blob: ad883ca2ffc8469ef082388fdb8a6562d799d43b [file] [log] [blame]
/*
*************************************************************************
* Ralink Tech Inc.
* 5F., No.36, Taiyuan St., Jhubei City,
* Hsinchu County 302,
* Taiwan, R.O.C.
*
* (c) Copyright 2002-2007, Ralink Technology, Inc.
*
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
* *
*************************************************************************
Module Name:
md5.c
Abstract:
Revision History:
Who When What
-------- ---------- ----------------------------------------------
Name Date Modification logs
jan 10-28-03 Initial
Rita 11-23-04 Modify MD5 and SHA-1
Rita 10-14-05 Modify SHA-1 in big-endian platform
*/
#include "../rt_config.h"
/**
* md5_mac:
* @key: pointer to the key used for MAC generation
* @key_len: length of the key in bytes
* @data: pointer to the data area for which the MAC is generated
* @data_len: length of the data in bytes
* @mac: pointer to the buffer holding space for the MAC; the buffer should
* have space for 128-bit (16 bytes) MD5 hash value
*
* md5_mac() determines the message authentication code by using secure hash
* MD5(key | data | key).
*/
void md5_mac(u8 *key, size_t key_len, u8 *data, size_t data_len, u8 *mac)
{
MD5_CTX context;
MD5Init(&context);
MD5Update(&context, key, key_len);
MD5Update(&context, data, data_len);
MD5Update(&context, key, key_len);
MD5Final(mac, &context);
}
/**
* hmac_md5:
* @key: pointer to the key used for MAC generation
* @key_len: length of the key in bytes
* @data: pointer to the data area for which the MAC is generated
* @data_len: length of the data in bytes
* @mac: pointer to the buffer holding space for the MAC; the buffer should
* have space for 128-bit (16 bytes) MD5 hash value
*
* hmac_md5() determines the message authentication code using HMAC-MD5.
* This implementation is based on the sample code presented in RFC 2104.
*/
void hmac_md5(u8 *key, size_t key_len, u8 *data, size_t data_len, u8 *mac)
{
MD5_CTX context;
u8 k_ipad[65]; /* inner padding - key XORd with ipad */
u8 k_opad[65]; /* outer padding - key XORd with opad */
u8 tk[16];
int i;
//assert(key != NULL && data != NULL && mac != NULL);
/* if key is longer than 64 bytes reset it to key = MD5(key) */
if (key_len > 64) {
MD5_CTX ttcontext;
MD5Init(&ttcontext);
MD5Update(&ttcontext, key, key_len);
MD5Final(tk, &ttcontext);
//key=(PUCHAR)ttcontext.buf;
key = tk;
key_len = 16;
}
/* the HMAC_MD5 transform looks like:
*
* MD5(K XOR opad, MD5(K XOR ipad, text))
*
* where K is an n byte key
* ipad is the byte 0x36 repeated 64 times
* opad is the byte 0x5c repeated 64 times
* and text is the data being protected */
/* start out by storing key in pads */
NdisZeroMemory(k_ipad, sizeof(k_ipad));
NdisZeroMemory(k_opad, sizeof(k_opad));
//assert(key_len < sizeof(k_ipad));
NdisMoveMemory(k_ipad, key, key_len);
NdisMoveMemory(k_opad, key, key_len);
/* XOR key with ipad and opad values */
for (i = 0; i < 64; i++) {
k_ipad[i] ^= 0x36;
k_opad[i] ^= 0x5c;
}
/* perform inner MD5 */
MD5Init(&context); /* init context for 1st pass */
MD5Update(&context, k_ipad, 64); /* start with inner pad */
MD5Update(&context, data, data_len); /* then text of datagram */
MD5Final(mac, &context); /* finish up 1st pass */
/* perform outer MD5 */
MD5Init(&context); /* init context for 2nd pass */
MD5Update(&context, k_opad, 64); /* start with outer pad */
MD5Update(&context, mac, 16); /* then results of 1st hash */
MD5Final(mac, &context); /* finish up 2nd pass */
}
#define byteReverse(buf, len) /* Nothing */
/* ========================== MD5 implementation =========================== */
// four base functions for MD5
#define MD5_F1(x, y, z) (((x) & (y)) | ((~x) & (z)))
#define MD5_F2(x, y, z) (((x) & (z)) | ((y) & (~z)))
#define MD5_F3(x, y, z) ((x) ^ (y) ^ (z))
#define MD5_F4(x, y, z) ((y) ^ ((x) | (~z)))
#define CYCLIC_LEFT_SHIFT(w, s) (((w) << (s)) | ((w) >> (32-(s))))
#define MD5Step(f, w, x, y, z, data, t, s) \
( w += f(x, y, z) + data + t, w = (CYCLIC_LEFT_SHIFT(w, s)) & 0xffffffff, w += x )
/*
* Function Description:
* Initiate MD5 Context satisfied in RFC 1321
*
* Arguments:
* pCtx Pointer to MD5 context
*
* Return Value:
* None
*/
VOID MD5Init(MD5_CTX *pCtx)
{
pCtx->Buf[0]=0x67452301;
pCtx->Buf[1]=0xefcdab89;
pCtx->Buf[2]=0x98badcfe;
pCtx->Buf[3]=0x10325476;
pCtx->LenInBitCount[0]=0;
pCtx->LenInBitCount[1]=0;
}
/*
* Function Description:
* Update MD5 Context, allow of an arrary of octets as the next portion
* of the message
*
* Arguments:
* pCtx Pointer to MD5 context
* pData Pointer to input data
* LenInBytes The length of input data (unit: byte)
*
* Return Value:
* None
*
* Note:
* Called after MD5Init or MD5Update(itself)
*/
VOID MD5Update(MD5_CTX *pCtx, UCHAR *pData, UINT32 LenInBytes)
{
UINT32 TfTimes;
UINT32 temp;
unsigned int i;
temp = pCtx->LenInBitCount[0];
pCtx->LenInBitCount[0] = (UINT32) (pCtx->LenInBitCount[0] + (LenInBytes << 3));
if (pCtx->LenInBitCount[0] < temp)
pCtx->LenInBitCount[1]++; //carry in
pCtx->LenInBitCount[1] += LenInBytes >> 29;
