blob: dd199bdb9efffc73b0e2ff08f04d4aee883697a0 [file] [log] [blame]
/*
* Agere Systems Inc.
* 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
*
* Copyright * 2005 Agere Systems Inc.
* All rights reserved.
* http://www.agere.com
*
*------------------------------------------------------------------------------
*
* et1310_phy.c - Routines for configuring and accessing the PHY
*
*------------------------------------------------------------------------------
*
* SOFTWARE LICENSE
*
* This software is provided subject to the following terms and conditions,
* which you should read carefully before using the software. Using this
* software indicates your acceptance of these terms and conditions. If you do
* not agree with these terms and conditions, do not use the software.
*
* Copyright * 2005 Agere Systems Inc.
* All rights reserved.
*
* Redistribution and use in source or binary forms, with or without
* modifications, are permitted provided that the following conditions are met:
*
* . Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following Disclaimer as comments in the code as
* well as in the documentation and/or other materials provided with the
* distribution.
*
* . Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following Disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* . Neither the name of Agere Systems Inc. nor the names of the contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* Disclaimer
*
* THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
* USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
* RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
*/
#include "et131x_version.h"
#include "et131x_defs.h"
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/ctype.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/interrupt.h>
#include <linux/in.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/bitops.h>
#include <asm/system.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/if_arp.h>
#include <linux/ioport.h>
#include <linux/random.h>
#include "et1310_phy.h"
#include "et1310_pm.h"
#include "et1310_jagcore.h"
#include "et131x_adapter.h"
#include "et131x_netdev.h"
#include "et131x_initpci.h"
#include "et1310_address_map.h"
#include "et1310_tx.h"
#include "et1310_rx.h"
#include "et1310_mac.h"
/* Prototypes for functions with local scope */
static int et131x_xcvr_init(struct et131x_adapter *adapter);
/**
* PhyMiRead - Read from the PHY through the MII Interface on the MAC
* @adapter: pointer to our private adapter structure
* @xcvrAddr: the address of the transciever
* @xcvrReg: the register to read
* @value: pointer to a 16-bit value in which the value will be stored
*
* Returns 0 on success, errno on failure (as defined in errno.h)
*/
int PhyMiRead(struct et131x_adapter *adapter, uint8_t xcvrAddr,
uint8_t xcvrReg, uint16_t *value)
{
struct _MAC_t __iomem *mac = &adapter->regs->mac;
int status = 0;
uint32_t delay;
MII_MGMT_ADDR_t miiAddr;
MII_MGMT_CMD_t miiCmd;
MII_MGMT_INDICATOR_t miiIndicator;
/* Save a local copy of the registers we are dealing with so we can
* set them back
*/
miiAddr.value = readl(&mac->mii_mgmt_addr.value);
miiCmd.value = readl(&mac->mii_mgmt_cmd.value);
/* Stop the current operation */
writel(0, &mac->mii_mgmt_cmd.value);
/* Set up the register we need to read from on the correct PHY */
{
MII_MGMT_ADDR_t mii_mgmt_addr = { 0 };
mii_mgmt_addr.bits.phy_addr = xcvrAddr;
mii_mgmt_addr.bits.reg_addr = xcvrReg;
writel(mii_mgmt_addr.value, &mac->mii_mgmt_addr.value);
}
/* Kick the read cycle off */
delay = 0;
writel(0x1, &mac->mii_mgmt_cmd.value);
do {
udelay(50);
delay++;
miiIndicator.value = readl(&mac->mii_mgmt_indicator.value);
} while ((miiIndicator.bits.not_valid || miiIndicator.bits.busy) &&
delay < 50);
/* If we hit the max delay, we could not read the register */
if (delay >= 50) {
dev_warn(&adapter->pdev->dev,
"xcvrReg 0x%08x could not be read\n", xcvrReg);
dev_warn(&adapter->pdev->dev, "status is 0x%08x\n",
miiIndicator.value);
status = -EIO;
}
/* If we hit here we were able to read the register and we need to
* return the value to the caller
*/
/* TODO: make this stuff a simple readw()?! */
{
MII_MGMT_STAT_t mii_mgmt_stat;
mii_mgmt_stat.value = readl(&mac->mii_mgmt_stat.value);
*value = (uint16_t) mii_mgmt_stat.bits.phy_stat;
}
/* Stop the read operation */
writel(0, &mac->mii_mgmt_cmd.value);
/* set the registers we touched back to the state at which we entered
