| /* |
| * arch/arm/include/asm/pgtable.h |
| * |
| * Copyright (C) 1995-2002 Russell King |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| #ifndef _ASMARM_PGTABLE_H |
| #define _ASMARM_PGTABLE_H |
| |
| #include <asm-generic/4level-fixup.h> |
| #include <asm/proc-fns.h> |
| |
| #ifndef CONFIG_MMU |
| |
| #include "pgtable-nommu.h" |
| |
| #else |
| |
| #include <asm/memory.h> |
| #include <mach/vmalloc.h> |
| #include <asm/pgtable-hwdef.h> |
| |
| /* |
| * Just any arbitrary offset to the start of the vmalloc VM area: the |
| * current 8MB value just means that there will be a 8MB "hole" after the |
| * physical memory until the kernel virtual memory starts. That means that |
| * any out-of-bounds memory accesses will hopefully be caught. |
| * The vmalloc() routines leaves a hole of 4kB between each vmalloced |
| * area for the same reason. ;) |
| * |
| * Note that platforms may override VMALLOC_START, but they must provide |
| * VMALLOC_END. VMALLOC_END defines the (exclusive) limit of this space, |
| * which may not overlap IO space. |
| */ |
| #ifndef VMALLOC_START |
| #define VMALLOC_OFFSET (8*1024*1024) |
| #define VMALLOC_START (((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)) |
| #endif |
| |
| /* |
| * Hardware-wise, we have a two level page table structure, where the first |
| * level has 4096 entries, and the second level has 256 entries. Each entry |
| * is one 32-bit word. Most of the bits in the second level entry are used |
| * by hardware, and there aren't any "accessed" and "dirty" bits. |
| * |
| * Linux on the other hand has a three level page table structure, which can |
| * be wrapped to fit a two level page table structure easily - using the PGD |
| * and PTE only. However, Linux also expects one "PTE" table per page, and |
| * at least a "dirty" bit. |
| * |
| * Therefore, we tweak the implementation slightly - we tell Linux that we |
| * have 2048 entries in the first level, each of which is 8 bytes (iow, two |
| * hardware pointers to the second level.) The second level contains two |
| * hardware PTE tables arranged contiguously, followed by Linux versions |
| * which contain the state information Linux needs. We, therefore, end up |
| * with 512 entries in the "PTE" level. |
| * |
| * This leads to the page tables having the following layout: |
| * |
| * pgd pte |
| * | | |
| * +--------+ +0 |
| * | |-----> +------------+ +0 |
| * +- - - - + +4 | h/w pt 0 | |
| * | |-----> +------------+ +1024 |
| * +--------+ +8 | h/w pt 1 | |
| * | | +------------+ +2048 |
| * +- - - - + | Linux pt 0 | |
| * | | +------------+ +3072 |
| * +--------+ | Linux pt 1 | |
| * | | +------------+ +4096 |
| * |
| * See L_PTE_xxx below for definitions of bits in the "Linux pt", and |
| * PTE_xxx for definitions of bits appearing in the "h/w pt". |
| * |
| * PMD_xxx definitions refer to bits in the first level page table. |
| * |
| * The "dirty" bit is emulated by only granting hardware write permission |
| * iff the page is marked "writable" and "dirty" in the Linux PTE. This |
| * means that a write to a clean page will cause a permission fault, and |
| * the Linux MM layer will mark the page dirty via handle_pte_fault(). |
| * For the hardware to notice the permission change, the TLB entry must |
| * be flushed, and ptep_set_access_flags() does that for us. |
| * |
| * The "accessed" or "young" bit is emulated by a similar method; we only |
