| /* |
| * i2c-algo-pca.c i2c driver algorithms for PCA9564 adapters |
| * Copyright (C) 2004 Arcom Control Systems |
| * Copyright (C) 2008 Pengutronix |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/delay.h> |
| #include <linux/jiffies.h> |
| #include <linux/init.h> |
| #include <linux/errno.h> |
| #include <linux/i2c.h> |
| #include <linux/i2c-algo-pca.h> |
| |
| #define DEB1(fmt, args...) do { if (i2c_debug >= 1) \ |
| printk(KERN_DEBUG fmt, ## args); } while (0) |
| #define DEB2(fmt, args...) do { if (i2c_debug >= 2) \ |
| printk(KERN_DEBUG fmt, ## args); } while (0) |
| #define DEB3(fmt, args...) do { if (i2c_debug >= 3) \ |
| printk(KERN_DEBUG fmt, ## args); } while (0) |
| |
| static int i2c_debug; |
| |
| #define pca_outw(adap, reg, val) adap->write_byte(adap->data, reg, val) |
| #define pca_inw(adap, reg) adap->read_byte(adap->data, reg) |
| |
| #define pca_status(adap) pca_inw(adap, I2C_PCA_STA) |
| #define pca_clock(adap) adap->i2c_clock |
| #define pca_set_con(adap, val) pca_outw(adap, I2C_PCA_CON, val) |
| #define pca_get_con(adap) pca_inw(adap, I2C_PCA_CON) |
| #define pca_wait(adap) adap->wait_for_completion(adap->data) |
| #define pca_reset(adap) adap->reset_chip(adap->data) |
| |
| static void pca9665_reset(void *pd) |
| { |
| struct i2c_algo_pca_data *adap = pd; |
| pca_outw(adap, I2C_PCA_INDPTR, I2C_PCA_IPRESET); |
| pca_outw(adap, I2C_PCA_IND, 0xA5); |
| pca_outw(adap, I2C_PCA_IND, 0x5A); |
| } |
| |
| /* |
| * Generate a start condition on the i2c bus. |
| * |
| * returns after the start condition has occurred |
| */ |
| static int pca_start(struct i2c_algo_pca_data *adap) |
| { |
| int sta = pca_get_con(adap); |
| DEB2("=== START\n"); |
| sta |= I2C_PCA_CON_STA; |
| sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_SI); |
| pca_set_con(adap, sta); |
| return pca_wait(adap); |
| } |
| |
| /* |
| * Generate a repeated start condition on the i2c bus |
| * |
| * return after the repeated start condition has occurred |
| */ |
| static int pca_repeated_start(struct i2c_algo_pca_data *adap) |
| { |
| int sta = pca_get_con(adap); |
| DEB2("=== REPEATED START\n"); |
| sta |= I2C_PCA_CON_STA; |
| sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_SI); |
| pca_set_con(adap, sta); |
| return pca_wait(adap); |
| } |
| |
| /* |
| * Generate a stop condition on the i2c bus |
| * |
| * returns after the stop condition has been generated |
| * |
| * STOPs do not generate an interrupt or set the SI flag, since the |
| * part returns the idle state (0xf8). Hence we don't need to |
| * pca_wait here. |
| */ |
| static void pca_stop(struct i2c_algo_pca_data *adap) |
| { |
| int sta = pca_get_con(adap); |
| DEB2("=== STOP\n"); |
| sta |= I2C_PCA_CON_STO; |
| sta &= ~(I2C_PCA_CON_STA|I2C_PCA_CON_SI); |
| pca_set_con(adap, sta); |
| } |
| |
| /* |
| * Send the slave address and R/W bit |
| * |
| * returns after the address has been sent |
| */ |
| static int pca_address(struct i2c_algo_pca_data *adap, |
| struct i2c_msg *msg) |
| { |
| int sta = pca_get_con(adap); |
| int addr; |
| |
| addr = ( (0x7f & msg->addr) << 1 ); |
| if (msg->flags & I2C_M_RD ) |
| addr |= 1; |