* this function
*/
writel(miiAddr.value, &mac->mii_mgmt_addr.value);
writel(miiCmd.value, &mac->mii_mgmt_cmd.value);
return status;
}
/**
* MiWrite - Write to a PHY register through the MII interface of the MAC
* @adapter: pointer to our private adapter structure
* @xcvrReg: the register to read
* @value: 16-bit value to write
*
* Return 0 on success, errno on failure (as defined in errno.h)
*/
int MiWrite(struct et131x_adapter *adapter, uint8_t xcvrReg, uint16_t value)
{
struct _MAC_t __iomem *mac = &adapter->regs->mac;
int status = 0;
uint8_t xcvrAddr = adapter->Stats.xcvr_addr;
uint32_t delay;
MII_MGMT_ADDR_t miiAddr;
MII_MGMT_CMD_t miiCmd;
MII_MGMT_INDICATOR_t miiIndicator;
/* Save a local copy of the registers we are dealing with so we can
* set them back
*/
miiAddr.value = readl(&mac->mii_mgmt_addr.value);
miiCmd.value = readl(&mac->mii_mgmt_cmd.value);
/* Stop the current operation */
writel(0, &mac->mii_mgmt_cmd.value);
/* Set up the register we need to write to on the correct PHY */
{
MII_MGMT_ADDR_t mii_mgmt_addr;
mii_mgmt_addr.bits.phy_addr = xcvrAddr;
mii_mgmt_addr.bits.reg_addr = xcvrReg;
writel(mii_mgmt_addr.value, &mac->mii_mgmt_addr.value);
}
/* Add the value to write to the registers to the mac */
writel(value, &mac->mii_mgmt_ctrl.value);
delay = 0;
do {
udelay(50);
delay++;
miiIndicator.value = readl(&mac->mii_mgmt_indicator.value);
} while (miiIndicator.bits.busy && delay < 100);
/* If we hit the max delay, we could not write the register */
if (delay == 100) {
uint16_t TempValue;
dev_warn(&adapter->pdev->dev,
"xcvrReg 0x%08x could not be written", xcvrReg);
dev_warn(&adapter->pdev->dev, "status is 0x%08x\n",
miiIndicator.value);
dev_warn(&adapter->pdev->dev, "command is 0x%08x\n",
readl(&mac->mii_mgmt_cmd.value));
MiRead(adapter, xcvrReg, &TempValue);
status = -EIO;
}
/* Stop the write operation */
writel(0, &mac->mii_mgmt_cmd.value);
/* set the registers we touched back to the state at which we entered
* this function
*/
writel(miiAddr.value, &mac->mii_mgmt_addr.value);
writel(miiCmd.value, &mac->mii_mgmt_cmd.value);
return status;
}
/**
* et131x_xcvr_find - Find the PHY ID
* @adapter: pointer to our private adapter structure
*
* Returns 0 on success, errno on failure (as defined in errno.h)
*/
int et131x_xcvr_find(struct et131x_adapter *adapter)
{
int status = -ENODEV;
uint8_t xcvr_addr;
MI_IDR1_t idr1;
MI_IDR2_t idr2;
uint32_t xcvr_id;
/* We need to get xcvr id and address we just get the first one */
for (xcvr_addr = 0; xcvr_addr < 32; xcvr_addr++) {
/* Read the ID from the PHY */
PhyMiRead(adapter, xcvr_addr,
(uint8_t) offsetof(MI_REGS_t, idr1),
&idr1.value);
PhyMiRead(adapter, xcvr_addr,
(uint8_t) offsetof(MI_REGS_t, idr2),
&idr2.value);
xcvr_id = (uint32_t) ((idr1.value << 16) | idr2.value);
if ((idr1.value != 0) && (idr1.value != 0xffff)) {
adapter->Stats.xcvr_id = xcvr_id;
adapter->Stats.xcvr_addr = xcvr_addr;
status = 0;
break;
}
}
return status;
}
/**
* et131x_setphy_normal - Set PHY for normal operation.
* @adapter: pointer to our private adapter structure
*
* Used by Power Management to force the PHY into 10 Base T half-duplex mode,
* when going to D3 in WOL mode. Also used during initialization to set the
* PHY for normal operation.
*/
int et131x_setphy_normal(struct et131x_adapter *adapter)
{
int status;
/* Make sure the PHY is powered up */
ET1310_PhyPowerDown(adapter, 0);
status = et131x_xcvr_init(adapter);
return status;
}
/**
* et131x_xcvr_init - Init the phy if we are setting it into force mode
* @adapter: pointer to our private adapter structure
*
* Returns 0 on success, errno on failure (as defined in errno.h)
*/
static int et131x_xcvr_init(struct et131x_adapter *adapter)
{
int status = 0;
MI_IMR_t imr;
MI_ISR_t isr;
MI_LCR2_t lcr2;
/* Zero out the adapter structure variable representing BMSR */
adapter->Bmsr.value = 0;
MiRead(adapter, (uint8_t) offsetof(MI_REGS_t, isr), &isr.value);
MiRead(adapter, (uint8_t) offsetof(MI_REGS_t, imr), &imr.value);
/* Set the link status interrupt only. Bad behavior when link status
* and auto neg are set, we run into a nested interrupt problem
*/
imr.bits.int_en = 0x1;
imr.bits.link_status = 0x1;
imr.bits.autoneg_status = 0x1;
MiWrite(adapter, (uint8_t) offsetof(MI_REGS_t, imr), imr.value);
/* Set the LED behavior such that LED 1 indicates speed (off =
* 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
* link and activity (on for link, blink off for activity).