| * allow accesses to the page if the "young" bit is set. Accesses to the |
| * page will cause a fault, and handle_pte_fault() will set the young bit |
| * for us as long as the page is marked present in the corresponding Linux |
| * PTE entry. Again, ptep_set_access_flags() will ensure that the TLB is |
| * up to date. |
| * |
| * However, when the "young" bit is cleared, we deny access to the page |
| * by clearing the hardware PTE. Currently Linux does not flush the TLB |
| * for us in this case, which means the TLB will retain the transation |
| * until either the TLB entry is evicted under pressure, or a context |
| * switch which changes the user space mapping occurs. |
| */ |
| #define PTRS_PER_PTE 512 |
| #define PTRS_PER_PMD 1 |
| #define PTRS_PER_PGD 2048 |
| |
| /* |
| * PMD_SHIFT determines the size of the area a second-level page table can map |
| * PGDIR_SHIFT determines what a third-level page table entry can map |
| */ |
| #define PMD_SHIFT 21 |
| #define PGDIR_SHIFT 21 |
| |
| #define LIBRARY_TEXT_START 0x0c000000 |
| |
| #ifndef __ASSEMBLY__ |
| extern void __pte_error(const char *file, int line, unsigned long val); |
| extern void __pmd_error(const char *file, int line, unsigned long val); |
| extern void __pgd_error(const char *file, int line, unsigned long val); |
| |
| #define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte_val(pte)) |
| #define pmd_ERROR(pmd) __pmd_error(__FILE__, __LINE__, pmd_val(pmd)) |
| #define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd_val(pgd)) |
| #endif /* !__ASSEMBLY__ */ |
| |
| #define PMD_SIZE (1UL << PMD_SHIFT) |
| #define PMD_MASK (~(PMD_SIZE-1)) |
| #define PGDIR_SIZE (1UL << PGDIR_SHIFT) |
| #define PGDIR_MASK (~(PGDIR_SIZE-1)) |
| |
| /* |
| * This is the lowest virtual address we can permit any user space |
| * mapping to be mapped at. This is particularly important for |
| * non-high vector CPUs. |
| */ |
| #define FIRST_USER_ADDRESS PAGE_SIZE |
| |
| #define FIRST_USER_PGD_NR 1 |
| #define USER_PTRS_PER_PGD ((TASK_SIZE/PGDIR_SIZE) - FIRST_USER_PGD_NR) |
| |
| /* |
| * section address mask and size definitions. |
| */ |
| #define SECTION_SHIFT 20 |
| #define SECTION_SIZE (1UL << SECTION_SHIFT) |
| #define SECTION_MASK (~(SECTION_SIZE-1)) |
| |
| /* |
| * ARMv6 supersection address mask and size definitions. |
| */ |
| #define SUPERSECTION_SHIFT 24 |
| #define SUPERSECTION_SIZE (1UL << SUPERSECTION_SHIFT) |
| #define SUPERSECTION_MASK (~(SUPERSECTION_SIZE-1)) |
| |
| /* |
| * "Linux" PTE definitions. |
| * |
| * We keep two sets of PTEs - the hardware and the linux version. |
| * This allows greater flexibility in the way we map the Linux bits |
| * onto the hardware tables, and allows us to have YOUNG and DIRTY |
| * bits. |
| * |
| * The PTE table pointer refers to the hardware entries; the "Linux" |
| * entries are stored 1024 bytes below. |
| */ |
| #define L_PTE_PRESENT (1 << 0) |
| #define L_PTE_YOUNG (1 << 1) |
| #define L_PTE_FILE (1 << 2) /* only when !PRESENT */ |
| #define L_PTE_DIRTY (1 << 6) |
| #define L_PTE_WRITE (1 << 7) |
| #define L_PTE_USER (1 << 8) |
| #define L_PTE_EXEC (1 << 9) |
| #define L_PTE_SHARED (1 << 10) /* shared(v6), coherent(xsc3) */ |
| |
| /* |
| * These are the memory types, defined to be compatible with |
| * pre-ARMv6 CPUs cacheable and bufferable bits: XXCB |
| */ |
| #define L_PTE_MT_UNCACHED (0x00 << 2) /* 0000 */ |
| #define L_PTE_MT_BUFFERABLE (0x01 << 2) /* 0001 */ |
