blob: 3d950a245895f92a24964db9ae8aa6b2211e29d9 [file] [log] [blame]
/* arch/arm/mach-msm/qdsp5/audio_in.c
*
* pcm audio input device
*
* Copyright (C) 2008 Google, Inc.
* Copyright (C) 2008 HTC Corporation
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/miscdevice.h>
#include <linux/uaccess.h>
#include <linux/kthread.h>
#include <linux/wait.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/msm_audio.h>
#include <asm/atomic.h>
#include <asm/ioctls.h>
#include <mach/msm_adsp.h>
#include <mach/msm_rpcrouter.h>
#include "audmgr.h"
#include <mach/qdsp5/qdsp5audpreproccmdi.h>
#include <mach/qdsp5/qdsp5audpreprocmsg.h>
#include <mach/qdsp5/qdsp5audreccmdi.h>
#include <mach/qdsp5/qdsp5audrecmsg.h>
/* for queue ids - should be relative to module number*/
#include "adsp.h"
/* FRAME_NUM must be a power of two */
#define FRAME_NUM (8)
#define FRAME_SIZE (2052 * 2)
#define MONO_DATA_SIZE (2048)
#define STEREO_DATA_SIZE (MONO_DATA_SIZE * 2)
#define DMASZ (FRAME_SIZE * FRAME_NUM)
#define AGC_PARAM_SIZE (20)
#define NS_PARAM_SIZE (6)
#define IIR_PARAM_SIZE (48)
#define DEBUG (0)
#define AGC_ENABLE 0x0001
#define NS_ENABLE 0x0002
#define IIR_ENABLE 0x0004
struct tx_agc_config {
uint16_t agc_params[AGC_PARAM_SIZE];
};
struct ns_config {
uint16_t ns_params[NS_PARAM_SIZE];
};
struct tx_iir_filter {
uint16_t num_bands;
uint16_t iir_params[IIR_PARAM_SIZE];
};
struct audpre_cmd_iir_config_type {
uint16_t cmd_id;
uint16_t active_flag;
uint16_t num_bands;
uint16_t iir_params[IIR_PARAM_SIZE];
};
struct buffer {
void *data;
uint32_t size;
uint32_t read;
uint32_t addr;
};
struct audio_in {
struct buffer in[FRAME_NUM];
spinlock_t dsp_lock;
atomic_t in_bytes;
struct mutex lock;
struct mutex read_lock;
wait_queue_head_t wait;
struct msm_adsp_module *audpre;
struct msm_adsp_module *audrec;
/* configuration to use on next enable */
uint32_t samp_rate;
uint32_t channel_mode;
uint32_t buffer_size; /* 2048 for mono, 4096 for stereo */
uint32_t type; /* 0 for PCM ,1 for AAC */
uint32_t dsp_cnt;
uint32_t in_head; /* next buffer dsp will write */
uint32_t in_tail; /* next buffer read() will read */
uint32_t in_count; /* number of buffers available to read() */
unsigned short samp_rate_index;
struct audmgr audmgr;
/* data allocated for various buffers */
char *data;
dma_addr_t phys;
int opened;
int enabled;
int running;
int stopped; /* set when stopped, cleared on flush */
/* audpre settings */
int agc_enable;
struct tx_agc_config agc;
int ns_enable;
struct ns_config ns;
int iir_enable;
struct tx_iir_filter iir;
};
static int audio_in_dsp_enable(struct audio_in *audio, int enable);
static int audio_in_encoder_config(struct audio_in *audio);
static int audio_dsp_read_buffer(struct audio_in *audio, uint32_t read_cnt);
static void audio_flush(struct audio_in *audio);
static int audio_dsp_set_agc(struct audio_in *audio);