*
* NOTE: Some customizations have been added here for specific
* vendors; The LED behavior is now determined by vendor data in the
* EEPROM. However, the above description is the default.
*/
if ((adapter->eepromData[1] & 0x4) == 0) {
MiRead(adapter, (uint8_t) offsetof(MI_REGS_t, lcr2),
&lcr2.value);
if ((adapter->eepromData[1] & 0x8) == 0)
lcr2.bits.led_tx_rx = 0x3;
else
lcr2.bits.led_tx_rx = 0x4;
lcr2.bits.led_link = 0xa;
MiWrite(adapter, (uint8_t) offsetof(MI_REGS_t, lcr2),
lcr2.value);
}
/* Determine if we need to go into a force mode and set it */
if (adapter->AiForceSpeed == 0 && adapter->AiForceDpx == 0) {
if ((adapter->RegistryFlowControl == TxOnly) ||
(adapter->RegistryFlowControl == Both)) {
ET1310_PhyAccessMiBit(adapter,
TRUEPHY_BIT_SET, 4, 11, NULL);
} else {
ET1310_PhyAccessMiBit(adapter,
TRUEPHY_BIT_CLEAR, 4, 11, NULL);
}
if (adapter->RegistryFlowControl == Both) {
ET1310_PhyAccessMiBit(adapter,
TRUEPHY_BIT_SET, 4, 10, NULL);
} else {
ET1310_PhyAccessMiBit(adapter,
TRUEPHY_BIT_CLEAR, 4, 10, NULL);
}
/* Set the phy to autonegotiation */
ET1310_PhyAutoNeg(adapter, true);
/* NOTE - Do we need this? */
ET1310_PhyAccessMiBit(adapter, TRUEPHY_BIT_SET, 0, 9, NULL);
return status;
} else {
ET1310_PhyAutoNeg(adapter, false);
/* Set to the correct force mode. */
if (adapter->AiForceDpx != 1) {
if ((adapter->RegistryFlowControl == TxOnly) ||
(adapter->RegistryFlowControl == Both)) {
ET1310_PhyAccessMiBit(adapter,
TRUEPHY_BIT_SET, 4, 11,
NULL);
} else {
ET1310_PhyAccessMiBit(adapter,
TRUEPHY_BIT_CLEAR, 4, 11,
NULL);
}
if (adapter->RegistryFlowControl == Both) {
ET1310_PhyAccessMiBit(adapter,
TRUEPHY_BIT_SET, 4, 10,
NULL);
} else {
ET1310_PhyAccessMiBit(adapter,
TRUEPHY_BIT_CLEAR, 4, 10,
NULL);
}
} else {
ET1310_PhyAccessMiBit(adapter,
TRUEPHY_BIT_CLEAR, 4, 10, NULL);
ET1310_PhyAccessMiBit(adapter,
TRUEPHY_BIT_CLEAR, 4, 11, NULL);
}
switch (adapter->AiForceSpeed) {
case 10:
if (adapter->AiForceDpx == 1)
TPAL_SetPhy10HalfDuplex(adapter);
else if (adapter->AiForceDpx == 2)
TPAL_SetPhy10FullDuplex(adapter);
else
TPAL_SetPhy10Force(adapter);
break;
case 100:
if (adapter->AiForceDpx == 1)
TPAL_SetPhy100HalfDuplex(adapter);
else if (adapter->AiForceDpx == 2)
TPAL_SetPhy100FullDuplex(adapter);
else
TPAL_SetPhy100Force(adapter);
break;
case 1000:
TPAL_SetPhy1000FullDuplex(adapter);
break;
}
return status;
}
}
void et131x_Mii_check(struct et131x_adapter *etdev,
MI_BMSR_t bmsr, MI_BMSR_t bmsr_ints)
{
uint8_t link_status;
uint32_t autoneg_status;
uint32_t speed;
uint32_t duplex;
uint32_t mdi_mdix;
uint32_t masterslave;
uint32_t polarity;
unsigned long flags;
if (bmsr_ints.bits.link_status) {
if (bmsr.bits.link_status) {
etdev->PoMgmt.TransPhyComaModeOnBoot = 20;
/* Update our state variables and indicate the
* connected state
*/
spin_lock_irqsave(&etdev->Lock, flags);
etdev->MediaState = NETIF_STATUS_MEDIA_CONNECT;
etdev->Flags &= ~fMP_ADAPTER_LINK_DETECTION;
spin_unlock_irqrestore(&etdev->Lock, flags);
/* Don't indicate state if we're in loopback mode */
if (etdev->RegistryPhyLoopbk == false)
netif_carrier_on(etdev->netdev);
} else {
dev_warn(&etdev->pdev->dev,
"Link down - cable problem ?\n");
if (etdev->linkspeed == TRUEPHY_SPEED_10MBPS) {
/* NOTE - Is there a way to query this without
* TruePHY?
