_LENGTH];
FileLength = FIRMWAREIMAGEV2_LENGTH;
}
else
{
//printk("KH:Use New Version,part1\n");
pFirmwareImage = FirmwareImage;
FileLength = FIRMWAREIMAGEV1_LENGTH;
}
}
else
{
DBGPRINT(RT_DEBUG_ERROR, ("KH: bin file should be 8KB.\n"));
Status = NDIS_STATUS_FAILURE;
}
#endif // RT2870 //
RT28XX_WRITE_FIRMWARE(pAd, pFirmwareImage, FileLength);
/* check if MCU is ready */
Index = 0;
do
{
RTMP_IO_READ32(pAd, PBF_SYS_CTRL, &MacReg);
if (MacReg & 0x80)
break;
RTMPusecDelay(1000);
} while (Index++ < 1000);
if (Index > 1000)
{
Status = NDIS_STATUS_FAILURE;
DBGPRINT(RT_DEBUG_ERROR, ("NICLoadFirmware: MCU is not ready\n\n\n"));
} /* End of if */
DBGPRINT(RT_DEBUG_TRACE,
("<=== %s (status=%d)\n", __func__, Status));
return Status;
} /* End of NICLoadFirmware */
/*
========================================================================
Routine Description:
Load Tx rate switching parameters
Arguments:
Adapter Pointer to our adapter
Return Value:
NDIS_STATUS_SUCCESS firmware image load ok
NDIS_STATUS_FAILURE image not found
IRQL = PASSIVE_LEVEL
Rate Table Format:
1. (B0: Valid Item number) (B1:Initial item from zero)
2. Item Number(Dec) Mode(Hex) Current MCS(Dec) TrainUp(Dec) TrainDown(Dec)
========================================================================
*/
NDIS_STATUS NICLoadRateSwitchingParams(
IN PRTMP_ADAPTER pAd)
{
return NDIS_STATUS_SUCCESS;
}
/*
========================================================================
Routine Description:
if pSrc1 all zero with length Length, return 0.
If not all zero, return 1
Arguments:
pSrc1
Return Value:
1: not all zero
0: all zero
IRQL = DISPATCH_LEVEL
Note:
========================================================================
*/
ULONG RTMPNotAllZero(
IN PVOID pSrc1,
IN ULONG Length)
{
PUCHAR pMem1;
ULONG Index = 0;
pMem1 = (PUCHAR) pSrc1;
for (Index = 0; Index < Length; Index++)
{
if (pMem1[Index] != 0x0)
{
break;
}
}
if (Index == Length)
{
return (0);
}
else
{
return (1);
}
}
/*
========================================================================
Routine Description:
Compare two memory block
Arguments:
pSrc1 Pointer to first memory address
pSrc2 Pointer to second memory address
Return Value:
0: memory is equal
1: pSrc1 memory is larger
2: pSrc2 memory is larger
IRQL = DISPATCH_LEVEL
Note:
========================================================================
*/
ULONG RTMPCompareMemory(
IN PVOID pSrc1,
IN PVOID pSrc2,
IN ULONG Length)
{
PUCHAR pMem1;
PUCHAR pMem2;
ULONG Index = 0;
pMem1 = (PUCHAR) pSrc1;
pMem2 = (PUCHAR) pSrc2;
for (Index = 0; Index < Length; Index++)
{
if (pMem1[Index] > pMem2[Index])
return (1);
else if (pMem1[Index] < pMem2[Index])
return (2);
}
// Equal
return (0);
}
/*
========================================================================
Routine Description:
Zero out memory block
Arguments:
pSrc1 Pointer to memory address