// mod 64 bytes
temp = (temp >> 3) & 0x3f;
// process lacks of 64-byte data
if (temp)
{
UCHAR *pAds = (UCHAR *) pCtx->Input + temp;
if ((temp+LenInBytes) < 64)
{
NdisMoveMemory(pAds, (UCHAR *)pData, LenInBytes);
return;
}
NdisMoveMemory(pAds, (UCHAR *)pData, 64-temp);
byteReverse(pCtx->Input, 16);
MD5Transform(pCtx->Buf, (UINT32 *)pCtx->Input);
pData += 64-temp;
LenInBytes -= 64-temp;
} // end of if (temp)
TfTimes = (LenInBytes >> 6);
for (i=TfTimes; i>0; i--)
{
NdisMoveMemory(pCtx->Input, (UCHAR *)pData, 64);
byteReverse(pCtx->Input, 16);
MD5Transform(pCtx->Buf, (UINT32 *)pCtx->Input);
pData += 64;
LenInBytes -= 64;
} // end of for
// buffering lacks of 64-byte data
if(LenInBytes)
NdisMoveMemory(pCtx->Input, (UCHAR *)pData, LenInBytes);
}
/*
* Function Description:
* Append padding bits and length of original message in the tail
* The message digest has to be completed in the end
*
* Arguments:
* Digest Output of Digest-Message for MD5
* pCtx Pointer to MD5 context
*
* Return Value:
* None
*
* Note:
* Called after MD5Update
*/
VOID MD5Final(UCHAR Digest[16], MD5_CTX *pCtx)
{
UCHAR Remainder;
UCHAR PadLenInBytes;
UCHAR *pAppend=0;
unsigned int i;
Remainder = (UCHAR)((pCtx->LenInBitCount[0] >> 3) & 0x3f);
PadLenInBytes = (Remainder < 56) ? (56-Remainder) : (120-Remainder);
pAppend = (UCHAR *)pCtx->Input + Remainder;
// padding bits without crossing block(64-byte based) boundary
if (Remainder < 56)
{
*pAppend = 0x80;
PadLenInBytes --;
NdisZeroMemory((UCHAR *)pCtx->Input + Remainder+1, PadLenInBytes);
// add data-length field, from low to high
for (i=0; i<4; i++)
{
pCtx->Input[56+i] = (UCHAR)((pCtx->LenInBitCount[0] >> (i << 3)) & 0xff);
pCtx->Input[60+i] = (UCHAR)((pCtx->LenInBitCount[1] >> (i << 3)) & 0xff);
}
byteReverse(pCtx->Input, 16);
MD5Transform(pCtx->Buf, (UINT32 *)pCtx->Input);
} // end of if
// padding bits with crossing block(64-byte based) boundary
else
{
// the first block ===
*pAppend = 0x80;
PadLenInBytes --;
NdisZeroMemory((UCHAR *)pCtx->Input + Remainder+1, (64-Remainder-1));
PadLenInBytes -= (64 - Remainder - 1);
byteReverse(pCtx->Input, 16);
MD5Transform(pCtx->Buf, (UINT32 *)pCtx->Input);
// the second block ===
NdisZeroMemory((UCHAR *)pCtx->Input, PadLenInBytes);
// add data-length field
for (i=0; i<4; i++)
{
pCtx->Input[56+i] = (UCHAR)((pCtx->LenInBitCount[0] >> (i << 3)) & 0xff);
pCtx->Input[60+i] = (UCHAR)((pCtx->LenInBitCount[1] >> (i << 3)) & 0xff);
}
byteReverse(pCtx->Input, 16);
MD5Transform(pCtx->Buf, (UINT32 *)pCtx->Input);
} // end of else
NdisMoveMemory((UCHAR *)Digest, (UINT32 *)pCtx->Buf, 16); // output
byteReverse((UCHAR *)Digest, 4);
NdisZeroMemory(pCtx, sizeof(pCtx)); // memory free
}
/*
* Function Description:
* The central algorithm of MD5, consists of four rounds and sixteen
* steps per round
*
* Arguments:
* Buf Buffers of four states (output: 16 bytes)
* Mes Input data (input: 64 bytes)
*
* Return Value:
* None
*
* Note:
* Called by MD5Update or MD5Final
*/
VOID MD5Transform(UINT32 Buf[4], UINT32 Mes[16])
{
UINT32 Reg[4], Temp;
unsigned int i;
static UCHAR LShiftVal[16] =
{
7, 12, 17, 22,
5, 9 , 14, 20,
4, 11, 16, 23,
6, 10, 15, 21,
};
// [equal to 4294967296*abs(sin(index))]
static UINT32 MD5Table[64] =
{
0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee,
0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501,
0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be,
0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821,
0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa,
0xd62f105d, 0x02441453, 0xd8a1e681, 0xe7d3fbc8,
0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed,
0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a,
0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c,
0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70,
0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x04881d05,
0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665,
0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039,
0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1,
0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1,
0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391
};
for (i=0; i<4; i++)
Reg[i]=Buf[i];
// 64 steps in MD5 algorithm
for (i=0; i<16; i++)
{
MD5Step(MD5_F1, Reg[0], Reg[1], Reg[2], Reg[3], Mes[i],
MD5Table[i], LShiftVal[i & 0x3]);
// one-word right shift
Temp = Reg[3];
Reg[3] = Reg[2];
Reg[2] = Reg[1];
Reg[1] = Reg[0];
Reg[0] = Temp;
}
for (i=16; i<32; i++)
{
MD5Step(MD5_F2, Reg[0], Reg[1], Reg[2], Reg[3], Mes[(5*(i & 0xf)+1) & 0xf],
MD5Table[i], LShiftVal[(0x1 << 2)+(i & 0x3)]);
// one-word right shift
Temp = Reg[3];
Reg[3] = Reg[2];
Reg[2] = Reg[1];
Reg[1] = Reg[0];
Reg[0] = Temp;
}
for (i=32; i<48; i++)
{
MD5Step(MD5_F3, Reg[0], Reg[1], Reg[2], Reg[3], Mes[(3*(i & 0xf)+5) & 0xf],
MD5Table[i], LShiftVal[(0x1 << 3)+(i & 0x3)]);
// one-word right shift
Temp = Reg[3];
Reg[3] = Reg[2];
Reg[2] = Reg[1];
Reg[1] = Reg[0];
Reg[0] = Temp;
}
for (i=48; i<64; i++)
{
MD5Step(MD5_F4, Reg[0], Reg[1], Reg[2], Reg[3], Mes[(7*(i & 0xf)) & 0xf],