* && TRU_QueryCoreType(etdev->hTruePhy, 0) == EMI_TRUEPHY_A13O) {
*/
uint16_t Register18;
MiRead(etdev, 0x12, &Register18);
MiWrite(etdev, 0x12, Register18 | 0x4);
MiWrite(etdev, 0x10, Register18 | 0x8402);
MiWrite(etdev, 0x11, Register18 | 511);
MiWrite(etdev, 0x12, Register18);
}
/* For the first N seconds of life, we are in "link
* detection" When we are in this state, we should
* only report "connected". When the LinkDetection
* Timer expires, we can report disconnected (handled
* in the LinkDetectionDPC).
*/
if (!(etdev->Flags & fMP_ADAPTER_LINK_DETECTION) ||
(etdev->MediaState == NETIF_STATUS_MEDIA_DISCONNECT)) {
spin_lock_irqsave(&etdev->Lock, flags);
etdev->MediaState =
NETIF_STATUS_MEDIA_DISCONNECT;
spin_unlock_irqrestore(&etdev->Lock,
flags);
/* Only indicate state if we're in loopback
* mode
*/
if (etdev->RegistryPhyLoopbk == false)
netif_carrier_off(etdev->netdev);
}
etdev->linkspeed = 0;
etdev->duplex_mode = 0;
/* Free the packets being actively sent & stopped */
et131x_free_busy_send_packets(etdev);
/* Re-initialize the send structures */
et131x_init_send(etdev);
/* Reset the RFD list and re-start RU */
et131x_reset_recv(etdev);
/*
* Bring the device back to the state it was during
* init prior to autonegotiation being complete. This
* way, when we get the auto-neg complete interrupt,
* we can complete init by calling ConfigMacREGS2.
*/
et131x_soft_reset(etdev);
/* Setup ET1310 as per the documentation */
et131x_adapter_setup(etdev);
/* Setup the PHY into coma mode until the cable is
* plugged back in
*/
if (etdev->RegistryPhyComa == 1)
EnablePhyComa(etdev);
}
}
if (bmsr_ints.bits.auto_neg_complete ||
(etdev->AiForceDpx == 3 && bmsr_ints.bits.link_status)) {
if (bmsr.bits.auto_neg_complete || etdev->AiForceDpx == 3) {
ET1310_PhyLinkStatus(etdev,
&link_status, &autoneg_status,
&speed, &duplex, &mdi_mdix,
&masterslave, &polarity);
etdev->linkspeed = speed;
etdev->duplex_mode = duplex;
etdev->PoMgmt.TransPhyComaModeOnBoot = 20;
if (etdev->linkspeed == TRUEPHY_SPEED_10MBPS) {
/*
* NOTE - Is there a way to query this without
* TruePHY?
* && TRU_QueryCoreType(etdev->hTruePhy, 0)== EMI_TRUEPHY_A13O) {
*/
uint16_t Register18;
MiRead(etdev, 0x12, &Register18);
MiWrite(etdev, 0x12, Register18 | 0x4);
MiWrite(etdev, 0x10, Register18 | 0x8402);
MiWrite(etdev, 0x11, Register18 | 511);
MiWrite(etdev, 0x12, Register18);
}
ConfigFlowControl(etdev);
if (etdev->linkspeed == TRUEPHY_SPEED_1000MBPS &&
etdev->RegistryJumboPacket > 2048)
ET1310_PhyAndOrReg(etdev, 0x16, 0xcfff,
0x2000);
SetRxDmaTimer(etdev);
ConfigMACRegs2(etdev);
}
}
}
/**
* TPAL_SetPhy10HalfDuplex - Force the phy into 10 Base T Half Duplex mode.
* @etdev: pointer to the adapter structure
*
* Also sets the MAC so it is syncd up properly
*/
void TPAL_SetPhy10HalfDuplex(struct et131x_adapter *etdev)
{
/* Power down PHY */
ET1310_PhyPowerDown(etdev, 1);
/* First we need to turn off all other advertisement */
ET1310_PhyAdvertise1000BaseT(etdev, TRUEPHY_ADV_DUPLEX_NONE);
ET1310_PhyAdvertise100BaseT(etdev, TRUEPHY_ADV_DUPLEX_NONE);
/* Set our advertise values accordingly */
ET1310_PhyAdvertise10BaseT(etdev, TRUEPHY_ADV_DUPLEX_HALF);
/* Power up PHY */
ET1310_PhyPowerDown(etdev, 0);
}
/**
* TPAL_SetPhy10FullDuplex - Force the phy into 10 Base T Full Duplex mode.