Length Size
Return Value:
None
IRQL = PASSIVE_LEVEL
IRQL = DISPATCH_LEVEL
Note:
========================================================================
*/
VOID RTMPZeroMemory(
IN PVOID pSrc,
IN ULONG Length)
{
PUCHAR pMem;
ULONG Index = 0;
pMem = (PUCHAR) pSrc;
for (Index = 0; Index < Length; Index++)
{
pMem[Index] = 0x00;
}
}
VOID RTMPFillMemory(
IN PVOID pSrc,
IN ULONG Length,
IN UCHAR Fill)
{
PUCHAR pMem;
ULONG Index = 0;
pMem = (PUCHAR) pSrc;
for (Index = 0; Index < Length; Index++)
{
pMem[Index] = Fill;
}
}
/*
========================================================================
Routine Description:
Copy data from memory block 1 to memory block 2
Arguments:
pDest Pointer to destination memory address
pSrc Pointer to source memory address
Length Copy size
Return Value:
None
IRQL = PASSIVE_LEVEL
IRQL = DISPATCH_LEVEL
Note:
========================================================================
*/
VOID RTMPMoveMemory(
OUT PVOID pDest,
IN PVOID pSrc,
IN ULONG Length)
{
PUCHAR pMem1;
PUCHAR pMem2;
UINT Index;
ASSERT((Length==0) || (pDest && pSrc));
pMem1 = (PUCHAR) pDest;
pMem2 = (PUCHAR) pSrc;
for (Index = 0; Index < Length; Index++)
{
pMem1[Index] = pMem2[Index];
}
}
/*
========================================================================
Routine Description:
Initialize port configuration structure
Arguments:
Adapter Pointer to our adapter
Return Value:
None
IRQL = PASSIVE_LEVEL
Note:
========================================================================
*/
VOID UserCfgInit(
IN PRTMP_ADAPTER pAd)
{
UINT key_index, bss_index;
DBGPRINT(RT_DEBUG_TRACE, ("--> UserCfgInit\n"));
//
// part I. intialize common configuration
//
#ifdef RT2870
pAd->BulkOutReq = 0;
pAd->BulkOutComplete = 0;
pAd->BulkOutCompleteOther = 0;
pAd->BulkOutCompleteCancel = 0;
pAd->BulkInReq = 0;
pAd->BulkInComplete = 0;
pAd->BulkInCompleteFail = 0;
//pAd->QuickTimerP = 100;
//pAd->TurnAggrBulkInCount = 0;
pAd->bUsbTxBulkAggre = 0;
// init as unsed value to ensure driver will set to MCU once.
pAd->LedIndicatorStregth = 0xFF;
pAd->CommonCfg.MaxPktOneTxBulk = 2;
pAd->CommonCfg.TxBulkFactor = 1;
pAd->CommonCfg.RxBulkFactor =1;
pAd->CommonCfg.TxPower = 100; //mW
NdisZeroMemory(&pAd->CommonCfg.IOTestParm, sizeof(pAd->CommonCfg.IOTestParm));
#endif // RT2870 //
for(key_index=0; key_index<SHARE_KEY_NUM; key_index++)
{
for(bss_index = 0; bss_index < MAX_MBSSID_NUM; bss_index++)
{
pAd->SharedKey[bss_index][key_index].KeyLen = 0;
pAd->SharedKey[bss_index][key_index].CipherAlg = CIPHER_NONE;
}
}
#ifdef RT2870
pAd->EepromAccess = FALSE;
#endif
pAd->Antenna.word = 0;
pAd->CommonCfg.BBPCurrentBW = BW_20;
pAd->LedCntl.word = 0;
#ifdef RT2860
pAd->LedIndicatorStregth = 0;
pAd->RLnkCtrlOffset = 0;
pAd->HostLnkCtrlOffset = 0;
pAd->CheckDmaBusyCount = 0;
#endif
pAd->bAutoTxAgcA = FALSE; // Default is OFF