MD5Table[i], LShiftVal[(0x3 << 2)+(i & 0x3)]);
// one-word right shift
Temp = Reg[3];
Reg[3] = Reg[2];
Reg[2] = Reg[1];
Reg[1] = Reg[0];
Reg[0] = Temp;
}
// (temporary)output
for (i=0; i<4; i++)
Buf[i] += Reg[i];
}
/* ========================= SHA-1 implementation ========================== */
// four base functions for SHA-1
#define SHA1_F1(b, c, d) (((b) & (c)) | ((~b) & (d)))
#define SHA1_F2(b, c, d) ((b) ^ (c) ^ (d))
#define SHA1_F3(b, c, d) (((b) & (c)) | ((b) & (d)) | ((c) & (d)))
#define SHA1Step(f, a, b, c, d, e, w, k) \
( e += ( f(b, c, d) + w + k + CYCLIC_LEFT_SHIFT(a, 5)) & 0xffffffff, \
b = CYCLIC_LEFT_SHIFT(b, 30) )
//Initiate SHA-1 Context satisfied in RFC 3174
VOID SHAInit(SHA_CTX *pCtx)
{
pCtx->Buf[0]=0x67452301;
pCtx->Buf[1]=0xefcdab89;
pCtx->Buf[2]=0x98badcfe;
pCtx->Buf[3]=0x10325476;
pCtx->Buf[4]=0xc3d2e1f0;
pCtx->LenInBitCount[0]=0;
pCtx->LenInBitCount[1]=0;
}
/*
* Function Description:
* Update SHA-1 Context, allow of an arrary of octets as the next
* portion of the message
*
* Arguments:
* pCtx Pointer to SHA-1 context
* pData Pointer to input data
* LenInBytes The length of input data (unit: byte)
*
* Return Value:
* error indicate more than pow(2,64) bits of data
*
* Note:
* Called after SHAInit or SHAUpdate(itself)
*/
UCHAR SHAUpdate(SHA_CTX *pCtx, UCHAR *pData, UINT32 LenInBytes)
{
UINT32 TfTimes;
UINT32 temp1,temp2;
unsigned int i;
UCHAR err=1;
temp1 = pCtx->LenInBitCount[0];
temp2 = pCtx->LenInBitCount[1];
pCtx->LenInBitCount[0] = (UINT32) (pCtx->LenInBitCount[0] + (LenInBytes << 3));
if (pCtx->LenInBitCount[0] < temp1)
pCtx->LenInBitCount[1]++; //carry in
pCtx->LenInBitCount[1] = (UINT32) (pCtx->LenInBitCount[1] +(LenInBytes >> 29));
if (pCtx->LenInBitCount[1] < temp2)
return (err); //check total length of original data
// mod 64 bytes
temp1 = (temp1 >> 3) & 0x3f;
// process lacks of 64-byte data
if (temp1)
{
UCHAR *pAds = (UCHAR *) pCtx->Input + temp1;
if ((temp1+LenInBytes) < 64)
{
NdisMoveMemory(pAds, (UCHAR *)pData, LenInBytes);
return (0);
}
NdisMoveMemory(pAds, (UCHAR *)pData, 64-temp1);
byteReverse((UCHAR *)pCtx->Input, 16);
NdisZeroMemory((UCHAR *)pCtx->Input + 64, 16);
SHATransform(pCtx->Buf, (UINT32 *)pCtx->Input);
pData += 64-temp1;
LenInBytes -= 64-temp1;
} // end of if (temp1)
TfTimes = (LenInBytes >> 6);
for (i=TfTimes; i>0; i--)
{
NdisMoveMemory(pCtx->Input, (UCHAR *)pData, 64);
byteReverse((UCHAR *)pCtx->Input, 16);
NdisZeroMemory((UCHAR *)pCtx->Input + 64, 16);
SHATransform(pCtx->Buf, (UINT32 *)pCtx->Input);
pData += 64;
LenInBytes -= 64;
} // end of for
// buffering lacks of 64-byte data
if(LenInBytes)
NdisMoveMemory(pCtx->Input, (UCHAR *)pData, LenInBytes);
return (0);
}
// Append padding bits and length of original message in the tail
// The message digest has to be completed in the end
VOID SHAFinal(SHA_CTX *pCtx, UCHAR Digest[20])
{
UCHAR Remainder;
UCHAR PadLenInBytes;
UCHAR *pAppend=0;
unsigned int i;
Remainder = (UCHAR)((pCtx->LenInBitCount[0] >> 3) & 0x3f);
pAppend = (UCHAR *)pCtx->Input + Remainder;
PadLenInBytes = (Remainder < 56) ? (56-Remainder) : (120-Remainder);
// padding bits without crossing block(64-byte based) boundary
if (Remainder < 56)
{
*pAppend = 0x80;
PadLenInBytes --;
NdisZeroMemory((UCHAR *)pCtx->Input + Remainder+1, PadLenInBytes);
// add data-length field, from high to low
for (i=0; i<4; i++)
{
pCtx->Input[56+i] = (UCHAR)((pCtx->LenInBitCount[1] >> ((3-i) << 3)) & 0xff);
pCtx->Input[60+i] = (UCHAR)((pCtx->LenInBitCount[0] >> ((3-i) << 3)) & 0xff);
}
byteReverse((UCHAR *)pCtx->Input, 16);
NdisZeroMemory((UCHAR *)pCtx->Input + 64, 14);
SHATransform(pCtx->Buf, (UINT32 *)pCtx->Input);
} // end of if
// padding bits with crossing block(64-byte based) boundary
else
{
// the first block ===
*pAppend = 0x80;
PadLenInBytes --;
NdisZeroMemory((UCHAR *)pCtx->Input + Remainder+1, (64-Remainder-1));
PadLenInBytes -= (64 - Remainder - 1);
byteReverse((UCHAR *)pCtx->Input, 16);
NdisZeroMemory((UCHAR *)pCtx->Input + 64, 16);
SHATransform(pCtx->Buf, (UINT32 *)pCtx->Input);
// the second block ===
NdisZeroMemory((UCHAR *)pCtx->Input, PadLenInBytes);
// add data-length field
for (i=0; i<4; i++)
{
pCtx->Input[56+i] = (UCHAR)((pCtx->LenInBitCount[1] >> ((3-i) << 3)) & 0xff);
pCtx->Input[60+i] = (UCHAR)((pCtx->LenInBitCount[0] >> ((3-i) << 3)) & 0xff);
}
byteReverse((UCHAR *)pCtx->Input, 16);
NdisZeroMemory((UCHAR *)pCtx->Input + 64, 16);
SHATransform(pCtx->Buf, (UINT32 *)pCtx->Input);
} // end of else
//Output, bytereverse
for (i=0; i<20; i++)
{
Digest [i] = (UCHAR)(pCtx->Buf[i>>2] >> 8*(3-(i & 0x3)));
}
NdisZeroMemory(pCtx, sizeof(pCtx)); // memory free
}
// The central algorithm of SHA-1, consists of four rounds and
// twenty steps per round
VOID SHATransform(UINT32 Buf[5], UINT32 Mes[20])
{
UINT32 Reg[5],Temp;
unsigned int i;
UINT32 W[80];
static UINT32 SHA1Table[4] = { 0x5a827999, 0x6ed9eba1,
0x8f1bbcdc, 0xca62c1d6 };
Reg[0]=Buf[0];
Reg[1]=Buf[1];
Reg[2]=Buf[2];
Reg[3]=Buf[3];
Reg[4]=Buf[4];
//the first octet of a word is stored in the 0th element, bytereverse
for(i = 0; i < 16; i++)
{
