blob: c7490d0d3c445920b99601c2ae4af122aa01bddd [file] [log] [blame]
/*
*************************************************************************
* Ralink Tech Inc.
* 5F., No.36, Taiyuan St., Jhubei City,
* Hsinchu County 302,
* Taiwan, R.O.C.
*
* (c) Copyright 2002-2007, Ralink Technology, Inc.
*
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
* *
*************************************************************************/
#include "../crypt_sha2.h"
/* Basic operations */
#define SHR(x,n) (x >> n) /* SHR(x)^n, right shift n bits , x is w-bit word, 0 <= n <= w */
#define ROTR(x,n,w) ((x >> n) | (x << (w - n))) /* ROTR(x)^n, circular right shift n bits , x is w-bit word, 0 <= n <= w */
#define ROTL(x,n,w) ((x << n) | (x >> (w - n))) /* ROTL(x)^n, circular left shift n bits , x is w-bit word, 0 <= n <= w */
#define ROTR32(x,n) ROTR(x,n,32) /* 32 bits word */
#define ROTL32(x,n) ROTL(x,n,32) /* 32 bits word */
/* Basic functions */
#define Ch(x,y,z) ((x & y) ^ ((~x) & z))
#define Maj(x,y,z) ((x & y) ^ (x & z) ^ (y & z))
#define Parity(x,y,z) (x ^ y ^ z)
#ifdef SHA1_SUPPORT
/* SHA1 constants */
#define SHA1_MASK 0x0000000f
static const UINT32 SHA1_K[4] = {
0x5a827999UL, 0x6ed9eba1UL, 0x8f1bbcdcUL, 0xca62c1d6UL
};
static const UINT32 SHA1_DefaultHashValue[5] = {
0x67452301UL, 0xefcdab89UL, 0x98badcfeUL, 0x10325476UL, 0xc3d2e1f0UL
};
#endif /* SHA1_SUPPORT */
#ifdef SHA256_SUPPORT
/* SHA256 functions */
#define Zsigma_256_0(x) (ROTR32(x,2) ^ ROTR32(x,13) ^ ROTR32(x,22))
#define Zsigma_256_1(x) (ROTR32(x,6) ^ ROTR32(x,11) ^ ROTR32(x,25))
#define Sigma_256_0(x) (ROTR32(x,7) ^ ROTR32(x,18) ^ SHR(x,3))
#define Sigma_256_1(x) (ROTR32(x,17) ^ ROTR32(x,19) ^ SHR(x,10))
/* SHA256 constants */
static const UINT32 SHA256_K[64] = {
0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
};
static const UINT32 SHA256_DefaultHashValue[8] = {
0x6a09e667UL, 0xbb67ae85UL, 0x3c6ef372UL, 0xa54ff53aUL,
0x510e527fUL, 0x9b05688cUL, 0x1f83d9abUL, 0x5be0cd19UL
};
#endif /* SHA256_SUPPORT */
#ifdef SHA1_SUPPORT
/*
========================================================================
Routine Description:
Initial SHA1_CTX_STRUC
Arguments:
pSHA_CTX Pointer to SHA1_CTX_STRUC
Return Value:
None
Note:
None
========================================================================
*/
VOID SHA1_Init (
IN SHA1_CTX_STRUC *pSHA_CTX)
{
NdisMoveMemory(pSHA_CTX->HashValue, SHA1_DefaultHashValue,
sizeof(SHA1_DefaultHashValue));
NdisZeroMemory(pSHA_CTX->Block, SHA1_BLOCK_SIZE);
pSHA_CTX->MessageLen = 0;
pSHA_CTX->BlockLen = 0;
} /* End of SHA1_Init */
/*
========================================================================
Routine Description:
SHA1 computation for one block (512 bits)
Arguments:
pSHA_CTX Pointer to SHA1_CTX_STRUC
Return Value:
None
Note:
None
========================================================================
*/
VOID SHA1_Hash (
IN SHA1_CTX_STRUC *pSHA_CTX)
{
UINT32 W_i,t,s;
UINT32 W[16];
UINT32 a,b,c,d,e,T,f_t = 0;
/* Prepare the message schedule, {W_i}, 0 < t < 15 */
NdisMoveMemory(W, pSHA_CTX->Block, SHA1_BLOCK_SIZE);
for (W_i = 0; W_i < 16; W_i++)
W[W_i] = cpu2be32(W[W_i]); /* Endian Swap */
/* End of for */
/* SHA256 hash computation */
/* Initialize the working variables */