| DEB2("=== SLAVE ADDRESS %#04x+%c=%#04x\n", |
| msg->addr, msg->flags & I2C_M_RD ? 'R' : 'W', addr); |
| |
| pca_outw(adap, I2C_PCA_DAT, addr); |
| |
| sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_STA|I2C_PCA_CON_SI); |
| pca_set_con(adap, sta); |
| |
| return pca_wait(adap); |
| } |
| |
| /* |
| * Transmit a byte. |
| * |
| * Returns after the byte has been transmitted |
| */ |
| static int pca_tx_byte(struct i2c_algo_pca_data *adap, |
| __u8 b) |
| { |
| int sta = pca_get_con(adap); |
| DEB2("=== WRITE %#04x\n", b); |
| pca_outw(adap, I2C_PCA_DAT, b); |
| |
| sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_STA|I2C_PCA_CON_SI); |
| pca_set_con(adap, sta); |
| |
| return pca_wait(adap); |
| } |
| |
| /* |
| * Receive a byte |
| * |
| * returns immediately. |
| */ |
| static void pca_rx_byte(struct i2c_algo_pca_data *adap, |
| __u8 *b, int ack) |
| { |
| *b = pca_inw(adap, I2C_PCA_DAT); |
| DEB2("=== READ %#04x %s\n", *b, ack ? "ACK" : "NACK"); |
| } |
| |
| /* |
| * Setup ACK or NACK for next received byte and wait for it to arrive. |
| * |
| * Returns after next byte has arrived. |
| */ |
| static int pca_rx_ack(struct i2c_algo_pca_data *adap, |
| int ack) |
| { |
| int sta = pca_get_con(adap); |
| |
| sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_STA|I2C_PCA_CON_SI|I2C_PCA_CON_AA); |
| |
| if ( ack ) |
| sta |= I2C_PCA_CON_AA; |
| |
| pca_set_con(adap, sta); |
| return pca_wait(adap); |
| } |
| |
| static int pca_xfer(struct i2c_adapter *i2c_adap, |
| struct i2c_msg *msgs, |
| int num) |
| { |
| struct i2c_algo_pca_data *adap = i2c_adap->algo_data; |
| struct i2c_msg *msg = NULL; |
| int curmsg; |
| int numbytes = 0; |
| int state; |
| int ret; |
| int completed = 1; |
| unsigned long timeout = jiffies + i2c_adap->timeout; |
| |
| while ((state = pca_status(adap)) != 0xf8) { |
| if (time_before(jiffies, timeout)) { |
| msleep(10); |
| } else { |
| dev_dbg(&i2c_adap->dev, "bus is not idle. status is " |
| "%#04x\n", state); |
| return -EAGAIN; |
| } |
| } |
| |
| DEB1("{{{ XFER %d messages\n", num); |
| |
| if (i2c_debug>=2) { |
| for (curmsg = 0; curmsg < num; curmsg++) { |
| int addr, i; |
| msg = &msgs[curmsg]; |
| |
| addr = (0x7f & msg->addr) ; |
| |
| if (msg->flags & I2C_M_RD ) |
| printk(KERN_INFO " [%02d] RD %d bytes from %#02x [%#02x, ...]\n", |
| curmsg, msg->len, addr, (addr<<1) | 1); |
| else { |
| printk(KERN_INFO " [%02d] WR %d bytes to %#02x [%#02x%s", |
| curmsg, msg->len, addr, addr<<1, |
| msg->len == 0 ? "" : ", "); |
| for(i=0; i < msg->len; i++) |
| printk("%#04x%s", msg->buf[i], i == msg->len - 1 ? "" : ", "); |
| printk("]\n"); |
| } |
| } |
| } |
| |
| curmsg = 0; |
| ret = -EREMOTEIO; |
| while (curmsg < num) { |
| state = pca_status(adap); |
| |
| DEB3("STATE is 0x%02x\n", state); |
| msg = &msgs[curmsg]; |
| |
| switch (state) { |
| case 0xf8: /* On reset or stop the bus is idle */ |
| completed = pca_start(adap); |
| break; |
| |
| case 0x08: /* A START condition has been transmitted */ |
| case 0x10: /* A repeated start condition has been transmitted */ |
| completed = pca_address(adap, msg); |
| break; |
| |