pAd->bAutoTxAgcG = FALSE; // Default is OFF
pAd->RfIcType = RFIC_2820;
// Init timer for reset complete event
pAd->CommonCfg.CentralChannel = 1;
pAd->bForcePrintTX = FALSE;
pAd->bForcePrintRX = FALSE;
pAd->bStaFifoTest = FALSE;
pAd->bProtectionTest = FALSE;
pAd->bHCCATest = FALSE;
pAd->bGenOneHCCA = FALSE;
pAd->CommonCfg.Dsifs = 10; // in units of usec
pAd->CommonCfg.TxPower = 100; //mW
pAd->CommonCfg.TxPowerPercentage = 0xffffffff; // AUTO
pAd->CommonCfg.TxPowerDefault = 0xffffffff; // AUTO
pAd->CommonCfg.TxPreamble = Rt802_11PreambleAuto; // use Long preamble on TX by defaut
pAd->CommonCfg.bUseZeroToDisableFragment = FALSE;
pAd->CommonCfg.RtsThreshold = 2347;
pAd->CommonCfg.FragmentThreshold = 2346;
pAd->CommonCfg.UseBGProtection = 0; // 0: AUTO
pAd->CommonCfg.bEnableTxBurst = TRUE; //0;
pAd->CommonCfg.PhyMode = 0xff; // unknown
pAd->CommonCfg.BandState = UNKNOWN_BAND;
pAd->CommonCfg.RadarDetect.CSPeriod = 10;
pAd->CommonCfg.RadarDetect.CSCount = 0;
pAd->CommonCfg.RadarDetect.RDMode = RD_NORMAL_MODE;
pAd->CommonCfg.RadarDetect.ChMovingTime = 65;
pAd->CommonCfg.RadarDetect.LongPulseRadarTh = 3;
pAd->CommonCfg.bAPSDCapable = FALSE;
pAd->CommonCfg.bNeedSendTriggerFrame = FALSE;
pAd->CommonCfg.TriggerTimerCount = 0;
pAd->CommonCfg.bAPSDForcePowerSave = FALSE;
pAd->CommonCfg.bCountryFlag = FALSE;
pAd->CommonCfg.TxStream = 0;
pAd->CommonCfg.RxStream = 0;
NdisZeroMemory(&pAd->BeaconTxWI, sizeof(pAd->BeaconTxWI));
NdisZeroMemory(&pAd->CommonCfg.HtCapability, sizeof(pAd->CommonCfg.HtCapability));
pAd->HTCEnable = FALSE;
pAd->bBroadComHT = FALSE;
pAd->CommonCfg.bRdg = FALSE;
NdisZeroMemory(&pAd->CommonCfg.AddHTInfo, sizeof(pAd->CommonCfg.AddHTInfo));
pAd->CommonCfg.BACapability.field.MMPSmode = MMPS_ENABLE;
pAd->CommonCfg.BACapability.field.MpduDensity = 0;
pAd->CommonCfg.BACapability.field.Policy = IMMED_BA;
pAd->CommonCfg.BACapability.field.RxBAWinLimit = 64; //32;
pAd->CommonCfg.BACapability.field.TxBAWinLimit = 64; //32;
DBGPRINT(RT_DEBUG_TRACE, ("--> UserCfgInit. BACapability = 0x%x\n", pAd->CommonCfg.BACapability.word));
pAd->CommonCfg.BACapability.field.AutoBA = FALSE;
BATableInit(pAd, &pAd->BATable);
pAd->CommonCfg.bExtChannelSwitchAnnouncement = 1;
pAd->CommonCfg.bHTProtect = 1;
pAd->CommonCfg.bMIMOPSEnable = TRUE;
pAd->CommonCfg.bBADecline = FALSE;
pAd->CommonCfg.bDisableReordering = FALSE;
pAd->CommonCfg.TxBASize = 7;
pAd->CommonCfg.REGBACapability.word = pAd->CommonCfg.BACapability.word;
//pAd->CommonCfg.HTPhyMode.field.BW = BW_20;
//pAd->CommonCfg.HTPhyMode.field.MCS = MCS_AUTO;
//pAd->CommonCfg.HTPhyMode.field.ShortGI = GI_800;
//pAd->CommonCfg.HTPhyMode.field.STBC = STBC_NONE;
pAd->CommonCfg.TxRate = RATE_6;
pAd->CommonCfg.MlmeTransmit.field.MCS = MCS_RATE_6;
pAd->CommonCfg.MlmeTransmit.field.BW = BW_20;
pAd->CommonCfg.MlmeTransmit.field.MODE = MODE_OFDM;
pAd->CommonCfg.BeaconPeriod = 100; // in mSec