static int audio_dsp_set_ns(struct audio_in *audio);
static int audio_dsp_set_tx_iir(struct audio_in *audio);
static unsigned convert_dsp_samp_index(unsigned index)
{
switch (index) {
case 48000: return AUDREC_CMD_SAMP_RATE_INDX_48000;
case 44100: return AUDREC_CMD_SAMP_RATE_INDX_44100;
case 32000: return AUDREC_CMD_SAMP_RATE_INDX_32000;
case 24000: return AUDREC_CMD_SAMP_RATE_INDX_24000;
case 22050: return AUDREC_CMD_SAMP_RATE_INDX_22050;
case 16000: return AUDREC_CMD_SAMP_RATE_INDX_16000;
case 12000: return AUDREC_CMD_SAMP_RATE_INDX_12000;
case 11025: return AUDREC_CMD_SAMP_RATE_INDX_11025;
case 8000: return AUDREC_CMD_SAMP_RATE_INDX_8000;
default: return AUDREC_CMD_SAMP_RATE_INDX_11025;
}
}
static unsigned convert_samp_rate(unsigned hz)
{
switch (hz) {
case 48000: return RPC_AUD_DEF_SAMPLE_RATE_48000;
case 44100: return RPC_AUD_DEF_SAMPLE_RATE_44100;
case 32000: return RPC_AUD_DEF_SAMPLE_RATE_32000;
case 24000: return RPC_AUD_DEF_SAMPLE_RATE_24000;
case 22050: return RPC_AUD_DEF_SAMPLE_RATE_22050;
case 16000: return RPC_AUD_DEF_SAMPLE_RATE_16000;
case 12000: return RPC_AUD_DEF_SAMPLE_RATE_12000;
case 11025: return RPC_AUD_DEF_SAMPLE_RATE_11025;
case 8000: return RPC_AUD_DEF_SAMPLE_RATE_8000;
default: return RPC_AUD_DEF_SAMPLE_RATE_11025;
}
}
static unsigned convert_samp_index(unsigned index)
{
switch (index) {
case RPC_AUD_DEF_SAMPLE_RATE_48000: return 48000;
case RPC_AUD_DEF_SAMPLE_RATE_44100: return 44100;
case RPC_AUD_DEF_SAMPLE_RATE_32000: return 32000;
case RPC_AUD_DEF_SAMPLE_RATE_24000: return 24000;
case RPC_AUD_DEF_SAMPLE_RATE_22050: return 22050;
case RPC_AUD_DEF_SAMPLE_RATE_16000: return 16000;
case RPC_AUD_DEF_SAMPLE_RATE_12000: return 12000;
case RPC_AUD_DEF_SAMPLE_RATE_11025: return 11025;
case RPC_AUD_DEF_SAMPLE_RATE_8000: return 8000;
default: return 11025;
}
}
/* must be called with audio->lock held */
static int audio_in_enable(struct audio_in *audio)
{
struct audmgr_config cfg;
int rc;
if (audio->enabled)
return 0;
cfg.tx_rate = audio->samp_rate;
cfg.rx_rate = RPC_AUD_DEF_SAMPLE_RATE_NONE;
cfg.def_method = RPC_AUD_DEF_METHOD_RECORD;
if (audio->type == AUDREC_CMD_TYPE_0_INDEX_WAV)
cfg.codec = RPC_AUD_DEF_CODEC_PCM;
else
cfg.codec = RPC_AUD_DEF_CODEC_AAC;
cfg.snd_method = RPC_SND_METHOD_MIDI;
rc = audmgr_enable(&audio->audmgr, &cfg);
if (rc < 0)
return rc;
if (msm_adsp_enable(audio->audpre)) {
pr_err("audrec: msm_adsp_enable(audpre) failed\n");
return -ENODEV;
}
if (msm_adsp_enable(audio->audrec)) {
pr_err("audrec: msm_adsp_enable(audrec) failed\n");
return -ENODEV;
}
audio->enabled = 1;
audio_in_dsp_enable(audio, 1);
return 0;
}
/* must be called with audio->lock held */
static int audio_in_disable(struct audio_in *audio)
{
if (audio->enabled) {
audio->enabled = 0;
audio_in_dsp_enable(audio, 0);
wake_up(&audio->wait);
msm_adsp_disable(audio->audrec);