| case 0x18: /* SLA+W has been transmitted; ACK has been received */ |
| case 0x28: /* Data byte in I2CDAT has been transmitted; ACK has been received */ |
| if (numbytes < msg->len) { |
| completed = pca_tx_byte(adap, |
| msg->buf[numbytes]); |
| numbytes++; |
| break; |
| } |
| curmsg++; numbytes = 0; |
| if (curmsg == num) |
| pca_stop(adap); |
| else |
| completed = pca_repeated_start(adap); |
| break; |
| |
| case 0x20: /* SLA+W has been transmitted; NOT ACK has been received */ |
| DEB2("NOT ACK received after SLA+W\n"); |
| pca_stop(adap); |
| goto out; |
| |
| case 0x40: /* SLA+R has been transmitted; ACK has been received */ |
| completed = pca_rx_ack(adap, msg->len > 1); |
| break; |
| |
| case 0x50: /* Data bytes has been received; ACK has been returned */ |
| if (numbytes < msg->len) { |
| pca_rx_byte(adap, &msg->buf[numbytes], 1); |
| numbytes++; |
| completed = pca_rx_ack(adap, |
| numbytes < msg->len - 1); |
| break; |
| } |
| curmsg++; numbytes = 0; |
| if (curmsg == num) |
| pca_stop(adap); |
| else |
| completed = pca_repeated_start(adap); |
| break; |
| |
| case 0x48: /* SLA+R has been transmitted; NOT ACK has been received */ |
| DEB2("NOT ACK received after SLA+R\n"); |
| pca_stop(adap); |
| goto out; |
| |
| case 0x30: /* Data byte in I2CDAT has been transmitted; NOT ACK has been received */ |
| DEB2("NOT ACK received after data byte\n"); |
| pca_stop(adap); |
| goto out; |
| |
| case 0x38: /* Arbitration lost during SLA+W, SLA+R or data bytes */ |
| DEB2("Arbitration lost\n"); |
| /* |
| * The PCA9564 data sheet (2006-09-01) says "A |
| * START condition will be transmitted when the |
| * bus becomes free (STOP or SCL and SDA high)" |
| * when the STA bit is set (p. 11). |
| * |
| * In case this won't work, try pca_reset() |
| * instead. |
| */ |
| pca_start(adap); |
| goto out; |
| |
| case 0x58: /* Data byte has been received; NOT ACK has been returned */ |
| if ( numbytes == msg->len - 1 ) { |
| pca_rx_byte(adap, &msg->buf[numbytes], 0); |
| curmsg++; numbytes = 0; |
| if (curmsg == num) |
| pca_stop(adap); |
| else |
| completed = pca_repeated_start(adap); |
| } else { |
| DEB2("NOT ACK sent after data byte received. " |
| "Not final byte. numbytes %d. len %d\n", |
| numbytes, msg->len); |
| pca_stop(adap); |
| goto out; |
| } |
| break; |
| case 0x70: /* Bus error - SDA stuck low */ |
| DEB2("BUS ERROR - SDA Stuck low\n"); |
| pca_reset(adap); |
| goto out; |
| case 0x90: /* Bus error - SCL stuck low */ |
| DEB2("BUS ERROR - SCL Stuck low\n"); |
| pca_reset(adap); |
| goto out; |
| case 0x00: /* Bus error during master or slave mode due to illegal START or STOP condition */ |
| DEB2("BUS ERROR - Illegal START or STOP\n"); |
| pca_reset(adap); |
| goto out; |
| default: |
| dev_err(&i2c_adap->dev, "unhandled SIO state 0x%02x\n", state); |
| break; |
| } |
| |
| if (!completed) |
| goto out; |
| } |
| |
| ret = curmsg; |
| out: |
| DEB1("}}} transfered %d/%d messages. " |
| "status is %#04x. control is %#04x\n", |
| curmsg, num, pca_status(adap), |
| pca_get_con(adap)); |
| return ret; |
| } |
| |
| static u32 pca_func(struct i2c_adapter *adap) |
| { |