//
// part II. intialize STA specific configuration
//
{
RX_FILTER_SET_FLAG(pAd, fRX_FILTER_ACCEPT_DIRECT);
RX_FILTER_CLEAR_FLAG(pAd, fRX_FILTER_ACCEPT_MULTICAST);
RX_FILTER_SET_FLAG(pAd, fRX_FILTER_ACCEPT_BROADCAST);
RX_FILTER_SET_FLAG(pAd, fRX_FILTER_ACCEPT_ALL_MULTICAST);
pAd->StaCfg.Psm = PWR_ACTIVE;
pAd->StaCfg.OrigWepStatus = Ndis802_11EncryptionDisabled;
pAd->StaCfg.PairCipher = Ndis802_11EncryptionDisabled;
pAd->StaCfg.GroupCipher = Ndis802_11EncryptionDisabled;
pAd->StaCfg.bMixCipher = FALSE;
pAd->StaCfg.DefaultKeyId = 0;
// 802.1x port control
pAd->StaCfg.PrivacyFilter = Ndis802_11PrivFilter8021xWEP;
pAd->StaCfg.PortSecured = WPA_802_1X_PORT_NOT_SECURED;
pAd->StaCfg.LastMicErrorTime = 0;
pAd->StaCfg.MicErrCnt = 0;
pAd->StaCfg.bBlockAssoc = FALSE;
pAd->StaCfg.WpaState = SS_NOTUSE;
pAd->CommonCfg.NdisRadioStateOff = FALSE; // New to support microsoft disable radio with OID command
pAd->StaCfg.RssiTrigger = 0;
NdisZeroMemory(&pAd->StaCfg.RssiSample, sizeof(RSSI_SAMPLE));
pAd->StaCfg.RssiTriggerMode = RSSI_TRIGGERED_UPON_BELOW_THRESHOLD;
pAd->StaCfg.AtimWin = 0;
pAd->StaCfg.DefaultListenCount = 3;//default listen count;
pAd->StaCfg.BssType = BSS_INFRA; // BSS_INFRA or BSS_ADHOC or BSS_MONITOR
pAd->StaCfg.bScanReqIsFromWebUI = FALSE;
OPSTATUS_CLEAR_FLAG(pAd, fOP_STATUS_DOZE);
OPSTATUS_CLEAR_FLAG(pAd, fOP_STATUS_WAKEUP_NOW);
pAd->StaCfg.bAutoTxRateSwitch = TRUE;
pAd->StaCfg.DesiredTransmitSetting.field.MCS = MCS_AUTO;
}
// global variables mXXXX used in MAC protocol state machines
OPSTATUS_SET_FLAG(pAd, fOP_STATUS_RECEIVE_DTIM);
OPSTATUS_CLEAR_FLAG(pAd, fOP_STATUS_ADHOC_ON);
OPSTATUS_CLEAR_FLAG(pAd, fOP_STATUS_INFRA_ON);
// PHY specification
pAd->CommonCfg.PhyMode = PHY_11BG_MIXED; // default PHY mode
OPSTATUS_CLEAR_FLAG(pAd, fOP_STATUS_SHORT_PREAMBLE_INUSED); // CCK use LONG preamble
{
// user desired power mode
pAd->StaCfg.WindowsPowerMode = Ndis802_11PowerModeCAM;
pAd->StaCfg.WindowsBatteryPowerMode = Ndis802_11PowerModeCAM;
pAd->StaCfg.bWindowsACCAMEnable = FALSE;
RTMPInitTimer(pAd, &pAd->StaCfg.StaQuickResponeForRateUpTimer, GET_TIMER_FUNCTION(StaQuickResponeForRateUpExec), pAd, FALSE);
pAd->StaCfg.StaQuickResponeForRateUpTimerRunning = FALSE;
// Patch for Ndtest
pAd->StaCfg.ScanCnt = 0;
// CCX 2.0 control flag init
pAd->StaCfg.CCXEnable = FALSE;
pAd->StaCfg.CCXReqType = MSRN_TYPE_UNUSED;
pAd->StaCfg.CCXQosECWMin = 4;
pAd->StaCfg.CCXQosECWMax = 10;
pAd->StaCfg.bHwRadio = TRUE; // Default Hardware Radio status is On
pAd->StaCfg.bSwRadio = TRUE; // Default Software Radio status is On
pAd->StaCfg.bRadio = TRUE; // bHwRadio && bSwRadio
pAd->StaCfg.bHardwareRadio = FALSE; // Default is OFF
pAd->StaCfg.bShowHiddenSSID = FALSE; // Default no show
// Nitro mode control
pAd->StaCfg.bAutoReconnect = TRUE;
// Save the init time as last scan time, the system should do scan after 2 seconds.