msm_adsp_disable(audio->audpre);
audmgr_disable(&audio->audmgr);
}
return 0;
}
/* ------------------- dsp --------------------- */
static void audpre_dsp_event(void *data, unsigned id, size_t len,
void (*getevent)(void *ptr, size_t len))
{
uint16_t msg[2];
getevent(msg, sizeof(msg));
switch (id) {
case AUDPREPROC_MSG_CMD_CFG_DONE_MSG:
pr_info("audpre: type %d, status_flag %d\n", msg[0], msg[1]);
break;
case AUDPREPROC_MSG_ERROR_MSG_ID:
pr_info("audpre: err_index %d\n", msg[0]);
break;
default:
pr_err("audpre: unknown event %d\n", id);
}
}
struct audio_frame {
uint16_t count_low;
uint16_t count_high;
uint16_t bytes;
uint16_t unknown;
unsigned char samples[];
} __attribute__((packed));
static void audio_in_get_dsp_frames(struct audio_in *audio)
{
struct audio_frame *frame;
uint32_t index;
unsigned long flags;
index = audio->in_head;
/* XXX check for bogus frame size? */
frame = (void *) (((char *)audio->in[index].data) - sizeof(*frame));
spin_lock_irqsave(&audio->dsp_lock, flags);
audio->in[index].size = frame->bytes;
audio->in_head = (audio->in_head + 1) & (FRAME_NUM - 1);
/* If overflow, move the tail index foward. */
if (audio->in_head == audio->in_tail)
audio->in_tail = (audio->in_tail + 1) & (FRAME_NUM - 1);
else
audio->in_count++;
audio_dsp_read_buffer(audio, audio->dsp_cnt++);
spin_unlock_irqrestore(&audio->dsp_lock, flags);
wake_up(&audio->wait);
}
static void audrec_dsp_event(void *data, unsigned id, size_t len,
void (*getevent)(void *ptr, size_t len))
{
struct audio_in *audio = data;
uint16_t msg[3];
getevent(msg, sizeof(msg));
switch (id) {
case AUDREC_MSG_CMD_CFG_DONE_MSG:
if (msg[0] & AUDREC_MSG_CFG_DONE_TYPE_0_UPDATE) {
if (msg[0] & AUDREC_MSG_CFG_DONE_TYPE_0_ENA) {
pr_info("audpre: CFG ENABLED\n");
audio_dsp_set_agc(audio);
audio_dsp_set_ns(audio);
audio_dsp_set_tx_iir(audio);
audio_in_encoder_config(audio);
} else {
pr_info("audrec: CFG SLEEP\n");
audio->running = 0;
}
} else {
pr_info("audrec: CMD_CFG_DONE %x\n", msg[0]);
}
break;
case AUDREC_MSG_CMD_AREC_PARAM_CFG_DONE_MSG: {
pr_info("audrec: PARAM CFG DONE\n");
audio->running = 1;
break;
}
case AUDREC_MSG_FATAL_ERR_MSG:
pr_err("audrec: ERROR %x\n", msg[0]);
break;
case AUDREC_MSG_PACKET_READY_MSG:
/* REC_DBG("type %x, count %d", msg[0], (msg[1] | (msg[2] << 16))); */
audio_in_get_dsp_frames(audio);
break;
default:
pr_err("audrec: unknown event %d\n", id);
}
}
struct msm_adsp_ops audpre_adsp_ops = {
.event = audpre_dsp_event,
};
struct msm_adsp_ops audrec_adsp_ops = {
.event = audrec_dsp_event,
};
#define audio_send_queue_pre(audio, cmd, len) \
msm_adsp_write(audio->audpre, QDSP_uPAudPreProcCmdQueue, cmd, len)
#define audio_send_queue_recbs(audio, cmd, len) \
msm_adsp_write(audio->audrec, QDSP_uPAudRecBitStreamQueue, cmd, len)
#define audio_send_queue_rec(audio, cmd, len) \
msm_adsp_write(audio->audrec, \