a = pSHA_CTX->HashValue[0];
b = pSHA_CTX->HashValue[1];
c = pSHA_CTX->HashValue[2];
d = pSHA_CTX->HashValue[3];
e = pSHA_CTX->HashValue[4];
/* 80 rounds */
for (t = 0;t < 80;t++) {
s = t & SHA1_MASK;
if (t > 15) { /* Prepare the message schedule, {W_i}, 16 < t < 79 */
W[s] = (W[(s+13) & SHA1_MASK]) ^ (W[(s+8) & SHA1_MASK]) ^ (W[(s+2) & SHA1_MASK]) ^ W[s];
W[s] = ROTL32(W[s],1);
} /* End of if */
switch (t / 20) {
case 0:
f_t = Ch(b,c,d);
break;
case 1:
f_t = Parity(b,c,d);
break;
case 2:
f_t = Maj(b,c,d);
break;
case 3:
f_t = Parity(b,c,d);
break;
} /* End of switch */
T = ROTL32(a,5) + f_t + e + SHA1_K[t / 20] + W[s];
e = d;
d = c;
c = ROTL32(b,30);
b = a;
a = T;
} /* End of for */
/* Compute the i^th intermediate hash value H^(i) */
pSHA_CTX->HashValue[0] += a;
pSHA_CTX->HashValue[1] += b;
pSHA_CTX->HashValue[2] += c;
pSHA_CTX->HashValue[3] += d;
pSHA_CTX->HashValue[4] += e;
NdisZeroMemory(pSHA_CTX->Block, SHA1_BLOCK_SIZE);
pSHA_CTX->BlockLen = 0;
} /* End of SHA1_Hash */
/*
========================================================================
Routine Description:
The message is appended to block. If block size > 64 bytes, the SHA1_Hash
will be called.
Arguments:
pSHA_CTX Pointer to SHA1_CTX_STRUC
message Message context
messageLen The length of message in bytes
Return Value:
None
Note:
None
========================================================================
*/
VOID SHA1_Append (
IN SHA1_CTX_STRUC *pSHA_CTX,
IN const UINT8 Message[],
IN UINT MessageLen)
{
UINT appendLen = 0;
UINT diffLen = 0;
while (appendLen != MessageLen) {
diffLen = MessageLen - appendLen;
if ((pSHA_CTX->BlockLen + diffLen) < SHA1_BLOCK_SIZE) {
NdisMoveMemory(pSHA_CTX->Block + pSHA_CTX->BlockLen,
Message + appendLen, diffLen);
pSHA_CTX->BlockLen += diffLen;
appendLen += diffLen;
}
else
{
NdisMoveMemory(pSHA_CTX->Block + pSHA_CTX->BlockLen,
Message + appendLen, SHA1_BLOCK_SIZE - pSHA_CTX->BlockLen);
appendLen += (SHA1_BLOCK_SIZE - pSHA_CTX->BlockLen);
pSHA_CTX->BlockLen = SHA1_BLOCK_SIZE;
SHA1_Hash(pSHA_CTX);
} /* End of if */
} /* End of while */
pSHA_CTX->MessageLen += MessageLen;
} /* End of SHA1_Append */
/*
========================================================================
Routine Description:
1. Append bit 1 to end of the message
2. Append the length of message in rightmost 64 bits
3. Transform the Hash Value to digest message
Arguments:
pSHA_CTX Pointer to SHA1_CTX_STRUC
Return Value:
digestMessage Digest message
Note:
None
========================================================================
*/
VOID SHA1_End (
IN SHA1_CTX_STRUC *pSHA_CTX,
OUT UINT8 DigestMessage[])
{
UINT index;
UINT64 message_length_bits;
/* Append bit 1 to end of the message */
NdisFillMemory(pSHA_CTX->Block + pSHA_CTX->BlockLen, 1, 0x80);
/* 55 = 64 - 8 - 1: append 1 bit(1 byte) and message length (8 bytes) */
if (pSHA_CTX->BlockLen > 55)
SHA1_Hash(pSHA_CTX);
/* End of if */
/* Append the length of message in rightmost 64 bits */
message_length_bits = pSHA_CTX->MessageLen*8;
message_length_bits = cpu2be64(message_length_bits);
NdisMoveMemory(&pSHA_CTX->Block[56], &message_length_bits, 8);
SHA1_Hash(pSHA_CTX);
/* Return message digest, transform the UINT32 hash value to bytes */
for (index = 0; index < 5;index++)