// This patch is for driver wake up from standby mode, system will do scan right away.
pAd->StaCfg.LastScanTime = 0;
NdisZeroMemory(pAd->nickname, IW_ESSID_MAX_SIZE+1);
sprintf(pAd->nickname, "%s", STA_NIC_DEVICE_NAME);
RTMPInitTimer(pAd, &pAd->StaCfg.WpaDisassocAndBlockAssocTimer, GET_TIMER_FUNCTION(WpaDisassocApAndBlockAssoc), pAd, FALSE);
pAd->StaCfg.IEEE8021X = FALSE;
pAd->StaCfg.IEEE8021x_required_keys = FALSE;
pAd->StaCfg.WpaSupplicantUP = WPA_SUPPLICANT_DISABLE;
pAd->StaCfg.WpaSupplicantUP = WPA_SUPPLICANT_ENABLE;
}
// Default for extra information is not valid
pAd->ExtraInfo = EXTRA_INFO_CLEAR;
// Default Config change flag
pAd->bConfigChanged = FALSE;
//
// part III. AP configurations
//
//
// part IV. others
//
// dynamic BBP R66:sensibity tuning to overcome background noise
pAd->BbpTuning.bEnable = TRUE;
pAd->BbpTuning.FalseCcaLowerThreshold = 100;
pAd->BbpTuning.FalseCcaUpperThreshold = 512;
pAd->BbpTuning.R66Delta = 4;
pAd->Mlme.bEnableAutoAntennaCheck = TRUE;
//
// Also initial R66CurrentValue, RTUSBResumeMsduTransmission might use this value.
// if not initial this value, the default value will be 0.
//
pAd->BbpTuning.R66CurrentValue = 0x38;
pAd->Bbp94 = BBPR94_DEFAULT;
pAd->BbpForCCK = FALSE;
// initialize MAC table and allocate spin lock
NdisZeroMemory(&pAd->MacTab, sizeof(MAC_TABLE));
InitializeQueueHeader(&pAd->MacTab.McastPsQueue);
NdisAllocateSpinLock(&pAd->MacTabLock);
pAd->CommonCfg.bWiFiTest = FALSE;
#ifdef RT2860
pAd->bPCIclkOff = FALSE;
RTMP_SET_PSFLAG(pAd, fRTMP_PS_CAN_GO_SLEEP);
#endif
DBGPRINT(RT_DEBUG_TRACE, ("<-- UserCfgInit\n"));
}
// IRQL = PASSIVE_LEVEL
UCHAR BtoH(char ch)
{
if (ch >= '0' && ch <= '9') return (ch - '0'); // Handle numerals
if (ch >= 'A' && ch <= 'F') return (ch - 'A' + 0xA); // Handle capitol hex digits
if (ch >= 'a' && ch <= 'f') return (ch - 'a' + 0xA); // Handle small hex digits
return(255);
}
//
// FUNCTION: AtoH(char *, UCHAR *, int)
//
// PURPOSE: Converts ascii string to network order hex
//
// PARAMETERS:
// src - pointer to input ascii string
// dest - pointer to output hex
// destlen - size of dest
//
// COMMENTS:
//
// 2 ascii bytes make a hex byte so must put 1st ascii byte of pair
// into upper nibble and 2nd ascii byte of pair into lower nibble.
//
// IRQL = PASSIVE_LEVEL
void AtoH(char * src, UCHAR * dest, int destlen)
{
char * srcptr;
PUCHAR destTemp;
srcptr = src;
destTemp = (PUCHAR) dest;
while(destlen--)
{
*destTemp = BtoH(*srcptr++) << 4; // Put 1st ascii byte in upper nibble.
*destTemp += BtoH(*srcptr++); // Add 2nd ascii byte to above.
destTemp++;
}
}
VOID RTMPPatchMacBbpBug(
IN PRTMP_ADAPTER pAd)
{
ULONG Index;
// Initialize BBP register to default value
for (Index = 0; Index < NUM_BBP_REG_PARMS; Index++)
{
RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBPRegTable[Index].Register, (UCHAR)BBPRegTable[Index].Value);
}
// Initialize RF register to default value
AsicSwitchChannel(pAd, pAd->CommonCfg.Channel, FALSE);
AsicLockChannel(pAd, pAd->CommonCfg.Channel);
// Re-init BBP register from EEPROM value
NICInitAsicFromEEPROM(pAd);
}
/*
========================================================================
Routine Description:
Init timer objects
Arguments:
pAd Pointer to our adapter
pTimer Timer structure
pTimerFunc Function to execute when timer expired
Repeat Ture for period timer
Return Value:
None
Note:
========================================================================
*/
VOID RTMPInitTimer(
IN PRTMP_ADAPTER pAd,
IN PRALINK_TIMER_STRUCT pTimer,
IN PVOID pTimerFunc,
IN PVOID pData,
IN BOOLEAN Repeat)
{
//
// Set Valid to TRUE for later used.