W[i] = (Mes[i] >> 24) & 0xff;
W[i] |= (Mes[i] >> 8 ) & 0xff00;
W[i] |= (Mes[i] << 8 ) & 0xff0000;
W[i] |= (Mes[i] << 24) & 0xff000000;
}
for (i = 0; i < 64; i++)
W[16+i] = CYCLIC_LEFT_SHIFT(W[i] ^ W[2+i] ^ W[8+i] ^ W[13+i], 1);
// 80 steps in SHA-1 algorithm
for (i=0; i<80; i++)
{
if (i<20)
SHA1Step(SHA1_F1, Reg[0], Reg[1], Reg[2], Reg[3], Reg[4],
W[i], SHA1Table[0]);
else if (i>=20 && i<40)
SHA1Step(SHA1_F2, Reg[0], Reg[1], Reg[2], Reg[3], Reg[4],
W[i], SHA1Table[1]);
else if (i>=40 && i<60)
SHA1Step(SHA1_F3, Reg[0], Reg[1], Reg[2], Reg[3], Reg[4],
W[i], SHA1Table[2]);
else
SHA1Step(SHA1_F2, Reg[0], Reg[1], Reg[2], Reg[3], Reg[4],
W[i], SHA1Table[3]);
// one-word right shift
Temp = Reg[4];
Reg[4] = Reg[3];
Reg[3] = Reg[2];
Reg[2] = Reg[1];
Reg[1] = Reg[0];
Reg[0] = Temp;
} // end of for-loop
// (temporary)output
for (i=0; i<5; i++)
Buf[i] += Reg[i];
}
/* ========================= AES En/Decryption ========================== */
/* forward S-box */
static uint32 FSb[256] =
{
0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5,
0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,
0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0,
0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,
0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC,
0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A,
0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,
0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0,
0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,
0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B,
0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85,
0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,
0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5,
0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,
0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17,
0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88,
0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,
0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C,
0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9,
0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6,
0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,
0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E,
0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,
0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94,
0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68,
0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16
};
/* forward table */
#define FT \
\
V(C6,63,63,A5), V(F8,7C,7C,84), V(EE,77,77,99), V(F6,7B,7B,8D), \
V(FF,F2,F2,0D), V(D6,6B,6B,BD), V(DE,6F,6F,B1), V(91,C5,C5,54), \
V(60,30,30,50), V(02,01,01,03), V(CE,67,67,A9), V(56,2B,2B,7D), \
V(E7,FE,FE,19), V(B5,D7,D7,62), V(4D,AB,AB,E6), V(EC,76,76,9A), \
V(8F,CA,CA,45), V(1F,82,82,9D), V(89,C9,C9,40), V(FA,7D,7D,87), \
V(EF,FA,FA,15), V(B2,59,59,EB), V(8E,47,47,C9), V(FB,F0,F0,0B), \
V(41,AD,AD,EC), V(B3,D4,D4,67), V(5F,A2,A2,FD), V(45,AF,AF,EA), \
V(23,9C,9C,BF), V(53,A4,A4,F7), V(E4,72,72,96), V(9B,C0,C0,5B), \
V(75,B7,B7,C2), V(E1,FD,FD,1C), V(3D,93,93,AE), V(4C,26,26,6A), \
V(6C,36,36,5A), V(7E,3F,3F,41), V(F5,F7,F7,02), V(83,CC,CC,4F), \
V(68,34,34,5C), V(51,A5,A5,F4), V(D1,E5,E5,34), V(F9,F1,F1,08), \
V(E2,71,71,93), V(AB,D8,D8,73), V(62,31,31,53), V(2A,15,15,3F), \
V(08,04,04,0C), V(95,C7,C7,52), V(46,23,23,65), V(9D,C3,C3,5E), \
V(30,18,18,28), V(37,96,96,A1), V(0A,05,05,0F), V(2F,9A,9A,B5), \
V(0E,07,07,09), V(24,12,12,36), V(1B,80,80,9B), V(DF,E2,E2,3D), \
V(CD,EB,EB,26), V(4E,27,27,69), V(7F,B2,B2,CD), V(EA,75,75,9F), \
V(12,09,09,1B), V(1D,83,83,9E), V(58,2C,2C,74), V(34,1A,1A,2E), \
V(36,1B,1B,2D), V(DC,6E,6E,B2), V(B4,5A,5A,EE), V(5B,A0,A0,FB), \
V(A4,52,52,F6), V(76,3B,3B,4D), V(B7,D6,D6,61), V(7D,B3,B3,CE), \
V(52,29,29,7B), V(DD,E3,E3,3E), V(5E,2F,2F,71), V(13,84,84,97), \
V(A6,53,53,F5), V(B9,D1,D1,68), V(00,00,00,00), V(C1,ED,ED,2C), \
V(40,20,20,60), V(E3,FC,FC,1F), V(79,B1,B1,C8), V(B6,5B,5B,ED), \
V(D4,6A,6A,BE), V(8D,CB,CB,46), V(67,BE,BE,D9), V(72,39,39,4B), \
V(94,4A,4A,DE), V(98,4C,4C,D4), V(B0,58,58,E8), V(85,CF,CF,4A), \
V(BB,D0,D0,6B), V(C5,EF,EF,2A), V(4F,AA,AA,E5), V(ED,FB,FB,16), \
V(86,43,43,C5), V(9A,4D,4D,D7), V(66,33,33,55), V(11,85,85,94), \
V(8A,45,45,CF), V(E9,F9,F9,10), V(04,02,02,06), V(FE,7F,7F,81), \
V(A0,50,50,F0), V(78,3C,3C,44), V(25,9F,9F,BA), V(4B,A8,A8,E3), \
V(A2,51,51,F3), V(5D,A3,A3,FE), V(80,40,40,C0), V(05,8F,8F,8A), \
V(3F,92,92,AD), V(21,9D,9D,BC), V(70,38,38,48), V(F1,F5,F5,04), \
V(63,BC,BC,DF), V(77,B6,B6,C1), V(AF,DA,DA,75), V(42,21,21,63), \
V(20,10,10,30), V(E5,FF,FF,1A), V(FD,F3,F3,0E), V(BF,D2,D2,6D), \
V(81,CD,CD,4C), V(18,0C,0C,14), V(26,13,13,35), V(C3,EC,EC,2F), \
V(BE,5F,5F,E1), V(35,97,97,A2), V(88,44,44,CC), V(2E,17,17,39), \
V(93,C4,C4,57), V(55,A7,A7,F2), V(FC,7E,7E,82), V(7A,3D,3D,47), \
V(C8,64,64,AC), V(BA,5D,5D,E7), V(32,19,19,2B), V(E6,73,73,95), \
V(C0,60,60,A0), V(19,81,81,98), V(9E,4F,4F,D1), V(A3,DC,DC,7F), \
V(44,22,22,66), V(54,2A,2A,7E), V(3B,90,90,AB), V(0B,88,88,83), \