pSHA_CTX->HashValue[index] = cpu2be32(pSHA_CTX->HashValue[index]);
/* End of for */
NdisMoveMemory(DigestMessage, pSHA_CTX->HashValue, SHA1_DIGEST_SIZE);
} /* End of SHA1_End */
/*
========================================================================
Routine Description:
SHA1 algorithm
Arguments:
message Message context
messageLen The length of message in bytes
Return Value:
digestMessage Digest message
Note:
None
========================================================================
*/
VOID RT_SHA1 (
IN const UINT8 Message[],
IN UINT MessageLen,
OUT UINT8 DigestMessage[])
{
SHA1_CTX_STRUC sha_ctx;
NdisZeroMemory(&sha_ctx, sizeof(SHA1_CTX_STRUC));
SHA1_Init(&sha_ctx);
SHA1_Append(&sha_ctx, Message, MessageLen);
SHA1_End(&sha_ctx, DigestMessage);
} /* End of RT_SHA1 */
#endif /* SHA1_SUPPORT */
#ifdef SHA256_SUPPORT
/*
========================================================================
Routine Description:
Initial SHA256_CTX_STRUC
Arguments:
pSHA_CTX Pointer to SHA256_CTX_STRUC
Return Value:
None
Note:
None
========================================================================
*/
VOID SHA256_Init (
IN SHA256_CTX_STRUC *pSHA_CTX)
{
NdisMoveMemory(pSHA_CTX->HashValue, SHA256_DefaultHashValue,
sizeof(SHA256_DefaultHashValue));
NdisZeroMemory(pSHA_CTX->Block, SHA256_BLOCK_SIZE);
pSHA_CTX->MessageLen = 0;
pSHA_CTX->BlockLen = 0;
} /* End of SHA256_Init */
/*
========================================================================
Routine Description:
SHA256 computation for one block (512 bits)
Arguments:
pSHA_CTX Pointer to SHA256_CTX_STRUC
Return Value:
None
Note:
None
========================================================================
*/
VOID SHA256_Hash (
IN SHA256_CTX_STRUC *pSHA_CTX)
{
UINT32 W_i,t;
UINT32 W[64];
UINT32 a,b,c,d,e,f,g,h,T1,T2;
/* Prepare the message schedule, {W_i}, 0 < t < 15 */
NdisMoveMemory(W, pSHA_CTX->Block, SHA256_BLOCK_SIZE);
for (W_i = 0; W_i < 16; W_i++)
W[W_i] = cpu2be32(W[W_i]); /* Endian Swap */
/* End of for */
/* SHA256 hash computation */
/* Initialize the working variables */
a = pSHA_CTX->HashValue[0];
b = pSHA_CTX->HashValue[1];
c = pSHA_CTX->HashValue[2];
d = pSHA_CTX->HashValue[3];
e = pSHA_CTX->HashValue[4];
f = pSHA_CTX->HashValue[5];
g = pSHA_CTX->HashValue[6];
h = pSHA_CTX->HashValue[7];
/* 64 rounds */
for (t = 0;t < 64;t++) {
if (t > 15) /* Prepare the message schedule, {W_i}, 16 < t < 63 */
W[t] = Sigma_256_1(W[t-2]) + W[t-7] + Sigma_256_0(W[t-15]) + W[t-16];
/* End of if */
T1 = h + Zsigma_256_1(e) + Ch(e,f,g) + SHA256_K[t] + W[t];
T2 = Zsigma_256_0(a) + Maj(a,b,c);
h = g;
g = f;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;
} /* End of for */
/* Compute the i^th intermediate hash value H^(i) */
pSHA_CTX->HashValue[0] += a;
pSHA_CTX->HashValue[1] += b;
pSHA_CTX->HashValue[2] += c;
pSHA_CTX->HashValue[3] += d;
pSHA_CTX->HashValue[4] += e;
pSHA_CTX->HashValue[5] += f;
pSHA_CTX->HashValue[6] += g;
pSHA_CTX->HashValue[7] += h;
NdisZeroMemory(pSHA_CTX->Block, SHA256_BLOCK_SIZE);
pSHA_CTX->BlockLen = 0;
} /* End of SHA256_Hash */
/*
========================================================================
Routine Description:
The message is appended to block. If block size > 64 bytes, the SHA256_Hash
will be called.