// It will crash if we cancel a timer or set a timer
// that we haven't initialize before.
//
pTimer->Valid = TRUE;
pTimer->PeriodicType = Repeat;
pTimer->State = FALSE;
pTimer->cookie = (ULONG) pData;
#ifdef RT2870
pTimer->pAd = pAd;
#endif // RT2870 //
RTMP_OS_Init_Timer(pAd, &pTimer->TimerObj, pTimerFunc, (PVOID) pTimer);
}
/*
========================================================================
Routine Description:
Init timer objects
Arguments:
pTimer Timer structure
Value Timer value in milliseconds
Return Value:
None
Note:
To use this routine, must call RTMPInitTimer before.
========================================================================
*/
VOID RTMPSetTimer(
IN PRALINK_TIMER_STRUCT pTimer,
IN ULONG Value)
{
if (pTimer->Valid)
{
pTimer->TimerValue = Value;
pTimer->State = FALSE;
if (pTimer->PeriodicType == TRUE)
{
pTimer->Repeat = TRUE;
RTMP_SetPeriodicTimer(&pTimer->TimerObj, Value);
}
else
{
pTimer->Repeat = FALSE;
RTMP_OS_Add_Timer(&pTimer->TimerObj, Value);
}
}
else
{
DBGPRINT_ERR(("RTMPSetTimer failed, Timer hasn't been initialize!\n"));
}
}
/*
========================================================================
Routine Description:
Init timer objects
Arguments:
pTimer Timer structure
Value Timer value in milliseconds
Return Value:
None
Note:
To use this routine, must call RTMPInitTimer before.
========================================================================
*/
VOID RTMPModTimer(
IN PRALINK_TIMER_STRUCT pTimer,
IN ULONG Value)
{
BOOLEAN Cancel;
if (pTimer->Valid)
{
pTimer->TimerValue = Value;
pTimer->State = FALSE;
if (pTimer->PeriodicType == TRUE)
{
RTMPCancelTimer(pTimer, &Cancel);
RTMPSetTimer(pTimer, Value);
}
else
{
RTMP_OS_Mod_Timer(&pTimer->TimerObj, Value);
}
}
else
{
DBGPRINT_ERR(("RTMPModTimer failed, Timer hasn't been initialize!\n"));
}
}
/*
========================================================================
Routine Description:
Cancel timer objects
Arguments:
Adapter Pointer to our adapter
Return Value:
None
IRQL = PASSIVE_LEVEL
IRQL = DISPATCH_LEVEL
Note:
1.) To use this routine, must call RTMPInitTimer before.
2.) Reset NIC to initial state AS IS system boot up time.
========================================================================
*/
VOID RTMPCancelTimer(
IN PRALINK_TIMER_STRUCT pTimer,
OUT BOOLEAN *pCancelled)
{
if (pTimer->Valid)
{
if (pTimer->State == FALSE)
pTimer->Repeat = FALSE;
RTMP_OS_Del_Timer(&pTimer->TimerObj, pCancelled);
if (*pCancelled == TRUE)
pTimer->State = TRUE;
#ifdef RT2870
// We need to go-through the TimerQ to findout this timer handler and remove it if
// it's still waiting for execution.
RT2870_TimerQ_Remove(pTimer->pAd, pTimer);
#endif // RT2870 //
}
else
{
//
// NdisMCancelTimer just canced the timer and not mean release the timer.
// And don't set the "Valid" to False. So that we can use this timer again.
