| /* |
| * Copyright (C) 2007-2009 NEC Corporation. All Rights Reserved. |
| * |
| * Module Author: Kiyoshi Ueda |
| * |
| * This file is released under the GPL. |
| * |
| * Throughput oriented path selector. |
| */ |
| |
| #include "dm.h" |
| #include "dm-path-selector.h" |
| |
| #define DM_MSG_PREFIX "multipath service-time" |
| #define ST_MIN_IO 1 |
| #define ST_MAX_RELATIVE_THROUGHPUT 100 |
| #define ST_MAX_RELATIVE_THROUGHPUT_SHIFT 7 |
| #define ST_MAX_INFLIGHT_SIZE ((size_t)-1 >> ST_MAX_RELATIVE_THROUGHPUT_SHIFT) |
| #define ST_VERSION "0.2.0" |
| |
| struct selector { |
| struct list_head valid_paths; |
| struct list_head failed_paths; |
| }; |
| |
| struct path_info { |
| struct list_head list; |
| struct dm_path *path; |
| unsigned repeat_count; |
| unsigned relative_throughput; |
| atomic_t in_flight_size; /* Total size of in-flight I/Os */ |
| }; |
| |
| static struct selector *alloc_selector(void) |
| { |
| struct selector *s = kmalloc(sizeof(*s), GFP_KERNEL); |
| |
| if (s) { |
| INIT_LIST_HEAD(&s->valid_paths); |
| INIT_LIST_HEAD(&s->failed_paths); |
| } |
| |
| return s; |
| } |
| |
| static int st_create(struct path_selector *ps, unsigned argc, char **argv) |
| { |
| struct selector *s = alloc_selector(); |
| |
| if (!s) |
| return -ENOMEM; |
| |
| ps->context = s; |
| return 0; |
| } |
| |
| static void free_paths(struct list_head *paths) |
| { |
| struct path_info *pi, *next; |
| |
| list_for_each_entry_safe(pi, next, paths, list) { |
| list_del(&pi->list); |
| kfree(pi); |
| } |
| } |
| |
| static void st_destroy(struct path_selector *ps) |
| { |
| struct selector *s = ps->context; |
| |
| free_paths(&s->valid_paths); |
| free_paths(&s->failed_paths); |
| kfree(s); |
| ps->context = NULL; |
| } |
| |
| static int st_status(struct path_selector *ps, struct dm_path *path, |
| status_type_t type, char *result, unsigned maxlen) |
| { |
| unsigned sz = 0; |
| struct path_info *pi; |
| |
| if (!path) |
| DMEMIT("0 "); |
| else { |
| pi = path->pscontext; |
| |
| switch (type) { |
| case STATUSTYPE_INFO: |
| DMEMIT("%d %u ", atomic_read(&pi->in_flight_size), |
| pi->relative_throughput); |
| break; |
| case STATUSTYPE_TABLE: |
| DMEMIT("%u %u ", pi->repeat_count, |
| pi->relative_throughput); |
| break; |
| } |
| } |
| |
| return sz; |
| } |
| |
| static int st_add_path(struct path_selector *ps, struct dm_path *path, |
| int argc, char **argv, char **error) |
| { |
| struct selector *s = ps->context; |
| struct path_info *pi; |
| unsigned repeat_count = ST_MIN_IO; |
| unsigned relative_throughput = 1; |
| |
| /* |
| * Arguments: [<repeat_count> [<relative_throughput>]] |
| * <repeat_count>: The number of I/Os before switching path. |
| * If not given, default (ST_MIN_IO) is used. |
| * <relative_throughput>: The relative throughput value of |
| * the path among all paths in the path-group. |
| * The valid range: 0-<ST_MAX_RELATIVE_THROUGHPUT> |
| * If not given, minimum value '1' is used. |
| * If '0' is given, the path isn't selected while |
| * other paths having a positive value are |
| * available. |
| */ |
| if (argc > 2) { |
| *error = "service-time ps: incorrect number of arguments"; |
| return -EINVAL; |
| } |
| |
| if (argc && (sscanf(argv[0], "%u", &repeat_count) != 1)) { |
| *error = "service-time ps: invalid repeat count"; |
| return -EINVAL; |
| } |
| |
| if ((argc == 2) && |
| (sscanf(argv[1], "%u", &relative_throughput) != 1 || |
| relative_throughput > ST_MAX_RELATIVE_THROUGHPUT)) { |
| *error = "service-time ps: invalid relative_throughput value"; |
| return -EINVAL; |
| } |
| |
| /* allocate the path */ |
| pi = kmalloc(sizeof(*pi), GFP_KERNEL); |
| if (!pi) { |
| *error = "service-time ps: Error allocating path context"; |
| return -ENOMEM; |
| } |
| |
| pi->path = path; |
| pi->repeat_count = repeat_count; |
| pi->relative_throughput = relative_throughput; |
| atomic_set(&pi->in_flight_size, 0); |
| |
| path->pscontext = pi; |
| |
| list_add_tail(&pi->list, &s->valid_paths); |
| |
| return 0; |
| } |
| |
| static void st_fail_path(struct path_selector *ps, struct dm_path *path) |
| { |
| struct selector *s = ps->context; |
| struct path_info *pi = path->pscontext; |
| |
| list_move(&pi->list, &s->failed_paths); |
| } |
| |
| static int st_reinstate_path(struct path_selector *ps, struct dm_path *path) |
| { |
| struct selector *s = ps->context; |
| struct path_info *pi = path->pscontext; |
| |
| list_move_tail(&pi->list, &s->valid_paths); |
| |
| return 0; |
| } |
| |
| /* |
| * Compare the estimated service time of 2 paths, pi1 and pi2, |