QDSP_uPAudRecCmdQueue, cmd, len)
static int audio_dsp_set_agc(struct audio_in *audio)
{
audpreproc_cmd_cfg_agc_params cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.cmd_id = AUDPREPROC_CMD_CFG_AGC_PARAMS;
if (audio->agc_enable) {
/* cmd.tx_agc_param_mask = 0xFE00 from sample code */
cmd.tx_agc_param_mask =
(1 << AUDPREPROC_CMD_TX_AGC_PARAM_MASK_COMP_SLOPE) |
(1 << AUDPREPROC_CMD_TX_AGC_PARAM_MASK_COMP_TH) |
(1 << AUDPREPROC_CMD_TX_AGC_PARAM_MASK_EXP_SLOPE) |
(1 << AUDPREPROC_CMD_TX_AGC_PARAM_MASK_EXP_TH) |
(1 << AUDPREPROC_CMD_TX_AGC_PARAM_MASK_COMP_AIG_FLAG) |
(1 << AUDPREPROC_CMD_TX_AGC_PARAM_MASK_COMP_STATIC_GAIN) |
(1 << AUDPREPROC_CMD_TX_AGC_PARAM_MASK_TX_AGC_ENA_FLAG);
cmd.tx_agc_enable_flag =
AUDPREPROC_CMD_TX_AGC_ENA_FLAG_ENA;
memcpy(&cmd.static_gain, &audio->agc.agc_params[0],
sizeof(uint16_t) * 6);
/* cmd.param_mask = 0xFFF0 from sample code */
cmd.param_mask =
(1 << AUDPREPROC_CMD_PARAM_MASK_RMS_TAY) |
(1 << AUDPREPROC_CMD_PARAM_MASK_RELEASEK) |
(1 << AUDPREPROC_CMD_PARAM_MASK_DELAY) |
(1 << AUDPREPROC_CMD_PARAM_MASK_ATTACKK) |
(1 << AUDPREPROC_CMD_PARAM_MASK_LEAKRATE_SLOW) |
(1 << AUDPREPROC_CMD_PARAM_MASK_LEAKRATE_FAST) |
(1 << AUDPREPROC_CMD_PARAM_MASK_AIG_RELEASEK) |
(1 << AUDPREPROC_CMD_PARAM_MASK_AIG_MIN) |
(1 << AUDPREPROC_CMD_PARAM_MASK_AIG_MAX) |
(1 << AUDPREPROC_CMD_PARAM_MASK_LEAK_UP) |
(1 << AUDPREPROC_CMD_PARAM_MASK_LEAK_DOWN) |
(1 << AUDPREPROC_CMD_PARAM_MASK_AIG_ATTACKK);
memcpy(&cmd.aig_attackk, &audio->agc.agc_params[6],
sizeof(uint16_t) * 14);
} else {
cmd.tx_agc_param_mask =
(1 << AUDPREPROC_CMD_TX_AGC_PARAM_MASK_TX_AGC_ENA_FLAG);
cmd.tx_agc_enable_flag =
AUDPREPROC_CMD_TX_AGC_ENA_FLAG_DIS;
}
#if DEBUG
pr_info("cmd_id = 0x%04x\n", cmd.cmd_id);
pr_info("tx_agc_param_mask = 0x%04x\n", cmd.tx_agc_param_mask);
pr_info("tx_agc_enable_flag = 0x%04x\n", cmd.tx_agc_enable_flag);
pr_info("static_gain = 0x%04x\n", cmd.static_gain);
pr_info("adaptive_gain_flag = 0x%04x\n", cmd.adaptive_gain_flag);
pr_info("expander_th = 0x%04x\n", cmd.expander_th);
pr_info("expander_slope = 0x%04x\n", cmd.expander_slope);
pr_info("compressor_th = 0x%04x\n", cmd.compressor_th);
pr_info("compressor_slope = 0x%04x\n", cmd.compressor_slope);
pr_info("param_mask = 0x%04x\n", cmd.param_mask);
pr_info("aig_attackk = 0x%04x\n", cmd.aig_attackk);
pr_info("aig_leak_down = 0x%04x\n", cmd.aig_leak_down);
pr_info("aig_leak_up = 0x%04x\n", cmd.aig_leak_up);
pr_info("aig_max = 0x%04x\n", cmd.aig_max);
pr_info("aig_min = 0x%04x\n", cmd.aig_min);
pr_info("aig_releasek = 0x%04x\n", cmd.aig_releasek);
pr_info("aig_leakrate_fast = 0x%04x\n", cmd.aig_leakrate_fast);
pr_info("aig_leakrate_slow = 0x%04x\n", cmd.aig_leakrate_slow);
pr_info("attackk_msw = 0x%04x\n", cmd.attackk_msw);
pr_info("attackk_lsw = 0x%04x\n", cmd.attackk_lsw);
pr_info("delay = 0x%04x\n", cmd.delay);