//
DBGPRINT_ERR(("RTMPCancelTimer failed, Timer hasn't been initialize!\n"));
}
}
/*
========================================================================
Routine Description:
Set LED Status
Arguments:
pAd Pointer to our adapter
Status LED Status
Return Value:
None
IRQL = PASSIVE_LEVEL
IRQL = DISPATCH_LEVEL
Note:
========================================================================
*/
VOID RTMPSetLED(
IN PRTMP_ADAPTER pAd,
IN UCHAR Status)
{
//ULONG data;
UCHAR HighByte = 0;
UCHAR LowByte;
LowByte = pAd->LedCntl.field.LedMode&0x7f;
switch (Status)
{
case LED_LINK_DOWN:
HighByte = 0x20;
AsicSendCommandToMcu(pAd, 0x50, 0xff, LowByte, HighByte);
pAd->LedIndicatorStregth = 0;
break;
case LED_LINK_UP:
if (pAd->CommonCfg.Channel > 14)
HighByte = 0xa0;
else
HighByte = 0x60;
AsicSendCommandToMcu(pAd, 0x50, 0xff, LowByte, HighByte);
break;
case LED_RADIO_ON:
HighByte = 0x20;
AsicSendCommandToMcu(pAd, 0x50, 0xff, LowByte, HighByte);
break;
case LED_HALT:
LowByte = 0; // Driver sets MAC register and MAC controls LED
case LED_RADIO_OFF:
HighByte = 0;
AsicSendCommandToMcu(pAd, 0x50, 0xff, LowByte, HighByte);
break;
case LED_WPS:
HighByte = 0x10;
AsicSendCommandToMcu(pAd, 0x50, 0xff, LowByte, HighByte);
break;
case LED_ON_SITE_SURVEY:
HighByte = 0x08;
AsicSendCommandToMcu(pAd, 0x50, 0xff, LowByte, HighByte);
break;
case LED_POWER_UP:
HighByte = 0x04;
AsicSendCommandToMcu(pAd, 0x50, 0xff, LowByte, HighByte);
break;
default:
DBGPRINT(RT_DEBUG_WARN, ("RTMPSetLED::Unknown Status %d\n", Status));
break;
}
//
// Keep LED status for LED SiteSurvey mode.
// After SiteSurvey, we will set the LED mode to previous status.
//
if ((Status != LED_ON_SITE_SURVEY) && (Status != LED_POWER_UP))
pAd->LedStatus = Status;
DBGPRINT(RT_DEBUG_TRACE, ("RTMPSetLED::Mode=%d,HighByte=0x%02x,LowByte=0x%02x\n", pAd->LedCntl.field.LedMode, HighByte, LowByte));
}
/*
========================================================================
Routine Description:
Set LED Signal Stregth
Arguments:
pAd Pointer to our adapter
Dbm Signal Stregth
Return Value:
None
IRQL = PASSIVE_LEVEL
Note:
Can be run on any IRQL level.
According to Microsoft Zero Config Wireless Signal Stregth definition as belows.
<= -90 No Signal
<= -81 Very Low
<= -71 Low
<= -67 Good
<= -57 Very Good
> -57 Excellent
========================================================================
*/
VOID RTMPSetSignalLED(
IN PRTMP_ADAPTER pAd,
IN NDIS_802_11_RSSI Dbm)
{
UCHAR nLed = 0;
//
// if not Signal Stregth, then do nothing.
//
if (pAd->LedCntl.field.LedMode != LED_MODE_SIGNAL_STREGTH)
{
return;
}
if (Dbm <= -90)
nLed = 0;
else if (Dbm <= -81)
nLed = 1;
else if (Dbm <= -71)
nLed = 3;
else if (Dbm <= -67)
nLed = 7;
else if (Dbm <= -57)
nLed = 15;
else
nLed = 31;
//
// Update Signal Stregth to firmware if changed.
//
if (pAd->LedIndicatorStregth != nLed)
{
AsicSendCommandToMcu(pAd, 0x51, 0xff, nLed, pAd->LedCntl.field.Polarity);
pAd->LedIndicatorStregth = nLed;
}
}
/*
========================================================================
Routine Description:
Enable RX
Arguments:
pAd Pointer to our adapter
Return Value:
None
IRQL <= DISPATCH_LEVEL
Note:
Before Enable RX, make sure you have enabled Interrupt.
========================================================================
*/
VOID RTMPEnableRxTx(
IN PRTMP_ADAPTER pAd)
{
DBGPRINT(RT_DEBUG_TRACE, ("==> RTMPEnableRxTx\n"));
// Enable Rx DMA.
RT28XXDMAEnable(pAd);
// enable RX of MAC block
if (pAd->OpMode == OPMODE_AP)
{
UINT32 rx_filter_flag = APNORMAL;
RTMP_IO_WRITE32(pAd, RX_FILTR_CFG, rx_filter_flag); // enable RX of DMA block
}
else
{
RTMP_IO_WRITE32(pAd, RX_FILTR_CFG, STANORMAL); // Staion not drop control frame will fail WiFi Certification.
}
RTMP_IO_WRITE32(pAd, MAC_SYS_CTRL, 0xc);
DBGPRINT(RT_DEBUG_TRACE, ("<== RTMPEnableRxTx\n"));
}