| #define L_PTE_MT_WRITETHROUGH (0x02 << 2) /* 0010 */ |
| #define L_PTE_MT_WRITEBACK (0x03 << 2) /* 0011 */ |
| #define L_PTE_MT_MINICACHE (0x06 << 2) /* 0110 (sa1100, xscale) */ |
| #define L_PTE_MT_WRITEALLOC (0x07 << 2) /* 0111 */ |
| #define L_PTE_MT_DEV_SHARED (0x04 << 2) /* 0100 */ |
| #define L_PTE_MT_DEV_NONSHARED (0x0c << 2) /* 1100 */ |
| #define L_PTE_MT_DEV_WC (0x09 << 2) /* 1001 */ |
| #define L_PTE_MT_DEV_CACHED (0x0b << 2) /* 1011 */ |
| #define L_PTE_MT_MASK (0x0f << 2) |
| |
| #ifndef __ASSEMBLY__ |
| |
| /* |
| * The pgprot_* and protection_map entries will be fixed up in runtime |
| * to include the cachable and bufferable bits based on memory policy, |
| * as well as any architecture dependent bits like global/ASID and SMP |
| * shared mapping bits. |
| */ |
| #define _L_PTE_DEFAULT L_PTE_PRESENT | L_PTE_YOUNG |
| |
| extern pgprot_t pgprot_user; |
| extern pgprot_t pgprot_kernel; |
| |
| #define _MOD_PROT(p, b) __pgprot(pgprot_val(p) | (b)) |
| |
| #define PAGE_NONE pgprot_user |
| #define PAGE_SHARED _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_WRITE) |
| #define PAGE_SHARED_EXEC _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_WRITE | L_PTE_EXEC) |
| #define PAGE_COPY _MOD_PROT(pgprot_user, L_PTE_USER) |
| #define PAGE_COPY_EXEC _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_EXEC) |
| #define PAGE_READONLY _MOD_PROT(pgprot_user, L_PTE_USER) |
| #define PAGE_READONLY_EXEC _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_EXEC) |
| #define PAGE_KERNEL pgprot_kernel |
| #define PAGE_KERNEL_EXEC _MOD_PROT(pgprot_kernel, L_PTE_EXEC) |
| |
| #define __PAGE_NONE __pgprot(_L_PTE_DEFAULT) |
| #define __PAGE_SHARED __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_WRITE) |
| #define __PAGE_SHARED_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_WRITE | L_PTE_EXEC) |
| #define __PAGE_COPY __pgprot(_L_PTE_DEFAULT | L_PTE_USER) |
| #define __PAGE_COPY_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_EXEC) |
| #define __PAGE_READONLY __pgprot(_L_PTE_DEFAULT | L_PTE_USER) |
| #define __PAGE_READONLY_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_EXEC) |
| |
| #endif /* __ASSEMBLY__ */ |
| |
| /* |
| * The table below defines the page protection levels that we insert into our |
| * Linux page table version. These get translated into the best that the |
| * architecture can perform. Note that on most ARM hardware: |
| * 1) We cannot do execute protection |
| * 2) If we could do execute protection, then read is implied |
| * 3) write implies read permissions |
| */ |
| #define __P000 __PAGE_NONE |
| #define __P001 __PAGE_READONLY |
| #define __P010 __PAGE_COPY |
| #define __P011 __PAGE_COPY |
| #define __P100 __PAGE_READONLY_EXEC |
| #define __P101 __PAGE_READONLY_EXEC |
| #define __P110 __PAGE_COPY_EXEC |
| #define __P111 __PAGE_COPY_EXEC |
| |
| #define __S000 __PAGE_NONE |
| #define __S001 __PAGE_READONLY |
| #define __S010 __PAGE_SHARED |
| #define __S011 __PAGE_SHARED |
| #define __S100 __PAGE_READONLY_EXEC |
| #define __S101 __PAGE_READONLY_EXEC |
| #define __S110 __PAGE_SHARED_EXEC |
| #define __S111 __PAGE_SHARED_EXEC |
| |
| #ifndef __ASSEMBLY__ |
| /* |
| * ZERO_PAGE is a global shared page that is always zero: used |
| * for zero-mapped memory areas etc.. |
| */ |
| extern struct page *empty_zero_page; |
| #define ZERO_PAGE(vaddr) (empty_zero_page) |
| |
| #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT) |