pr_info("releasek_msw = 0x%04x\n", cmd.releasek_msw);
pr_info("releasek_lsw = 0x%04x\n", cmd.releasek_lsw);
pr_info("rms_tav = 0x%04x\n", cmd.rms_tav);
#endif
return audio_send_queue_pre(audio, &cmd, sizeof(cmd));
}
static int audio_dsp_set_ns(struct audio_in *audio)
{
audpreproc_cmd_cfg_ns_params cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.cmd_id = AUDPREPROC_CMD_CFG_NS_PARAMS;
if (audio->ns_enable) {
/* cmd.ec_mode_new is fixed as 0x0064 when enable from sample code */
cmd.ec_mode_new =
AUDPREPROC_CMD_EC_MODE_NEW_NS_ENA |
AUDPREPROC_CMD_EC_MODE_NEW_HB_ENA |
AUDPREPROC_CMD_EC_MODE_NEW_VA_ENA;
memcpy(&cmd.dens_gamma_n, &audio->ns.ns_params,
sizeof(audio->ns.ns_params));
} else {
cmd.ec_mode_new =
AUDPREPROC_CMD_EC_MODE_NEW_NLMS_DIS |
AUDPREPROC_CMD_EC_MODE_NEW_DES_DIS |
AUDPREPROC_CMD_EC_MODE_NEW_NS_DIS |
AUDPREPROC_CMD_EC_MODE_NEW_CNI_DIS |
AUDPREPROC_CMD_EC_MODE_NEW_NLES_DIS |
AUDPREPROC_CMD_EC_MODE_NEW_HB_DIS |
AUDPREPROC_CMD_EC_MODE_NEW_VA_DIS |
AUDPREPROC_CMD_EC_MODE_NEW_PCD_DIS |
AUDPREPROC_CMD_EC_MODE_NEW_FEHI_DIS |
AUDPREPROC_CMD_EC_MODE_NEW_NEHI_DIS |
AUDPREPROC_CMD_EC_MODE_NEW_NLPP_DIS |
AUDPREPROC_CMD_EC_MODE_NEW_FNE_DIS |
AUDPREPROC_CMD_EC_MODE_NEW_PRENLMS_DIS;
}
#if DEBUG
pr_info("cmd_id = 0x%04x\n", cmd.cmd_id);
pr_info("ec_mode_new = 0x%04x\n", cmd.ec_mode_new);
pr_info("dens_gamma_n = 0x%04x\n", cmd.dens_gamma_n);
pr_info("dens_nfe_block_size = 0x%04x\n", cmd.dens_nfe_block_size);
pr_info("dens_limit_ns = 0x%04x\n", cmd.dens_limit_ns);
pr_info("dens_limit_ns_d = 0x%04x\n", cmd.dens_limit_ns_d);
pr_info("wb_gamma_e = 0x%04x\n", cmd.wb_gamma_e);
pr_info("wb_gamma_n = 0x%04x\n", cmd.wb_gamma_n);
#endif
return audio_send_queue_pre(audio, &cmd, sizeof(cmd));
}
static int audio_dsp_set_tx_iir(struct audio_in *audio)
{
struct audpre_cmd_iir_config_type cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.cmd_id = AUDPREPROC_CMD_CFG_IIR_TUNING_FILTER_PARAMS;
if (audio->iir_enable) {
cmd.active_flag = AUDPREPROC_CMD_IIR_ACTIVE_FLAG_ENA;
cmd.num_bands = audio->iir.num_bands;
memcpy(&cmd.iir_params, &audio->iir.iir_params,
sizeof(audio->iir.iir_params));
} else {
cmd.active_flag = AUDPREPROC_CMD_IIR_ACTIVE_FLAG_DIS;
}
#if DEBUG
pr_info("cmd_id = 0x%04x\n", cmd.cmd_id);
pr_info("active_flag = 0x%04x\n", cmd.active_flag);
#endif
return audio_send_queue_pre(audio, &cmd, sizeof(cmd));
}
static int audio_in_dsp_enable(struct audio_in *audio, int enable)
{
audrec_cmd_cfg cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.cmd_id = AUDREC_CMD_CFG;
cmd.type_0 = enable ? AUDREC_CMD_TYPE_0_ENA : AUDREC_CMD_TYPE_0_DIS;
cmd.type_0 |= (AUDREC_CMD_TYPE_0_UPDATE | audio->type);
cmd.type_1 = 0;
return audio_send_queue_rec(audio, &cmd, sizeof(cmd));
}
static int audio_in_encoder_config(struct audio_in *audio)
{
audrec_cmd_arec0param_cfg cmd;
uint16_t *data = (void *) audio->data;
unsigned n;