V(8C,46,46,CA), V(C7,EE,EE,29), V(6B,B8,B8,D3), V(28,14,14,3C), \
V(A7,DE,DE,79), V(BC,5E,5E,E2), V(16,0B,0B,1D), V(AD,DB,DB,76), \
V(DB,E0,E0,3B), V(64,32,32,56), V(74,3A,3A,4E), V(14,0A,0A,1E), \
V(92,49,49,DB), V(0C,06,06,0A), V(48,24,24,6C), V(B8,5C,5C,E4), \
V(9F,C2,C2,5D), V(BD,D3,D3,6E), V(43,AC,AC,EF), V(C4,62,62,A6), \
V(39,91,91,A8), V(31,95,95,A4), V(D3,E4,E4,37), V(F2,79,79,8B), \
V(D5,E7,E7,32), V(8B,C8,C8,43), V(6E,37,37,59), V(DA,6D,6D,B7), \
V(01,8D,8D,8C), V(B1,D5,D5,64), V(9C,4E,4E,D2), V(49,A9,A9,E0), \
V(D8,6C,6C,B4), V(AC,56,56,FA), V(F3,F4,F4,07), V(CF,EA,EA,25), \
V(CA,65,65,AF), V(F4,7A,7A,8E), V(47,AE,AE,E9), V(10,08,08,18), \
V(6F,BA,BA,D5), V(F0,78,78,88), V(4A,25,25,6F), V(5C,2E,2E,72), \
V(38,1C,1C,24), V(57,A6,A6,F1), V(73,B4,B4,C7), V(97,C6,C6,51), \
V(CB,E8,E8,23), V(A1,DD,DD,7C), V(E8,74,74,9C), V(3E,1F,1F,21), \
V(96,4B,4B,DD), V(61,BD,BD,DC), V(0D,8B,8B,86), V(0F,8A,8A,85), \
V(E0,70,70,90), V(7C,3E,3E,42), V(71,B5,B5,C4), V(CC,66,66,AA), \
V(90,48,48,D8), V(06,03,03,05), V(F7,F6,F6,01), V(1C,0E,0E,12), \
V(C2,61,61,A3), V(6A,35,35,5F), V(AE,57,57,F9), V(69,B9,B9,D0), \
V(17,86,86,91), V(99,C1,C1,58), V(3A,1D,1D,27), V(27,9E,9E,B9), \
V(D9,E1,E1,38), V(EB,F8,F8,13), V(2B,98,98,B3), V(22,11,11,33), \
V(D2,69,69,BB), V(A9,D9,D9,70), V(07,8E,8E,89), V(33,94,94,A7), \
V(2D,9B,9B,B6), V(3C,1E,1E,22), V(15,87,87,92), V(C9,E9,E9,20), \
V(87,CE,CE,49), V(AA,55,55,FF), V(50,28,28,78), V(A5,DF,DF,7A), \
V(03,8C,8C,8F), V(59,A1,A1,F8), V(09,89,89,80), V(1A,0D,0D,17), \
V(65,BF,BF,DA), V(D7,E6,E6,31), V(84,42,42,C6), V(D0,68,68,B8), \
V(82,41,41,C3), V(29,99,99,B0), V(5A,2D,2D,77), V(1E,0F,0F,11), \
V(7B,B0,B0,CB), V(A8,54,54,FC), V(6D,BB,BB,D6), V(2C,16,16,3A)
#define V(a,b,c,d) 0x##a##b##c##d
static uint32 FT0[256] = { FT };
#undef V
#define V(a,b,c,d) 0x##d##a##b##c
static uint32 FT1[256] = { FT };
#undef V
#define V(a,b,c,d) 0x##c##d##a##b
static uint32 FT2[256] = { FT };
#undef V
#define V(a,b,c,d) 0x##b##c##d##a
static uint32 FT3[256] = { FT };
#undef V
#undef FT
/* reverse S-box */
static uint32 RSb[256] =
{
0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38,
0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB,
0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87,
0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB,
0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D,
0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E,
0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2,
0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25,
0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16,
0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92,
0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA,
0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84,
0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A,
0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06,
0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02,
0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B,
0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA,
0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73,
0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85,
0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E,
0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89,
0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B,
0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20,
0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4,
0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31,
0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F,
0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D,
0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF,
0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0,
0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26,
0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D
};
/* reverse table */
#define RT \
\
V(51,F4,A7,50), V(7E,41,65,53), V(1A,17,A4,C3), V(3A,27,5E,96), \
V(3B,AB,6B,CB), V(1F,9D,45,F1), V(AC,FA,58,AB), V(4B,E3,03,93), \
V(20,30,FA,55), V(AD,76,6D,F6), V(88,CC,76,91), V(F5,02,4C,25), \
V(4F,E5,D7,FC), V(C5,2A,CB,D7), V(26,35,44,80), V(B5,62,A3,8F), \
V(DE,B1,5A,49), V(25,BA,1B,67), V(45,EA,0E,98), V(5D,FE,C0,E1), \
V(C3,2F,75,02), V(81,4C,F0,12), V(8D,46,97,A3), V(6B,D3,F9,C6), \
V(03,8F,5F,E7), V(15,92,9C,95), V(BF,6D,7A,EB), V(95,52,59,DA), \
V(D4,BE,83,2D), V(58,74,21,D3), V(49,E0,69,29), V(8E,C9,C8,44), \
V(75,C2,89,6A), V(F4,8E,79,78), V(99,58,3E,6B), V(27,B9,71,DD), \
V(BE,E1,4F,B6), V(F0,88,AD,17), V(C9,20,AC,66), V(7D,CE,3A,B4), \
V(63,DF,4A,18), V(E5,1A,31,82), V(97,51,33,60), V(62,53,7F,45), \
V(B1,64,77,E0), V(BB,6B,AE,84), V(FE,81,A0,1C), V(F9,08,2B,94), \
V(70,48,68,58), V(8F,45,FD,19), V(94,DE,6C,87), V(52,7B,F8,B7), \
V(AB,73,D3,23), V(72,4B,02,E2), V(E3,1F,8F,57), V(66,55,AB,2A), \
V(B2,EB,28,07), V(2F,B5,C2,03), V(86,C5,7B,9A), V(D3,37,08,A5), \
V(30,28,87,F2), V(23,BF,A5,B2), V(02,03,6A,BA), V(ED,16,82,5C), \
V(8A,CF,1C,2B), V(A7,79,B4,92), V(F3,07,F2,F0), V(4E,69,E2,A1), \
V(65,DA,F4,CD), V(06,05,BE,D5), V(D1,34,62,1F), V(C4,A6,FE,8A), \