| #define pfn_pte(pfn,prot) (__pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))) |
| |
| #define pte_none(pte) (!pte_val(pte)) |
| #define pte_clear(mm,addr,ptep) set_pte_ext(ptep, __pte(0), 0) |
| #define pte_page(pte) (pfn_to_page(pte_pfn(pte))) |
| #define pte_offset_kernel(dir,addr) (pmd_page_vaddr(*(dir)) + __pte_index(addr)) |
| |
| #define pte_offset_map(dir,addr) (__pte_map(dir, KM_PTE0) + __pte_index(addr)) |
| #define pte_offset_map_nested(dir,addr) (__pte_map(dir, KM_PTE1) + __pte_index(addr)) |
| #define pte_unmap(pte) __pte_unmap(pte, KM_PTE0) |
| #define pte_unmap_nested(pte) __pte_unmap(pte, KM_PTE1) |
| |
| #ifndef CONFIG_HIGHPTE |
| #define __pte_map(dir,km) pmd_page_vaddr(*(dir)) |
| #define __pte_unmap(pte,km) do { } while (0) |
| #else |
| #define __pte_map(dir,km) ((pte_t *)kmap_atomic(pmd_page(*(dir)), km) + PTRS_PER_PTE) |
| #define __pte_unmap(pte,km) kunmap_atomic((pte - PTRS_PER_PTE), km) |
| #endif |
| |
| #define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,pte,ext) |
| |
| #define set_pte_at(mm,addr,ptep,pteval) do { \ |
| set_pte_ext(ptep, pteval, (addr) >= TASK_SIZE ? 0 : PTE_EXT_NG); \ |
| } while (0) |
| |
| /* |
| * The following only work if pte_present() is true. |
| * Undefined behaviour if not.. |
| */ |
| #define pte_present(pte) (pte_val(pte) & L_PTE_PRESENT) |
| #define pte_write(pte) (pte_val(pte) & L_PTE_WRITE) |
| #define pte_dirty(pte) (pte_val(pte) & L_PTE_DIRTY) |
| #define pte_young(pte) (pte_val(pte) & L_PTE_YOUNG) |
| #define pte_special(pte) (0) |
| |
| #define PTE_BIT_FUNC(fn,op) \ |
| static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; } |
| |
| PTE_BIT_FUNC(wrprotect, &= ~L_PTE_WRITE); |
| PTE_BIT_FUNC(mkwrite, |= L_PTE_WRITE); |
| PTE_BIT_FUNC(mkclean, &= ~L_PTE_DIRTY); |
| PTE_BIT_FUNC(mkdirty, |= L_PTE_DIRTY); |
| PTE_BIT_FUNC(mkold, &= ~L_PTE_YOUNG); |
| PTE_BIT_FUNC(mkyoung, |= L_PTE_YOUNG); |
| |
| static inline pte_t pte_mkspecial(pte_t pte) { return pte; } |
| |
| /* |
| * Mark the prot value as uncacheable and unbufferable. |
| */ |
| #define pgprot_noncached(prot) \ |
| __pgprot((pgprot_val(prot) & ~L_PTE_MT_MASK) | L_PTE_MT_UNCACHED) |
| #define pgprot_writecombine(prot) \ |
| __pgprot((pgprot_val(prot) & ~L_PTE_MT_MASK) | L_PTE_MT_BUFFERABLE) |
| |
| #define pmd_none(pmd) (!pmd_val(pmd)) |
| #define pmd_present(pmd) (pmd_val(pmd)) |
| #define pmd_bad(pmd) (pmd_val(pmd) & 2) |
| |
| #define copy_pmd(pmdpd,pmdps) \ |
| do { \ |
| pmdpd[0] = pmdps[0]; \ |
| pmdpd[1] = pmdps[1]; \ |
| flush_pmd_entry(pmdpd); \ |
| } while (0) |
| |
| #define pmd_clear(pmdp) \ |
| do { \ |
| pmdp[0] = __pmd(0); \ |
| pmdp[1] = __pmd(0); \ |
| clean_pmd_entry(pmdp); \ |
| } while (0) |
| |
| static inline pte_t *pmd_page_vaddr(pmd_t pmd) |
| { |
| unsigned long ptr; |
| |
| ptr = pmd_val(pmd) & ~(PTRS_PER_PTE * sizeof(void *) - 1); |
| ptr += PTRS_PER_PTE * sizeof(void *); |
| |
| return __va(ptr); |
| } |
| |
| #define pmd_page(pmd) pfn_to_page(__phys_to_pfn(pmd_val(pmd))) |
| |
| /* |
| * Conversion functions: convert a page and protection to a page entry, |
| * and a page entry and page directory to the page they refer to. |
| */ |
| #define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot) |
| |
| /* |
| * The "pgd_xxx()" functions here are trivial for a folded two-level |
| * setup: the pgd is never bad, and a pmd always exists (as it's folded |
| * into the pgd entry) |
| */ |
| #define pgd_none(pgd) (0) |