memset(&cmd, 0, sizeof(cmd));
cmd.cmd_id = AUDREC_CMD_AREC0PARAM_CFG;
cmd.ptr_to_extpkt_buffer_msw = audio->phys >> 16;
cmd.ptr_to_extpkt_buffer_lsw = audio->phys;
cmd.buf_len = FRAME_NUM; /* Both WAV and AAC use 8 frames */
cmd.samp_rate_index = audio->samp_rate_index;
cmd.stereo_mode = audio->channel_mode; /* 0 for mono, 1 for stereo */
/* FIXME have no idea why cmd.rec_quality is fixed
* as 0x1C00 from sample code
*/
cmd.rec_quality = 0x1C00;
/* prepare buffer pointers:
* Mono: 1024 samples + 4 halfword header
* Stereo: 2048 samples + 4 halfword header
* AAC
* Mono/Stere: 768 + 4 halfword header
*/
for (n = 0; n < FRAME_NUM; n++) {
audio->in[n].data = data + 4;
if (audio->type == AUDREC_CMD_TYPE_0_INDEX_WAV)
data += (4 + (audio->channel_mode ? 2048 : 1024));
else if (audio->type == AUDREC_CMD_TYPE_0_INDEX_AAC)
data += (4 + 768);
}
return audio_send_queue_rec(audio, &cmd, sizeof(cmd));
}
static int audio_dsp_read_buffer(struct audio_in *audio, uint32_t read_cnt)
{
audrec_cmd_packet_ext_ptr cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.cmd_id = AUDREC_CMD_PACKET_EXT_PTR;
/* Both WAV and AAC use AUDREC_CMD_TYPE_0 */
cmd.type = AUDREC_CMD_TYPE_0;
cmd.curr_rec_count_msw = read_cnt >> 16;
cmd.curr_rec_count_lsw = read_cnt;
return audio_send_queue_recbs(audio, &cmd, sizeof(cmd));
}
/* ------------------- device --------------------- */
static void audio_enable_agc(struct audio_in *audio, int enable)
{
if (audio->agc_enable != enable) {
audio->agc_enable = enable;
if (audio->running)
audio_dsp_set_agc(audio);
}
}
static void audio_enable_ns(struct audio_in *audio, int enable)
{
if (audio->ns_enable != enable) {
audio->ns_enable = enable;
if (audio->running)
audio_dsp_set_ns(audio);
}
}
static void audio_enable_tx_iir(struct audio_in *audio, int enable)
{
if (audio->iir_enable != enable) {
audio->iir_enable = enable;
if (audio->running)
audio_dsp_set_tx_iir(audio);
}
}
static void audio_flush(struct audio_in *audio)
{
int i;
audio->dsp_cnt = 0;
audio->in_head = 0;
audio->in_tail = 0;
audio->in_count = 0;
for (i = 0; i < FRAME_NUM; i++) {
audio->in[i].size = 0;
audio->in[i].read = 0;
}
}
static long audio_in_ioctl(struct file *file,
unsigned int cmd, unsigned long arg)
{
struct audio_in *audio = file->private_data;
int rc;
if (cmd == AUDIO_GET_STATS) {
struct msm_audio_stats stats;
stats.byte_count = atomic_read(&audio->in_bytes);
if (copy_to_user((void *) arg, &stats, sizeof(stats)))
return -EFAULT;
return 0;
}
mutex_lock(&audio->lock);
switch (cmd) {
case AUDIO_START:
rc = audio_in_enable(audio);
break;
case AUDIO_STOP:
rc = audio_in_disable(audio);
audio->stopped = 1;
break;
case AUDIO_FLUSH:
if (audio->stopped) {
/* Make sure we're stopped and we wake any threads
* that might be blocked holding the read_lock.
* While audio->stopped read threads will always
* exit immediately.