* @etdev: pointer to the adapter structure
*
* Also sets the MAC so it is syncd up properly
*/
void TPAL_SetPhy10FullDuplex(struct et131x_adapter *etdev)
{
/* Power down PHY */
ET1310_PhyPowerDown(etdev, 1);
/* First we need to turn off all other advertisement */
ET1310_PhyAdvertise1000BaseT(etdev, TRUEPHY_ADV_DUPLEX_NONE);
ET1310_PhyAdvertise100BaseT(etdev, TRUEPHY_ADV_DUPLEX_NONE);
/* Set our advertise values accordingly */
ET1310_PhyAdvertise10BaseT(etdev, TRUEPHY_ADV_DUPLEX_FULL);
/* Power up PHY */
ET1310_PhyPowerDown(etdev, 0);
}
/**
* TPAL_SetPhy10Force - Force Base-T FD mode WITHOUT using autonegotiation
* @etdev: pointer to the adapter structure
*/
void TPAL_SetPhy10Force(struct et131x_adapter *etdev)
{
/* Power down PHY */
ET1310_PhyPowerDown(etdev, 1);
/* Disable autoneg */
ET1310_PhyAutoNeg(etdev, false);
/* Disable all advertisement */
ET1310_PhyAdvertise1000BaseT(etdev, TRUEPHY_ADV_DUPLEX_NONE);
ET1310_PhyAdvertise10BaseT(etdev, TRUEPHY_ADV_DUPLEX_NONE);
ET1310_PhyAdvertise100BaseT(etdev, TRUEPHY_ADV_DUPLEX_NONE);
/* Force 10 Mbps */
ET1310_PhySpeedSelect(etdev, TRUEPHY_SPEED_10MBPS);
/* Force Full duplex */
ET1310_PhyDuplexMode(etdev, TRUEPHY_DUPLEX_FULL);
/* Power up PHY */
ET1310_PhyPowerDown(etdev, 0);
}
/**
* TPAL_SetPhy100HalfDuplex - Force 100 Base T Half Duplex mode.
* @etdev: pointer to the adapter structure
*
* Also sets the MAC so it is syncd up properly.
*/
void TPAL_SetPhy100HalfDuplex(struct et131x_adapter *etdev)
{
/* Power down PHY */
ET1310_PhyPowerDown(etdev, 1);
/* first we need to turn off all other advertisement */
ET1310_PhyAdvertise1000BaseT(etdev, TRUEPHY_ADV_DUPLEX_NONE);
ET1310_PhyAdvertise10BaseT(etdev, TRUEPHY_ADV_DUPLEX_NONE);
/* Set our advertise values accordingly */
ET1310_PhyAdvertise100BaseT(etdev, TRUEPHY_ADV_DUPLEX_HALF);
/* Set speed */
ET1310_PhySpeedSelect(etdev, TRUEPHY_SPEED_100MBPS);
/* Power up PHY */
ET1310_PhyPowerDown(etdev, 0);
}
/**
* TPAL_SetPhy100FullDuplex - Force 100 Base T Full Duplex mode.
* @etdev: pointer to the adapter structure
*
* Also sets the MAC so it is syncd up properly
*/
void TPAL_SetPhy100FullDuplex(struct et131x_adapter *etdev)
{
/* Power down PHY */
ET1310_PhyPowerDown(etdev, 1);
/* First we need to turn off all other advertisement */
ET1310_PhyAdvertise1000BaseT(etdev, TRUEPHY_ADV_DUPLEX_NONE);
ET1310_PhyAdvertise10BaseT(etdev, TRUEPHY_ADV_DUPLEX_NONE);
/* Set our advertise values accordingly */
ET1310_PhyAdvertise100BaseT(etdev, TRUEPHY_ADV_DUPLEX_FULL);
/* Power up PHY */
ET1310_PhyPowerDown(etdev, 0);
}
/**
* TPAL_SetPhy100Force - Force 100 BaseT FD mode WITHOUT using autonegotiation
* @etdev: pointer to the adapter structure
*/
void TPAL_SetPhy100Force(struct et131x_adapter *etdev)
{
/* Power down PHY */
ET1310_PhyPowerDown(etdev, 1);
/* Disable autoneg */
ET1310_PhyAutoNeg(etdev, false);
/* Disable all advertisement */
ET1310_PhyAdvertise1000BaseT(etdev, TRUEPHY_ADV_DUPLEX_NONE);
ET1310_PhyAdvertise10BaseT(etdev, TRUEPHY_ADV_DUPLEX_NONE);
ET1310_PhyAdvertise100BaseT(etdev, TRUEPHY_ADV_DUPLEX_NONE);
/* Force 100 Mbps */
ET1310_PhySpeedSelect(etdev, TRUEPHY_SPEED_100MBPS);
/* Force Full duplex */
ET1310_PhyDuplexMode(etdev, TRUEPHY_DUPLEX_FULL);
/* Power up PHY */
ET1310_PhyPowerDown(etdev, 0);
}
/**
* TPAL_SetPhy1000FullDuplex - Force 1000 Base T Full Duplex mode
* @etdev: pointer to the adapter structure
*
* Also sets the MAC so it is syncd up properly.