V(34,2E,53,9D), V(A2,F3,55,A0), V(05,8A,E1,32), V(A4,F6,EB,75), \
V(0B,83,EC,39), V(40,60,EF,AA), V(5E,71,9F,06), V(BD,6E,10,51), \
V(3E,21,8A,F9), V(96,DD,06,3D), V(DD,3E,05,AE), V(4D,E6,BD,46), \
V(91,54,8D,B5), V(71,C4,5D,05), V(04,06,D4,6F), V(60,50,15,FF), \
V(19,98,FB,24), V(D6,BD,E9,97), V(89,40,43,CC), V(67,D9,9E,77), \
V(B0,E8,42,BD), V(07,89,8B,88), V(E7,19,5B,38), V(79,C8,EE,DB), \
V(A1,7C,0A,47), V(7C,42,0F,E9), V(F8,84,1E,C9), V(00,00,00,00), \
V(09,80,86,83), V(32,2B,ED,48), V(1E,11,70,AC), V(6C,5A,72,4E), \
V(FD,0E,FF,FB), V(0F,85,38,56), V(3D,AE,D5,1E), V(36,2D,39,27), \
V(0A,0F,D9,64), V(68,5C,A6,21), V(9B,5B,54,D1), V(24,36,2E,3A), \
V(0C,0A,67,B1), V(93,57,E7,0F), V(B4,EE,96,D2), V(1B,9B,91,9E), \
V(80,C0,C5,4F), V(61,DC,20,A2), V(5A,77,4B,69), V(1C,12,1A,16), \
V(E2,93,BA,0A), V(C0,A0,2A,E5), V(3C,22,E0,43), V(12,1B,17,1D), \
V(0E,09,0D,0B), V(F2,8B,C7,AD), V(2D,B6,A8,B9), V(14,1E,A9,C8), \
V(57,F1,19,85), V(AF,75,07,4C), V(EE,99,DD,BB), V(A3,7F,60,FD), \
V(F7,01,26,9F), V(5C,72,F5,BC), V(44,66,3B,C5), V(5B,FB,7E,34), \
V(8B,43,29,76), V(CB,23,C6,DC), V(B6,ED,FC,68), V(B8,E4,F1,63), \
V(D7,31,DC,CA), V(42,63,85,10), V(13,97,22,40), V(84,C6,11,20), \
V(85,4A,24,7D), V(D2,BB,3D,F8), V(AE,F9,32,11), V(C7,29,A1,6D), \
V(1D,9E,2F,4B), V(DC,B2,30,F3), V(0D,86,52,EC), V(77,C1,E3,D0), \
V(2B,B3,16,6C), V(A9,70,B9,99), V(11,94,48,FA), V(47,E9,64,22), \
V(A8,FC,8C,C4), V(A0,F0,3F,1A), V(56,7D,2C,D8), V(22,33,90,EF), \
V(87,49,4E,C7), V(D9,38,D1,C1), V(8C,CA,A2,FE), V(98,D4,0B,36), \
V(A6,F5,81,CF), V(A5,7A,DE,28), V(DA,B7,8E,26), V(3F,AD,BF,A4), \
V(2C,3A,9D,E4), V(50,78,92,0D), V(6A,5F,CC,9B), V(54,7E,46,62), \
V(F6,8D,13,C2), V(90,D8,B8,E8), V(2E,39,F7,5E), V(82,C3,AF,F5), \
V(9F,5D,80,BE), V(69,D0,93,7C), V(6F,D5,2D,A9), V(CF,25,12,B3), \
V(C8,AC,99,3B), V(10,18,7D,A7), V(E8,9C,63,6E), V(DB,3B,BB,7B), \
V(CD,26,78,09), V(6E,59,18,F4), V(EC,9A,B7,01), V(83,4F,9A,A8), \
V(E6,95,6E,65), V(AA,FF,E6,7E), V(21,BC,CF,08), V(EF,15,E8,E6), \
V(BA,E7,9B,D9), V(4A,6F,36,CE), V(EA,9F,09,D4), V(29,B0,7C,D6), \
V(31,A4,B2,AF), V(2A,3F,23,31), V(C6,A5,94,30), V(35,A2,66,C0), \
V(74,4E,BC,37), V(FC,82,CA,A6), V(E0,90,D0,B0), V(33,A7,D8,15), \
V(F1,04,98,4A), V(41,EC,DA,F7), V(7F,CD,50,0E), V(17,91,F6,2F), \
V(76,4D,D6,8D), V(43,EF,B0,4D), V(CC,AA,4D,54), V(E4,96,04,DF), \
V(9E,D1,B5,E3), V(4C,6A,88,1B), V(C1,2C,1F,B8), V(46,65,51,7F), \
V(9D,5E,EA,04), V(01,8C,35,5D), V(FA,87,74,73), V(FB,0B,41,2E), \
V(B3,67,1D,5A), V(92,DB,D2,52), V(E9,10,56,33), V(6D,D6,47,13), \
V(9A,D7,61,8C), V(37,A1,0C,7A), V(59,F8,14,8E), V(EB,13,3C,89), \
V(CE,A9,27,EE), V(B7,61,C9,35), V(E1,1C,E5,ED), V(7A,47,B1,3C), \
V(9C,D2,DF,59), V(55,F2,73,3F), V(18,14,CE,79), V(73,C7,37,BF), \
V(53,F7,CD,EA), V(5F,FD,AA,5B), V(DF,3D,6F,14), V(78,44,DB,86), \
V(CA,AF,F3,81), V(B9,68,C4,3E), V(38,24,34,2C), V(C2,A3,40,5F), \
V(16,1D,C3,72), V(BC,E2,25,0C), V(28,3C,49,8B), V(FF,0D,95,41), \
V(39,A8,01,71), V(08,0C,B3,DE), V(D8,B4,E4,9C), V(64,56,C1,90), \
V(7B,CB,84,61), V(D5,32,B6,70), V(48,6C,5C,74), V(D0,B8,57,42)
#define V(a,b,c,d) 0x##a##b##c##d
static uint32 RT0[256] = { RT };
#undef V
#define V(a,b,c,d) 0x##d##a##b##c
static uint32 RT1[256] = { RT };
#undef V
#define V(a,b,c,d) 0x##c##d##a##b
static uint32 RT2[256] = { RT };
#undef V
#define V(a,b,c,d) 0x##b##c##d##a
static uint32 RT3[256] = { RT };
#undef V
#undef RT
/* round constants */
static uint32 RCON[10] =
{
0x01000000, 0x02000000, 0x04000000, 0x08000000,
0x10000000, 0x20000000, 0x40000000, 0x80000000,
0x1B000000, 0x36000000
};
/* key schedule tables */
static int KT_init = 1;
static uint32 KT0[256];
static uint32 KT1[256];
static uint32 KT2[256];
static uint32 KT3[256];
/* platform-independant 32-bit integer manipulation macros */
#define GET_UINT32(n,b,i) \
{ \
(n) = ( (uint32) (b)[(i) ] << 24 ) \
| ( (uint32) (b)[(i) + 1] << 16 ) \
| ( (uint32) (b)[(i) + 2] << 8 ) \
| ( (uint32) (b)[(i) + 3] ); \
}
#define PUT_UINT32(n,b,i) \
{ \
(b)[(i) ] = (uint8) ( (n) >> 24 ); \
(b)[(i) + 1] = (uint8) ( (n) >> 16 ); \
(b)[(i) + 2] = (uint8) ( (n) >> 8 ); \
(b)[(i) + 3] = (uint8) ( (n) ); \
}
/* AES key scheduling routine */
int rtmp_aes_set_key( aes_context *ctx, uint8 *key, int nbits )
{
int i;
uint32 *RK, *SK;
switch( nbits )
{
case 128: ctx->nr = 10; break;
case 192: ctx->nr = 12; break;
case 256: ctx->nr = 14; break;
default : return( 1 );
}
RK = ctx->erk;
for( i = 0; i < (nbits >> 5); i++ )
{
GET_UINT32( RK[i], key, i * 4 );
}
/* setup encryption round keys */
switch( nbits )
{
case 128:
for( i = 0; i < 10; i++, RK += 4 )
{
RK[4] = RK[0] ^ RCON[i] ^
( FSb[ (uint8) ( RK[3] >> 16 ) ] << 24 ) ^
( FSb[ (uint8) ( RK[3] >> 8 ) ] << 16 ) ^
( FSb[ (uint8) ( RK[3] ) ] << 8 ) ^
( FSb[ (uint8) ( RK[3] >> 24 ) ] );
RK[5] = RK[1] ^ RK[4];
RK[6] = RK[2] ^ RK[5];
RK[7] = RK[3] ^ RK[6];
}
break;
case 192:
for( i = 0; i < 8; i++, RK += 6 )
{
RK[6] = RK[0] ^ RCON[i] ^
( FSb[ (uint8) ( RK[5] >> 16 ) ] << 24 ) ^
( FSb[ (uint8) ( RK[5] >> 8 ) ] << 16 ) ^
( FSb[ (uint8) ( RK[5] ) ] << 8 ) ^