*/
wake_up(&audio->wait);
mutex_lock(&audio->read_lock);
audio_flush(audio);
mutex_unlock(&audio->read_lock);
}
case AUDIO_SET_CONFIG: {
struct msm_audio_config cfg;
if (copy_from_user(&cfg, (void *) arg, sizeof(cfg))) {
rc = -EFAULT;
break;
}
if (cfg.channel_count == 1) {
cfg.channel_count = AUDREC_CMD_STEREO_MODE_MONO;
} else if (cfg.channel_count == 2) {
cfg.channel_count = AUDREC_CMD_STEREO_MODE_STEREO;
} else {
rc = -EINVAL;
break;
}
if (cfg.type == 0) {
cfg.type = AUDREC_CMD_TYPE_0_INDEX_WAV;
} else if (cfg.type == 1) {
cfg.type = AUDREC_CMD_TYPE_0_INDEX_AAC;
} else {
rc = -EINVAL;
break;
}
audio->samp_rate = convert_samp_rate(cfg.sample_rate);
audio->samp_rate_index =
convert_dsp_samp_index(cfg.sample_rate);
audio->channel_mode = cfg.channel_count;
audio->buffer_size =
audio->channel_mode ? STEREO_DATA_SIZE
: MONO_DATA_SIZE;
audio->type = cfg.type;
rc = 0;
break;
}
case AUDIO_GET_CONFIG: {
struct msm_audio_config cfg;
cfg.buffer_size = audio->buffer_size;
cfg.buffer_count = FRAME_NUM;
cfg.sample_rate = convert_samp_index(audio->samp_rate);
if (audio->channel_mode == AUDREC_CMD_STEREO_MODE_MONO)
cfg.channel_count = 1;
else
cfg.channel_count = 2;
if (audio->type == AUDREC_CMD_TYPE_0_INDEX_WAV)
cfg.type = 0;
else
cfg.type = 1;
cfg.unused[0] = 0;
cfg.unused[1] = 0;
cfg.unused[2] = 0;
if (copy_to_user((void *) arg, &cfg, sizeof(cfg)))
rc = -EFAULT;
else
rc = 0;
break;
}
default:
rc = -EINVAL;
}
mutex_unlock(&audio->lock);
return rc;
}
static ssize_t audio_in_read(struct file *file,
char __user *buf,
size_t count, loff_t *pos)
{
struct audio_in *audio = file->private_data;
unsigned long flags;
const char __user *start = buf;
void *data;
uint32_t index;
uint32_t size;
int rc = 0;
mutex_lock(&audio->read_lock);
while (count > 0) {
rc = wait_event_interruptible(
audio->wait, (audio->in_count > 0) || audio->stopped);
if (rc < 0)
break;
if (audio->stopped) {
rc = -EBUSY;
break;
}
index = audio->in_tail;
data = (uint8_t *) audio->in[index].data;
size = audio->in[index].size;
if (count >= size) {
if (copy_to_user(buf, data, size)) {
rc = -EFAULT;
break;
}
spin_lock_irqsave(&audio->dsp_lock, flags);
if (index != audio->in_tail) {
/* overrun -- data is invalid and we need to retry */
spin_unlock_irqrestore(&audio->dsp_lock, flags);
continue;
}
audio->in[index].size = 0;
audio->in_tail = (audio->in_tail + 1) & (FRAME_NUM - 1);
audio->in_count--;
spin_unlock_irqrestore(&audio->dsp_lock, flags);
count -= size;
buf += size;
if (audio->type == AUDREC_CMD_TYPE_0_INDEX_AAC)
break;
} else {
pr_err("audio_in: short read\n");
break;
}
if (audio->type == AUDREC_CMD_TYPE_0_INDEX_AAC)
break; /* AAC only read one frame */
}
mutex_unlock(&audio->read_lock);
if (buf > start)
return buf - start;
return rc;
}
static ssize_t audio_in_write(struct file *file,
const char __user *buf,
size_t count, loff_t *pos)
{
return -EINVAL;
}
static int audio_in_release(struct inode *inode, struct file *file)
{
struct audio_in *audio = file->private_data;
mutex_lock(&audio->lock);
audio_in_disable(audio);
audio_flush(audio);
msm_adsp_put(audio->audrec);
msm_adsp_put(audio->audpre);
audio->audrec = NULL;
audio->audpre = NULL;
audio->opened = 0;
mutex_unlock(&audio->lock);
return 0;
}
static struct audio_in the_audio_in;
static int audio_in_open(struct inode *inode, struct file *file)
{
struct audio_in *audio = &the_audio_in;
int rc;
mutex_lock(&audio->lock);
if (audio->opened) {
rc = -EBUSY;
goto done;
}
/* Settings will be re-config at AUDIO_SET_CONFIG,