*/
void TPAL_SetPhy1000FullDuplex(struct et131x_adapter *etdev)
{
/* Power down PHY */
ET1310_PhyPowerDown(etdev, 1);
/* first we need to turn off all other advertisement */
ET1310_PhyAdvertise100BaseT(etdev, TRUEPHY_ADV_DUPLEX_NONE);
ET1310_PhyAdvertise10BaseT(etdev, TRUEPHY_ADV_DUPLEX_NONE);
/* set our advertise values accordingly */
ET1310_PhyAdvertise1000BaseT(etdev, TRUEPHY_ADV_DUPLEX_FULL);
/* power up PHY */
ET1310_PhyPowerDown(etdev, 0);
}
/**
* TPAL_SetPhyAutoNeg - Set phy to autonegotiation mode.
* @etdev: pointer to the adapter structure
*/
void TPAL_SetPhyAutoNeg(struct et131x_adapter *etdev)
{
/* Power down PHY */
ET1310_PhyPowerDown(etdev, 1);
/* Turn on advertisement of all capabilities */
ET1310_PhyAdvertise10BaseT(etdev, TRUEPHY_ADV_DUPLEX_BOTH);
ET1310_PhyAdvertise100BaseT(etdev, TRUEPHY_ADV_DUPLEX_BOTH);
if (etdev->pdev->device != ET131X_PCI_DEVICE_ID_FAST)
ET1310_PhyAdvertise1000BaseT(etdev, TRUEPHY_ADV_DUPLEX_FULL);
else
ET1310_PhyAdvertise1000BaseT(etdev, TRUEPHY_ADV_DUPLEX_NONE);
/* Make sure auto-neg is ON (it is disabled in FORCE modes) */
ET1310_PhyAutoNeg(etdev, true);
/* Power up PHY */
ET1310_PhyPowerDown(etdev, 0);
}
/*
* The routines which follow provide low-level access to the PHY, and are used
* primarily by the routines above (although there are a few places elsewhere
* in the driver where this level of access is required).
*/
static const uint16_t ConfigPhy[25][2] = {
/* Reg Value Register */
/* Addr */
{0x880B, 0x0926}, /* AfeIfCreg4B1000Msbs */
{0x880C, 0x0926}, /* AfeIfCreg4B100Msbs */
{0x880D, 0x0926}, /* AfeIfCreg4B10Msbs */
{0x880E, 0xB4D3}, /* AfeIfCreg4B1000Lsbs */
{0x880F, 0xB4D3}, /* AfeIfCreg4B100Lsbs */
{0x8810, 0xB4D3}, /* AfeIfCreg4B10Lsbs */
{0x8805, 0xB03E}, /* AfeIfCreg3B1000Msbs */
{0x8806, 0xB03E}, /* AfeIfCreg3B100Msbs */
{0x8807, 0xFF00}, /* AfeIfCreg3B10Msbs */
{0x8808, 0xE090}, /* AfeIfCreg3B1000Lsbs */
{0x8809, 0xE110}, /* AfeIfCreg3B100Lsbs */
{0x880A, 0x0000}, /* AfeIfCreg3B10Lsbs */
{0x300D, 1}, /* DisableNorm */
{0x280C, 0x0180}, /* LinkHoldEnd */
{0x1C21, 0x0002}, /* AlphaM */
{0x3821, 6}, /* FfeLkgTx0 */
{0x381D, 1}, /* FfeLkg1g4 */
{0x381E, 1}, /* FfeLkg1g5 */
{0x381F, 1}, /* FfeLkg1g6 */
{0x3820, 1}, /* FfeLkg1g7 */
{0x8402, 0x01F0}, /* Btinact */
{0x800E, 20}, /* LftrainTime */
{0x800F, 24}, /* DvguardTime */
{0x8010, 46}, /* IdlguardTime */
{0, 0}
};
/* condensed version of the phy initialization routine */
void ET1310_PhyInit(struct et131x_adapter *etdev)
{
uint16_t data, index;
if (etdev == NULL)
return;
/* get the identity (again ?) */
MiRead(etdev, PHY_ID_1, &data);
MiRead(etdev, PHY_ID_2, &data);
/* what does this do/achieve ? */
MiRead(etdev, PHY_MPHY_CONTROL_REG, &data); /* should read 0002 */
MiWrite(etdev, PHY_MPHY_CONTROL_REG, 0x0006);
/* read modem register 0402, should I do something with the return
data ? */
MiWrite(etdev, PHY_INDEX_REG, 0x0402);
MiRead(etdev, PHY_DATA_REG, &data);
/* what does this do/achieve ? */
MiWrite(etdev, PHY_MPHY_CONTROL_REG, 0x0002);
/* get the identity (again ?) */
MiRead(etdev, PHY_ID_1, &data);
MiRead(etdev, PHY_ID_2, &data);
/* what does this achieve ? */
MiRead(etdev, PHY_MPHY_CONTROL_REG, &data); /* should read 0002 */
MiWrite(etdev, PHY_MPHY_CONTROL_REG, 0x0006);