( FSb[ (uint8) ( RK[5] >> 24 ) ] );
RK[7] = RK[1] ^ RK[6];
RK[8] = RK[2] ^ RK[7];
RK[9] = RK[3] ^ RK[8];
RK[10] = RK[4] ^ RK[9];
RK[11] = RK[5] ^ RK[10];
}
break;
case 256:
for( i = 0; i < 7; i++, RK += 8 )
{
RK[8] = RK[0] ^ RCON[i] ^
( FSb[ (uint8) ( RK[7] >> 16 ) ] << 24 ) ^
( FSb[ (uint8) ( RK[7] >> 8 ) ] << 16 ) ^
( FSb[ (uint8) ( RK[7] ) ] << 8 ) ^
( FSb[ (uint8) ( RK[7] >> 24 ) ] );
RK[9] = RK[1] ^ RK[8];
RK[10] = RK[2] ^ RK[9];
RK[11] = RK[3] ^ RK[10];
RK[12] = RK[4] ^
( FSb[ (uint8) ( RK[11] >> 24 ) ] << 24 ) ^
( FSb[ (uint8) ( RK[11] >> 16 ) ] << 16 ) ^
( FSb[ (uint8) ( RK[11] >> 8 ) ] << 8 ) ^
( FSb[ (uint8) ( RK[11] ) ] );
RK[13] = RK[5] ^ RK[12];
RK[14] = RK[6] ^ RK[13];
RK[15] = RK[7] ^ RK[14];
}
break;
}
/* setup decryption round keys */
if( KT_init )
{
for( i = 0; i < 256; i++ )
{
KT0[i] = RT0[ FSb[i] ];
KT1[i] = RT1[ FSb[i] ];
KT2[i] = RT2[ FSb[i] ];
KT3[i] = RT3[ FSb[i] ];
}
KT_init = 0;
}
SK = ctx->drk;
*SK++ = *RK++;
*SK++ = *RK++;
*SK++ = *RK++;
*SK++ = *RK++;
for( i = 1; i < ctx->nr; i++ )
{
RK -= 8;
*SK++ = KT0[ (uint8) ( *RK >> 24 ) ] ^
KT1[ (uint8) ( *RK >> 16 ) ] ^
KT2[ (uint8) ( *RK >> 8 ) ] ^
KT3[ (uint8) ( *RK ) ]; RK++;
*SK++ = KT0[ (uint8) ( *RK >> 24 ) ] ^
KT1[ (uint8) ( *RK >> 16 ) ] ^
KT2[ (uint8) ( *RK >> 8 ) ] ^
KT3[ (uint8) ( *RK ) ]; RK++;
*SK++ = KT0[ (uint8) ( *RK >> 24 ) ] ^
KT1[ (uint8) ( *RK >> 16 ) ] ^
KT2[ (uint8) ( *RK >> 8 ) ] ^
KT3[ (uint8) ( *RK ) ]; RK++;
*SK++ = KT0[ (uint8) ( *RK >> 24 ) ] ^
KT1[ (uint8) ( *RK >> 16 ) ] ^
KT2[ (uint8) ( *RK >> 8 ) ] ^
KT3[ (uint8) ( *RK ) ]; RK++;
}
RK -= 8;
*SK++ = *RK++;
*SK++ = *RK++;
*SK++ = *RK++;
*SK++ = *RK++;
return( 0 );
}
/* AES 128-bit block encryption routine */
void rtmp_aes_encrypt(aes_context *ctx, uint8 input[16], uint8 output[16] )
{
uint32 *RK, X0, X1, X2, X3, Y0, Y1, Y2, Y3;
RK = ctx->erk;
GET_UINT32( X0, input, 0 ); X0 ^= RK[0];
GET_UINT32( X1, input, 4 ); X1 ^= RK[1];
GET_UINT32( X2, input, 8 ); X2 ^= RK[2];
GET_UINT32( X3, input, 12 ); X3 ^= RK[3];
#define AES_FROUND(X0,X1,X2,X3,Y0,Y1,Y2,Y3) \
{ \
RK += 4; \
\
X0 = RK[0] ^ FT0[ (uint8) ( Y0 >> 24 ) ] ^ \
FT1[ (uint8) ( Y1 >> 16 ) ] ^ \
FT2[ (uint8) ( Y2 >> 8 ) ] ^ \
FT3[ (uint8) ( Y3 ) ]; \
\
X1 = RK[1] ^ FT0[ (uint8) ( Y1 >> 24 ) ] ^ \
FT1[ (uint8) ( Y2 >> 16 ) ] ^ \
FT2[ (uint8) ( Y3 >> 8 ) ] ^ \
FT3[ (uint8) ( Y0 ) ]; \
\
X2 = RK[2] ^ FT0[ (uint8) ( Y2 >> 24 ) ] ^ \
FT1[ (uint8) ( Y3 >> 16 ) ] ^ \
FT2[ (uint8) ( Y0 >> 8 ) ] ^ \
FT3[ (uint8) ( Y1 ) ]; \
\
X3 = RK[3] ^ FT0[ (uint8) ( Y3 >> 24 ) ] ^ \
FT1[ (uint8) ( Y0 >> 16 ) ] ^ \
FT2[ (uint8) ( Y1 >> 8 ) ] ^ \
FT3[ (uint8) ( Y2 ) ]; \
}
AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); /* round 1 */
AES_FROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 ); /* round 2 */
AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); /* round 3 */
AES_FROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 ); /* round 4 */
AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); /* round 5 */
AES_FROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 ); /* round 6 */
AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); /* round 7 */
AES_FROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 ); /* round 8 */
AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); /* round 9 */
if( ctx->nr > 10 )
{
AES_FROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 ); /* round 10 */
AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); /* round 11 */
}
if( ctx->nr > 12 )
{
AES_FROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 ); /* round 12 */
AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); /* round 13 */
}
/* last round */
RK += 4;
X0 = RK[0] ^ ( FSb[ (uint8) ( Y0 >> 24 ) ] << 24 ) ^
( FSb[ (uint8) ( Y1 >> 16 ) ] << 16 ) ^
( FSb[ (uint8) ( Y2 >> 8 ) ] << 8 ) ^
( FSb[ (uint8) ( Y3 ) ] );
X1 = RK[1] ^ ( FSb[ (uint8) ( Y1 >> 24 ) ] << 24 ) ^
( FSb[ (uint8) ( Y2 >> 16 ) ] << 16 ) ^
( FSb[ (uint8) ( Y3 >> 8 ) ] << 8 ) ^
( FSb[ (uint8) ( Y0 ) ] );
X2 = RK[2] ^ ( FSb[ (uint8) ( Y2 >> 24 ) ] << 24 ) ^
( FSb[ (uint8) ( Y3 >> 16 ) ] << 16 ) ^
( FSb[ (uint8) ( Y0 >> 8 ) ] << 8 ) ^
( FSb[ (uint8) ( Y1 ) ] );
X3 = RK[3] ^ ( FSb[ (uint8) ( Y3 >> 24 ) ] << 24 ) ^
( FSb[ (uint8) ( Y0 >> 16 ) ] << 16 ) ^
( FSb[ (uint8) ( Y1 >> 8 ) ] << 8 ) ^
( FSb[ (uint8) ( Y2 ) ] );
PUT_UINT32( X0, output, 0 );
PUT_UINT32( X1, output, 4 );
PUT_UINT32( X2, output, 8 );
PUT_UINT32( X3, output, 12 );
}
/* AES 128-bit block decryption routine */
void rtmp_aes_decrypt( aes_context *ctx, uint8 input[16], uint8 output[16] )
{
uint32 *RK, X0, X1, X2, X3, Y0, Y1, Y2, Y3;
RK = ctx->drk;
GET_UINT32( X0, input, 0 ); X0 ^= RK[0];
GET_UINT32( X1, input, 4 ); X1 ^= RK[1];
GET_UINT32( X2, input, 8 ); X2 ^= RK[2];
GET_UINT32( X3, input, 12 ); X3 ^= RK[3];
#define AES_RROUND(X0,X1,X2,X3,Y0,Y1,Y2,Y3) \
{ \
RK += 4; \
\
X0 = RK[0] ^ RT0[ (uint8) ( Y0 >> 24 ) ] ^ \
RT1[ (uint8) ( Y3 >> 16 ) ] ^ \
RT2[ (uint8) ( Y2 >> 8 ) ] ^ \
RT3[ (uint8) ( Y1 ) ]; \
\
X1 = RK[1] ^ RT0[ (uint8) ( Y1 >> 24 ) ] ^ \
RT1[ (uint8) ( Y0 >> 16 ) ] ^ \
RT2[ (uint8) ( Y3 >> 8 ) ] ^ \