* but at least we need to have initial config
*/
audio->samp_rate = RPC_AUD_DEF_SAMPLE_RATE_11025;
audio->samp_rate_index = AUDREC_CMD_SAMP_RATE_INDX_11025;
audio->channel_mode = AUDREC_CMD_STEREO_MODE_MONO;
audio->buffer_size = MONO_DATA_SIZE;
audio->type = AUDREC_CMD_TYPE_0_INDEX_WAV;
rc = audmgr_open(&audio->audmgr);
if (rc)
goto done;
rc = msm_adsp_get("AUDPREPROCTASK", &audio->audpre,
&audpre_adsp_ops, audio);
if (rc)
goto done;
rc = msm_adsp_get("AUDRECTASK", &audio->audrec,
&audrec_adsp_ops, audio);
if (rc)
goto done;
audio->dsp_cnt = 0;
audio->stopped = 0;
audio_flush(audio);
file->private_data = audio;
audio->opened = 1;
rc = 0;
done:
mutex_unlock(&audio->lock);
return rc;
}
static long audpre_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
struct audio_in *audio = file->private_data;
int rc = 0, enable;
uint16_t enable_mask;
#if DEBUG
int i;
#endif
mutex_lock(&audio->lock);
switch (cmd) {
case AUDIO_ENABLE_AUDPRE: {
if (copy_from_user(&enable_mask, (void *) arg,
sizeof(enable_mask)))
goto out_fault;
enable = (enable_mask & AGC_ENABLE) ? 1 : 0;
audio_enable_agc(audio, enable);
enable = (enable_mask & NS_ENABLE) ? 1 : 0;
audio_enable_ns(audio, enable);
enable = (enable_mask & IIR_ENABLE) ? 1 : 0;
audio_enable_tx_iir(audio, enable);
break;
}
case AUDIO_SET_AGC: {
if (copy_from_user(&audio->agc, (void *) arg,
sizeof(audio->agc)))
goto out_fault;
#if DEBUG
pr_info("set agc\n");
for (i = 0; i < AGC_PARAM_SIZE; i++) \
pr_info("agc_params[%d] = 0x%04x\n", i,
audio->agc.agc_params[i]);
#endif
break;
}
case AUDIO_SET_NS: {
if (copy_from_user(&audio->ns, (void *) arg,
sizeof(audio->ns)))
goto out_fault;
#if DEBUG
pr_info("set ns\n");
for (i = 0; i < NS_PARAM_SIZE; i++) \
pr_info("ns_params[%d] = 0x%04x\n",
i, audio->ns.ns_params[i]);
#endif
break;
}
case AUDIO_SET_TX_IIR: {
if (copy_from_user(&audio->iir, (void *) arg,
sizeof(audio->iir)))
goto out_fault;
#if DEBUG
pr_info("set iir\n");
pr_info("iir.num_bands = 0x%04x\n", audio->iir.num_bands);
for (i = 0; i < IIR_PARAM_SIZE; i++) \
pr_info("iir_params[%d] = 0x%04x\n",
i, audio->iir.iir_params[i]);
#endif
break;
}
default:
rc = -EINVAL;
}
goto out;
out_fault:
rc = -EFAULT;
out:
mutex_unlock(&audio->lock);
return rc;
}
static int audpre_open(struct inode *inode, struct file *file)
{
struct audio_in *audio = &the_audio_in;
file->private_data = audio;
return 0;
}
static struct file_operations audio_fops = {
.owner = THIS_MODULE,
.open = audio_in_open,
.release = audio_in_release,
.read = audio_in_read,
.write = audio_in_write,
.unlocked_ioctl = audio_in_ioctl,
};
static struct file_operations audpre_fops = {
.owner = THIS_MODULE,
.open = audpre_open,
.unlocked_ioctl = audpre_ioctl,
};
struct miscdevice audio_in_misc = {
.minor = MISC_DYNAMIC_MINOR,
.name = "msm_pcm_in",
.fops = &audio_fops,
};
struct miscdevice audpre_misc = {
.minor = MISC_DYNAMIC_MINOR,
.name = "msm_audpre",
.fops = &audpre_fops,
};
static int __init audio_in_init(void)
{
int rc;
the_audio_in.data = dma_alloc_coherent(NULL, DMASZ,
&the_audio_in.phys, GFP_KERNEL);
if (!the_audio_in.data) {
printk(KERN_ERR "%s: Unable to allocate DMA buffer\n",
__func__);
return -ENOMEM;
}
mutex_init(&the_audio_in.lock);
mutex_init(&the_audio_in.read_lock);
spin_lock_init(&the_audio_in.dsp_lock);
init_waitqueue_head(&the_audio_in.wait);
rc = misc_register(&audio_in_misc);
if (!rc) {
rc = misc_register(&audpre_misc);
if (rc < 0)
misc_deregister(&audio_in_misc);
}
return rc;
}
device_initcall(audio_in_init);