/* read modem register 0402, should I do something with
the return data? */
MiWrite(etdev, PHY_INDEX_REG, 0x0402);
MiRead(etdev, PHY_DATA_REG, &data);
MiWrite(etdev, PHY_MPHY_CONTROL_REG, 0x0002);
/* what does this achieve (should return 0x1040) */
MiRead(etdev, PHY_CONTROL, &data);
MiRead(etdev, PHY_MPHY_CONTROL_REG, &data); /* should read 0002 */
MiWrite(etdev, PHY_CONTROL, 0x1840);
MiWrite(etdev, PHY_MPHY_CONTROL_REG, 0x0007);
/* here the writing of the array starts.... */
index = 0;
while (ConfigPhy[index][0] != 0x0000) {
/* write value */
MiWrite(etdev, PHY_INDEX_REG, ConfigPhy[index][0]);
MiWrite(etdev, PHY_DATA_REG, ConfigPhy[index][1]);
/* read it back */
MiWrite(etdev, PHY_INDEX_REG, ConfigPhy[index][0]);
MiRead(etdev, PHY_DATA_REG, &data);
/* do a check on the value read back ? */
index++;
}
/* here the writing of the array ends... */
MiRead(etdev, PHY_CONTROL, &data); /* 0x1840 */
MiRead(etdev, PHY_MPHY_CONTROL_REG, &data);/* should read 0007 */
MiWrite(etdev, PHY_CONTROL, 0x1040);
MiWrite(etdev, PHY_MPHY_CONTROL_REG, 0x0002);
}
void ET1310_PhyReset(struct et131x_adapter *etdev)
{
MiWrite(etdev, PHY_CONTROL, 0x8000);
}
void ET1310_PhyPowerDown(struct et131x_adapter *etdev, bool down)
{
uint16_t data;
MiRead(etdev, PHY_CONTROL, &data);
if (down == false) {
/* Power UP */
data &= ~0x0800;
MiWrite(etdev, PHY_CONTROL, data);
} else {
/* Power DOWN */
data |= 0x0800;
MiWrite(etdev, PHY_CONTROL, data);
}
}
void ET1310_PhyAutoNeg(struct et131x_adapter *etdev, bool enable)
{
uint16_t data;
MiRead(etdev, PHY_CONTROL, &data);
if (enable == true) {
/* Autonegotiation ON */
data |= 0x1000;
MiWrite(etdev, PHY_CONTROL, data);
} else {
/* Autonegotiation OFF */
data &= ~0x1000;
MiWrite(etdev, PHY_CONTROL, data);
}
}
void ET1310_PhyDuplexMode(struct et131x_adapter *etdev, uint16_t duplex)
{
uint16_t data;
MiRead(etdev, PHY_CONTROL, &data);
if (duplex == TRUEPHY_DUPLEX_FULL) {
/* Set Full Duplex */
data |= 0x100;
MiWrite(etdev, PHY_CONTROL, data);
} else {
/* Set Half Duplex */
data &= ~0x100;
MiWrite(etdev, PHY_CONTROL, data);
}
}
void ET1310_PhySpeedSelect(struct et131x_adapter *etdev, uint16_t speed)
{
uint16_t data;
/* Read the PHY control register */
MiRead(etdev, PHY_CONTROL, &data);
/* Clear all Speed settings (Bits 6, 13) */
data &= ~0x2040;
/* Reset the speed bits based on user selection */
switch (speed) {
case TRUEPHY_SPEED_10MBPS:
/* Bits already cleared above, do nothing */
break;
case TRUEPHY_SPEED_100MBPS:
/* 100M == Set bit 13 */
data |= 0x2000;
break;
case TRUEPHY_SPEED_1000MBPS:
default:
data |= 0x0040;
break;
}
/* Write back the new speed */
MiWrite(etdev, PHY_CONTROL, data);
}
void ET1310_PhyAdvertise1000BaseT(struct et131x_adapter *etdev,
uint16_t duplex)
{
uint16_t data;
/* Read the PHY 1000 Base-T Control Register */
MiRead(etdev, PHY_1000_CONTROL, &data);
/* Clear Bits 8,9 */
data &= ~0x0300;
switch (duplex) {
case TRUEPHY_ADV_DUPLEX_NONE:
/* Duplex already cleared, do nothing */
break;
case TRUEPHY_ADV_DUPLEX_FULL:
/* Set Bit 9 */
data |= 0x0200;
break;
case TRUEPHY_ADV_DUPLEX_HALF:
/* Set Bit 8 */
data |= 0x0100;
break;
case TRUEPHY_ADV_DUPLEX_BOTH:
default:
data |= 0x0300;
break;
}
/* Write back advertisement */
MiWrite(etdev, PHY_1000_CONTROL, data);
}