Arguments:
pSHA_CTX Pointer to SHA256_CTX_STRUC
message Message context
messageLen The length of message in bytes
Return Value:
None
Note:
None
========================================================================
*/
VOID SHA256_Append (
IN SHA256_CTX_STRUC *pSHA_CTX,
IN const UINT8 Message[],
IN UINT MessageLen)
{
UINT appendLen = 0;
UINT diffLen = 0;
while (appendLen != MessageLen) {
diffLen = MessageLen - appendLen;
if ((pSHA_CTX->BlockLen + diffLen) < SHA256_BLOCK_SIZE) {
NdisMoveMemory(pSHA_CTX->Block + pSHA_CTX->BlockLen,
Message + appendLen, diffLen);
pSHA_CTX->BlockLen += diffLen;
appendLen += diffLen;
}
else
{
NdisMoveMemory(pSHA_CTX->Block + pSHA_CTX->BlockLen,
Message + appendLen, SHA256_BLOCK_SIZE - pSHA_CTX->BlockLen);
appendLen += (SHA256_BLOCK_SIZE - pSHA_CTX->BlockLen);
pSHA_CTX->BlockLen = SHA256_BLOCK_SIZE;
SHA256_Hash(pSHA_CTX);
} /* End of if */
} /* End of while */
pSHA_CTX->MessageLen += MessageLen;
} /* End of SHA256_Append */
/*
========================================================================
Routine Description:
1. Append bit 1 to end of the message
2. Append the length of message in rightmost 64 bits
3. Transform the Hash Value to digest message
Arguments:
pSHA_CTX Pointer to SHA256_CTX_STRUC
Return Value:
digestMessage Digest message
Note:
None
========================================================================
*/
VOID SHA256_End (
IN SHA256_CTX_STRUC *pSHA_CTX,
OUT UINT8 DigestMessage[])
{
UINT index;
UINT64 message_length_bits;
/* Append bit 1 to end of the message */
NdisFillMemory(pSHA_CTX->Block + pSHA_CTX->BlockLen, 1, 0x80);
/* 55 = 64 - 8 - 1: append 1 bit(1 byte) and message length (8 bytes) */
if (pSHA_CTX->BlockLen > 55)
SHA256_Hash(pSHA_CTX);
/* End of if */
/* Append the length of message in rightmost 64 bits */
message_length_bits = pSHA_CTX->MessageLen*8;
message_length_bits = cpu2be64(message_length_bits);
NdisMoveMemory(&pSHA_CTX->Block[56], &message_length_bits, 8);
SHA256_Hash(pSHA_CTX);
/* Return message digest, transform the UINT32 hash value to bytes */
for (index = 0; index < 8;index++)
pSHA_CTX->HashValue[index] = cpu2be32(pSHA_CTX->HashValue[index]);
/* End of for */
NdisMoveMemory(DigestMessage, pSHA_CTX->HashValue, SHA256_DIGEST_SIZE);
} /* End of SHA256_End */
/*
========================================================================
Routine Description:
SHA256 algorithm
Arguments:
message Message context
messageLen The length of message in bytes
Return Value:
digestMessage Digest message
Note:
None
========================================================================
*/
VOID RT_SHA256 (
IN const UINT8 Message[],
IN UINT MessageLen,
OUT UINT8 DigestMessage[])
{
SHA256_CTX_STRUC sha_ctx;
NdisZeroMemory(&sha_ctx, sizeof(SHA256_CTX_STRUC));
SHA256_Init(&sha_ctx);
SHA256_Append(&sha_ctx, Message, MessageLen);
SHA256_End(&sha_ctx, DigestMessage);
} /* End of RT_SHA256 */
#endif /* SHA256_SUPPORT */
/* End of crypt_sha2.c */