| * for the incoming I/O. |
| * |
| * Returns: |
| * < 0 : pi1 is better |
| * 0 : no difference between pi1 and pi2 |
| * > 0 : pi2 is better |
| * |
| * Description: |
| * Basically, the service time is estimated by: |
| * ('pi->in-flight-size' + 'incoming') / 'pi->relative_throughput' |
| * To reduce the calculation, some optimizations are made. |
| * (See comments inline) |
| */ |
| static int st_compare_load(struct path_info *pi1, struct path_info *pi2, |
| size_t incoming) |
| { |
| size_t sz1, sz2, st1, st2; |
| |
| sz1 = atomic_read(&pi1->in_flight_size); |
| sz2 = atomic_read(&pi2->in_flight_size); |
| |
| /* |
| * Case 1: Both have same throughput value. Choose less loaded path. |
| */ |
| if (pi1->relative_throughput == pi2->relative_throughput) |
| return sz1 - sz2; |
| |
| /* |
| * Case 2a: Both have same load. Choose higher throughput path. |
| * Case 2b: One path has no throughput value. Choose the other one. |
| */ |
| if (sz1 == sz2 || |
| !pi1->relative_throughput || !pi2->relative_throughput) |
| return pi2->relative_throughput - pi1->relative_throughput; |
| |
| /* |
| * Case 3: Calculate service time. Choose faster path. |
| * Service time using pi1: |
| * st1 = (sz1 + incoming) / pi1->relative_throughput |
| * Service time using pi2: |
| * st2 = (sz2 + incoming) / pi2->relative_throughput |
| * |
| * To avoid the division, transform the expression to use |
| * multiplication. |
| * Because ->relative_throughput > 0 here, if st1 < st2, |
| * the expressions below are the same meaning: |
| * (sz1 + incoming) / pi1->relative_throughput < |
| * (sz2 + incoming) / pi2->relative_throughput |
| * (sz1 + incoming) * pi2->relative_throughput < |
| * (sz2 + incoming) * pi1->relative_throughput |
| * So use the later one. |
| */ |
| sz1 += incoming; |
| sz2 += incoming; |
| if (unlikely(sz1 >= ST_MAX_INFLIGHT_SIZE || |
| sz2 >= ST_MAX_INFLIGHT_SIZE)) { |
| /* |
| * Size may be too big for multiplying pi->relative_throughput |
| * and overflow. |
| * To avoid the overflow and mis-selection, shift down both. |
| */ |
| sz1 >>= ST_MAX_RELATIVE_THROUGHPUT_SHIFT; |
| sz2 >>= ST_MAX_RELATIVE_THROUGHPUT_SHIFT; |
| } |
| st1 = sz1 * pi2->relative_throughput; |
| st2 = sz2 * pi1->relative_throughput; |
| if (st1 != st2) |
| return st1 - st2; |
| |
| /* |
| * Case 4: Service time is equal. Choose higher throughput path. |
| */ |
| return pi2->relative_throughput - pi1->relative_throughput; |
| } |
| |
| static struct dm_path *st_select_path(struct path_selector *ps, |
| unsigned *repeat_count, size_t nr_bytes) |
| { |
| struct selector *s = ps->context; |
| struct path_info *pi = NULL, *best = NULL; |
| |
| if (list_empty(&s->valid_paths)) |
| return NULL; |
| |
| /* Change preferred (first in list) path to evenly balance. */ |
| list_move_tail(s->valid_paths.next, &s->valid_paths); |
| |
| list_for_each_entry(pi, &s->valid_paths, list) |
| if (!best || (st_compare_load(pi, best, nr_bytes) < 0)) |
| best = pi; |
| |
| if (!best) |
| return NULL; |
| |
| *repeat_count = best->repeat_count; |
| |
| return best->path; |
| } |
| |
| static int st_start_io(struct path_selector *ps, struct dm_path *path, |
| size_t nr_bytes) |
| { |
| struct path_info *pi = path->pscontext; |
| |
| atomic_add(nr_bytes, &pi->in_flight_size); |
| |
| return 0; |
| } |
| |
| static int st_end_io(struct path_selector *ps, struct dm_path *path, |
| size_t nr_bytes) |
| { |
| struct path_info *pi = path->pscontext; |
| |
| atomic_sub(nr_bytes, &pi->in_flight_size); |
| |
| return 0; |
| } |
| |
| static struct path_selector_type st_ps = { |
| .name = "service-time", |
| .module = THIS_MODULE, |
| .table_args = 2, |
| .info_args = 2, |
| .create = st_create, |
| .destroy = st_destroy, |
| .status = st_status, |
| .add_path = st_add_path, |
| .fail_path = st_fail_path, |
| .reinstate_path = st_reinstate_path, |
| .select_path = st_select_path, |
| .start_io = st_start_io, |
| .end_io = st_end_io, |
| }; |
| |
| static int __init dm_st_init(void) |
| { |
| int r = dm_register_path_selector(&st_ps); |
| |
| if (r < 0) |
| DMERR("register failed %d", r); |
| |
| DMINFO("version " ST_VERSION " loaded"); |
| |
| return r; |
| } |
| |
| static void __exit dm_st_exit(void) |
| { |
| int r = dm_unregister_path_selector(&st_ps); |
| |
| if (r < 0) |
| DMERR("unregister failed %d", r); |
| } |
| |
| module_init(dm_st_init); |
| module_exit(dm_st_exit); |
| |
| MODULE_DESCRIPTION(DM_NAME " throughput oriented path selector"); |
| MODULE_AUTHOR("Kiyoshi Ueda <k-ueda@ct.jp.nec.com>"); |
| MODULE_LICENSE("GPL"); |