| return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; |
| } |
| |
| static const struct i2c_algorithm pca_algo = { |
| .master_xfer = pca_xfer, |
| .functionality = pca_func, |
| }; |
| |
| static unsigned int pca_probe_chip(struct i2c_adapter *adap) |
| { |
| struct i2c_algo_pca_data *pca_data = adap->algo_data; |
| /* The trick here is to check if there is an indirect register |
| * available. If there is one, we will read the value we first |
| * wrote on I2C_PCA_IADR. Otherwise, we will read the last value |
| * we wrote on I2C_PCA_ADR |
| */ |
| pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_IADR); |
| pca_outw(pca_data, I2C_PCA_IND, 0xAA); |
| pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_ITO); |
| pca_outw(pca_data, I2C_PCA_IND, 0x00); |
| pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_IADR); |
| if (pca_inw(pca_data, I2C_PCA_IND) == 0xAA) { |
| printk(KERN_INFO "%s: PCA9665 detected.\n", adap->name); |
| return I2C_PCA_CHIP_9665; |
| } else { |
| printk(KERN_INFO "%s: PCA9564 detected.\n", adap->name); |
| return I2C_PCA_CHIP_9564; |
| } |
| } |
| |
| static int pca_init(struct i2c_adapter *adap) |
| { |
| struct i2c_algo_pca_data *pca_data = adap->algo_data; |
| |
| adap->algo = &pca_algo; |
| |
| if (pca_probe_chip(adap) == I2C_PCA_CHIP_9564) { |
| static int freqs[] = {330, 288, 217, 146, 88, 59, 44, 36}; |
| int clock; |
| |
| if (pca_data->i2c_clock > 7) { |
| switch (pca_data->i2c_clock) { |
| case 330000: |
| pca_data->i2c_clock = I2C_PCA_CON_330kHz; |
| break; |
| case 288000: |
| pca_data->i2c_clock = I2C_PCA_CON_288kHz; |
| break; |
| case 217000: |
| pca_data->i2c_clock = I2C_PCA_CON_217kHz; |
| break; |
| case 146000: |
| pca_data->i2c_clock = I2C_PCA_CON_146kHz; |
| break; |
| case 88000: |
| pca_data->i2c_clock = I2C_PCA_CON_88kHz; |
| break; |
| case 59000: |
| pca_data->i2c_clock = I2C_PCA_CON_59kHz; |
| break; |
| case 44000: |
| pca_data->i2c_clock = I2C_PCA_CON_44kHz; |
| break; |
| case 36000: |
| pca_data->i2c_clock = I2C_PCA_CON_36kHz; |
| break; |
| default: |
| printk(KERN_WARNING |
| "%s: Invalid I2C clock speed selected." |
| " Using default 59kHz.\n", adap->name); |
| pca_data->i2c_clock = I2C_PCA_CON_59kHz; |
| } |
| } else { |
| printk(KERN_WARNING "%s: " |
| "Choosing the clock frequency based on " |
| "index is deprecated." |
| " Use the nominal frequency.\n", adap->name); |
| } |
| |
| pca_reset(pca_data); |
| |
| clock = pca_clock(pca_data); |
| printk(KERN_INFO "%s: Clock frequency is %dkHz\n", |
| adap->name, freqs[clock]); |
| |
| pca_set_con(pca_data, I2C_PCA_CON_ENSIO | clock); |
| } else { |
| int clock; |
| int mode; |
| int tlow, thi; |
| /* Values can be found on PCA9665 datasheet section 7.3.2.6 */ |
| int min_tlow, min_thi; |
| /* These values are the maximum raise and fall values allowed |
| * by the I2C operation mode (Standard, Fast or Fast+) |
| * They are used (added) below to calculate the clock dividers |
| * of PCA9665. Note that they are slightly different of the |
| * real maximum, to allow the change on mode exactly on the |
| * maximum clock rate for each mode |
| */ |
| int raise_fall_time; |
| |