RT3[ (uint8) ( Y2 ) ]; \
\
X2 = RK[2] ^ RT0[ (uint8) ( Y2 >> 24 ) ] ^ \
RT1[ (uint8) ( Y1 >> 16 ) ] ^ \
RT2[ (uint8) ( Y0 >> 8 ) ] ^ \
RT3[ (uint8) ( Y3 ) ]; \
\
X3 = RK[3] ^ RT0[ (uint8) ( Y3 >> 24 ) ] ^ \
RT1[ (uint8) ( Y2 >> 16 ) ] ^ \
RT2[ (uint8) ( Y1 >> 8 ) ] ^ \
RT3[ (uint8) ( Y0 ) ]; \
}
AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); /* round 1 */
AES_RROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 ); /* round 2 */
AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); /* round 3 */
AES_RROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 ); /* round 4 */
AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); /* round 5 */
AES_RROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 ); /* round 6 */
AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); /* round 7 */
AES_RROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 ); /* round 8 */
AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); /* round 9 */
if( ctx->nr > 10 )
{
AES_RROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 ); /* round 10 */
AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); /* round 11 */
}
if( ctx->nr > 12 )
{
AES_RROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 ); /* round 12 */
AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); /* round 13 */
}
/* last round */
RK += 4;
X0 = RK[0] ^ ( RSb[ (uint8) ( Y0 >> 24 ) ] << 24 ) ^
( RSb[ (uint8) ( Y3 >> 16 ) ] << 16 ) ^
( RSb[ (uint8) ( Y2 >> 8 ) ] << 8 ) ^
( RSb[ (uint8) ( Y1 ) ] );
X1 = RK[1] ^ ( RSb[ (uint8) ( Y1 >> 24 ) ] << 24 ) ^
( RSb[ (uint8) ( Y0 >> 16 ) ] << 16 ) ^
( RSb[ (uint8) ( Y3 >> 8 ) ] << 8 ) ^
( RSb[ (uint8) ( Y2 ) ] );
X2 = RK[2] ^ ( RSb[ (uint8) ( Y2 >> 24 ) ] << 24 ) ^
( RSb[ (uint8) ( Y1 >> 16 ) ] << 16 ) ^
( RSb[ (uint8) ( Y0 >> 8 ) ] << 8 ) ^
( RSb[ (uint8) ( Y3 ) ] );
X3 = RK[3] ^ ( RSb[ (uint8) ( Y3 >> 24 ) ] << 24 ) ^
( RSb[ (uint8) ( Y2 >> 16 ) ] << 16 ) ^
( RSb[ (uint8) ( Y1 >> 8 ) ] << 8 ) ^
( RSb[ (uint8) ( Y0 ) ] );
PUT_UINT32( X0, output, 0 );
PUT_UINT32( X1, output, 4 );
PUT_UINT32( X2, output, 8 );
PUT_UINT32( X3, output, 12 );
}
/*
========================================================================
Routine Description:
SHA1 function
Arguments:
Return Value:
Note:
========================================================================
*/
VOID HMAC_SHA1(
IN UCHAR *text,
IN UINT text_len,
IN UCHAR *key,
IN UINT key_len,
IN UCHAR *digest)
{
SHA_CTX context;
UCHAR k_ipad[65]; /* inner padding - key XORd with ipad */
UCHAR k_opad[65]; /* outer padding - key XORd with opad */
INT i;
// if key is longer than 64 bytes reset it to key=SHA1(key)
if (key_len > 64)
{
SHA_CTX tctx;
SHAInit(&tctx);
SHAUpdate(&tctx, key, key_len);
SHAFinal(&tctx, key);
key_len = 20;
}
NdisZeroMemory(k_ipad, sizeof(k_ipad));
NdisZeroMemory(k_opad, sizeof(k_opad));
NdisMoveMemory(k_ipad, key, key_len);
NdisMoveMemory(k_opad, key, key_len);
// XOR key with ipad and opad values
for (i = 0; i < 64; i++)
{
k_ipad[i] ^= 0x36;
k_opad[i] ^= 0x5c;
}
// perform inner SHA1
SHAInit(&context); /* init context for 1st pass */
SHAUpdate(&context, k_ipad, 64); /* start with inner pad */
SHAUpdate(&context, text, text_len); /* then text of datagram */
SHAFinal(&context, digest); /* finish up 1st pass */
//perform outer SHA1
SHAInit(&context); /* init context for 2nd pass */
SHAUpdate(&context, k_opad, 64); /* start with outer pad */
SHAUpdate(&context, digest, 20); /* then results of 1st hash */
SHAFinal(&context, digest); /* finish up 2nd pass */
}
/*
* F(P, S, c, i) = U1 xor U2 xor ... Uc
* U1 = PRF(P, S || Int(i))
* U2 = PRF(P, U1)
* Uc = PRF(P, Uc-1)
*/
void F(char *password, unsigned char *ssid, int ssidlength, int iterations, int count, unsigned char *output)
{
unsigned char digest[36], digest1[SHA_DIGEST_LEN];
int i, j;
/* U1 = PRF(P, S || int(i)) */
memcpy(digest, ssid, ssidlength);
digest[ssidlength] = (unsigned char)((count>>24) & 0xff);
digest[ssidlength+1] = (unsigned char)((count>>16) & 0xff);
digest[ssidlength+2] = (unsigned char)((count>>8) & 0xff);
digest[ssidlength+3] = (unsigned char)(count & 0xff);
HMAC_SHA1(digest, ssidlength+4, (unsigned char*) password, (int) strlen(password), digest1); // for WPA update
/* output = U1 */
memcpy(output, digest1, SHA_DIGEST_LEN);
for (i = 1; i < iterations; i++)
{
/* Un = PRF(P, Un-1) */
HMAC_SHA1(digest1, SHA_DIGEST_LEN, (unsigned char*) password, (int) strlen(password), digest); // for WPA update
memcpy(digest1, digest, SHA_DIGEST_LEN);
/* output = output xor Un */
for (j = 0; j < SHA_DIGEST_LEN; j++)
{
output[j] ^= digest[j];
}
}
}
/*
* password - ascii string up to 63 characters in length
* ssid - octet string up to 32 octets
* ssidlength - length of ssid in octets
* output must be 40 octets in length and outputs 256 bits of key
*/
int PasswordHash(char *password, unsigned char *ssid, int ssidlength, unsigned char *output)
{
if ((strlen(password) > 63) || (ssidlength > 32))
return 0;
F(password, ssid, ssidlength, 4096, 1, output);
F(password, ssid, ssidlength, 4096, 2, &output[SHA_DIGEST_LEN]);
return 1;
}