| #define pgd_bad(pgd) (0) |
| #define pgd_present(pgd) (1) |
| #define pgd_clear(pgdp) do { } while (0) |
| #define set_pgd(pgd,pgdp) do { } while (0) |
| |
| /* to find an entry in a page-table-directory */ |
| #define pgd_index(addr) ((addr) >> PGDIR_SHIFT) |
| |
| #define pgd_offset(mm, addr) ((mm)->pgd+pgd_index(addr)) |
| |
| /* to find an entry in a kernel page-table-directory */ |
| #define pgd_offset_k(addr) pgd_offset(&init_mm, addr) |
| |
| /* Find an entry in the second-level page table.. */ |
| #define pmd_offset(dir, addr) ((pmd_t *)(dir)) |
| |
| /* Find an entry in the third-level page table.. */ |
| #define __pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) |
| |
| static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) |
| { |
| const unsigned long mask = L_PTE_EXEC | L_PTE_WRITE | L_PTE_USER; |
| pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask); |
| return pte; |
| } |
| |
| extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; |
| |
| /* |
| * Encode and decode a swap entry. Swap entries are stored in the Linux |
| * page tables as follows: |
| * |
| * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 |
| * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 |
| * <--------------- offset --------------------> <- type --> 0 0 0 |
| * |
| * This gives us up to 63 swap files and 32GB per swap file. Note that |
| * the offset field is always non-zero. |
| */ |
| #define __SWP_TYPE_SHIFT 3 |
| #define __SWP_TYPE_BITS 6 |
| #define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1) |
| #define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT) |
| |
| #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK) |
| #define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT) |
| #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) }) |
| |
| #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) |
| #define __swp_entry_to_pte(swp) ((pte_t) { (swp).val }) |
| |
| /* |
| * It is an error for the kernel to have more swap files than we can |
| * encode in the PTEs. This ensures that we know when MAX_SWAPFILES |
| * is increased beyond what we presently support. |
| */ |
| #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS) |
| |
| /* |
| * Encode and decode a file entry. File entries are stored in the Linux |
| * page tables as follows: |
| * |
| * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 |
| * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 |
| * <----------------------- offset ------------------------> 1 0 0 |
| */ |
| #define pte_file(pte) (pte_val(pte) & L_PTE_FILE) |
| #define pte_to_pgoff(x) (pte_val(x) >> 3) |
| #define pgoff_to_pte(x) __pte(((x) << 3) | L_PTE_FILE) |
| |
| #define PTE_FILE_MAX_BITS 29 |
| |
| /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ |
| /* FIXME: this is not correct */ |
| #define kern_addr_valid(addr) (1) |
| |
| #include <asm-generic/pgtable.h> |
| |
| /* |
| * We provide our own arch_get_unmapped_area to cope with VIPT caches. |
| */ |
| #define HAVE_ARCH_UNMAPPED_AREA |
| |
| /* |
| * remap a physical page `pfn' of size `size' with page protection `prot' |
| * into virtual address `from' |
| */ |
| #define io_remap_pfn_range(vma,from,pfn,size,prot) \ |
| remap_pfn_range(vma, from, pfn, size, prot) |
| |
| #define pgtable_cache_init() do { } while (0) |
| |
| #endif /* !__ASSEMBLY__ */ |
| |
| #endif /* CONFIG_MMU */ |
| |
| #endif /* _ASMARM_PGTABLE_H */ |