| struct i2c_algo_pca_data *pca_data = adap->algo_data; |
| |
| /* Ignore the reset function from the module, |
| * we can use the parallel bus reset |
| */ |
| pca_data->reset_chip = pca9665_reset; |
| |
| if (pca_data->i2c_clock > 1265800) { |
| printk(KERN_WARNING "%s: I2C clock speed too high." |
| " Using 1265.8kHz.\n", adap->name); |
| pca_data->i2c_clock = 1265800; |
| } |
| |
| if (pca_data->i2c_clock < 60300) { |
| printk(KERN_WARNING "%s: I2C clock speed too low." |
| " Using 60.3kHz.\n", adap->name); |
| pca_data->i2c_clock = 60300; |
| } |
| |
| /* To avoid integer overflow, use clock/100 for calculations */ |
| clock = pca_clock(pca_data) / 100; |
| |
| if (pca_data->i2c_clock > 10000) { |
| mode = I2C_PCA_MODE_TURBO; |
| min_tlow = 14; |
| min_thi = 5; |
| raise_fall_time = 22; /* Raise 11e-8s, Fall 11e-8s */ |
| } else if (pca_data->i2c_clock > 4000) { |
| mode = I2C_PCA_MODE_FASTP; |
| min_tlow = 17; |
| min_thi = 9; |
| raise_fall_time = 22; /* Raise 11e-8s, Fall 11e-8s */ |
| } else if (pca_data->i2c_clock > 1000) { |
| mode = I2C_PCA_MODE_FAST; |
| min_tlow = 44; |
| min_thi = 20; |
| raise_fall_time = 58; /* Raise 29e-8s, Fall 29e-8s */ |
| } else { |
| mode = I2C_PCA_MODE_STD; |
| min_tlow = 157; |
| min_thi = 134; |
| raise_fall_time = 127; /* Raise 29e-8s, Fall 98e-8s */ |
| } |
| |
| /* The minimum clock that respects the thi/tlow = 134/157 is |
| * 64800 Hz. Below that, we have to fix the tlow to 255 and |
| * calculate the thi factor. |
| */ |
| if (clock < 648) { |
| tlow = 255; |
| thi = 1000000 - clock * raise_fall_time; |
| thi /= (I2C_PCA_OSC_PER * clock) - tlow; |
| } else { |
| tlow = (1000000 - clock * raise_fall_time) * min_tlow; |
| tlow /= I2C_PCA_OSC_PER * clock * (min_thi + min_tlow); |
| thi = tlow * min_thi / min_tlow; |
| } |
| |
| pca_reset(pca_data); |
| |
| printk(KERN_INFO |
| "%s: Clock frequency is %dHz\n", adap->name, clock * 100); |
| |
| pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_IMODE); |
| pca_outw(pca_data, I2C_PCA_IND, mode); |
| pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_ISCLL); |
| pca_outw(pca_data, I2C_PCA_IND, tlow); |
| pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_ISCLH); |
| pca_outw(pca_data, I2C_PCA_IND, thi); |
| |
| pca_set_con(pca_data, I2C_PCA_CON_ENSIO); |
| } |
| udelay(500); /* 500 us for oscilator to stabilise */ |
| |
| return 0; |
| } |
| |
| /* |
| * registering functions to load algorithms at runtime |
| */ |
| int i2c_pca_add_bus(struct i2c_adapter *adap) |
| { |
| int rval; |
| |
| rval = pca_init(adap); |
| if (rval) |
| return rval; |
| |
| return i2c_add_adapter(adap); |
| } |
| EXPORT_SYMBOL(i2c_pca_add_bus); |
| |
| int i2c_pca_add_numbered_bus(struct i2c_adapter *adap) |
| { |
| int rval; |
| |
| rval = pca_init(adap); |
| if (rval) |
| return rval; |
| |
| return i2c_add_numbered_adapter(adap); |
| } |
| EXPORT_SYMBOL(i2c_pca_add_numbered_bus); |
| |
| MODULE_AUTHOR("Ian Campbell <icampbell@arcom.com>, " |
| "Wolfram Sang <w.sang@pengutronix.de>"); |
| MODULE_DESCRIPTION("I2C-Bus PCA9564/PCA9665 algorithm"); |
| MODULE_LICENSE("GPL"); |
| |
| module_param(i2c_debug, int, 0); |