void ET1310_PhyAdvertise100BaseT(struct et131x_adapter *etdev,
uint16_t duplex)
{
uint16_t data;
/* Read the Autonegotiation Register (10/100) */
MiRead(etdev, PHY_AUTO_ADVERTISEMENT, &data);
/* Clear bits 7,8 */
data &= ~0x0180;
switch (duplex) {
case TRUEPHY_ADV_DUPLEX_NONE:
/* Duplex already cleared, do nothing */
break;
case TRUEPHY_ADV_DUPLEX_FULL:
/* Set Bit 8 */
data |= 0x0100;
break;
case TRUEPHY_ADV_DUPLEX_HALF:
/* Set Bit 7 */
data |= 0x0080;
break;
case TRUEPHY_ADV_DUPLEX_BOTH:
default:
/* Set Bits 7,8 */
data |= 0x0180;
break;
}
/* Write back advertisement */
MiWrite(etdev, PHY_AUTO_ADVERTISEMENT, data);
}
void ET1310_PhyAdvertise10BaseT(struct et131x_adapter *etdev,
uint16_t duplex)
{
uint16_t data;
/* Read the Autonegotiation Register (10/100) */
MiRead(etdev, PHY_AUTO_ADVERTISEMENT, &data);
/* Clear bits 5,6 */
data &= ~0x0060;
switch (duplex) {
case TRUEPHY_ADV_DUPLEX_NONE:
/* Duplex already cleared, do nothing */
break;
case TRUEPHY_ADV_DUPLEX_FULL:
/* Set Bit 6 */
data |= 0x0040;
break;
case TRUEPHY_ADV_DUPLEX_HALF:
/* Set Bit 5 */
data |= 0x0020;
break;
case TRUEPHY_ADV_DUPLEX_BOTH:
default:
/* Set Bits 5,6 */
data |= 0x0060;
break;
}
/* Write back advertisement */
MiWrite(etdev, PHY_AUTO_ADVERTISEMENT, data);
}
void ET1310_PhyLinkStatus(struct et131x_adapter *etdev,
uint8_t *link_status,
uint32_t *autoneg,
uint32_t *linkspeed,
uint32_t *duplex_mode,
uint32_t *mdi_mdix,
uint32_t *masterslave, uint32_t *polarity)
{
uint16_t mistatus = 0;
uint16_t is1000BaseT = 0;
uint16_t vmi_phystatus = 0;
uint16_t control = 0;
MiRead(etdev, PHY_STATUS, &mistatus);
MiRead(etdev, PHY_1000_STATUS, &is1000BaseT);
MiRead(etdev, PHY_PHY_STATUS, &vmi_phystatus);
MiRead(etdev, PHY_CONTROL, &control);
if (link_status) {
*link_status =
(unsigned char)((vmi_phystatus & 0x0040) ? 1 : 0);
}
if (autoneg) {
*autoneg =
(control & 0x1000) ? ((vmi_phystatus & 0x0020) ?
TRUEPHY_ANEG_COMPLETE :
TRUEPHY_ANEG_NOT_COMPLETE) :
TRUEPHY_ANEG_DISABLED;
}
if (linkspeed)
*linkspeed = (vmi_phystatus & 0x0300) >> 8;
if (duplex_mode)
*duplex_mode = (vmi_phystatus & 0x0080) >> 7;
if (mdi_mdix)
/* NOTE: Need to complete this */
*mdi_mdix = 0;
if (masterslave) {
*masterslave =
(is1000BaseT & 0x4000) ? TRUEPHY_CFG_MASTER :
TRUEPHY_CFG_SLAVE;
}
if (polarity) {
*polarity =
(vmi_phystatus & 0x0400) ? TRUEPHY_POLARITY_INVERTED :
TRUEPHY_POLARITY_NORMAL;
}
}
void ET1310_PhyAndOrReg(struct et131x_adapter *etdev,
uint16_t regnum, uint16_t andMask, uint16_t orMask)
{
uint16_t reg;
/* Read the requested register */
MiRead(etdev, regnum, &reg);
/* Apply the AND mask */
reg &= andMask;
/* Apply the OR mask */
reg |= orMask;
/* Write the value back to the register */
MiWrite(etdev, regnum, reg);
}
void ET1310_PhyAccessMiBit(struct et131x_adapter *etdev, uint16_t action,
uint16_t regnum, uint16_t bitnum, uint8_t *value)
{
uint16_t reg;
uint16_t mask = 0;
/* Create a mask to isolate the requested bit */
mask = 0x0001 << bitnum;
/* Read the requested register */
MiRead(etdev, regnum, &reg);
switch (action) {
case TRUEPHY_BIT_READ:
if (value != NULL)
*value = (reg & mask) >> bitnum;
break;
case TRUEPHY_BIT_SET:
reg |= mask;
MiWrite(etdev, regnum, reg);
break;
case TRUEPHY_BIT_CLEAR:
reg &= ~mask;
MiWrite(etdev, regnum, reg);
break;
default:
break;
}
}