blob: 03742e64765717ec3976c0eb7d7e77c8d8a283e0 [file] [log] [blame]
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2005-2009 Cavium Networks
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/msi.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <asm/octeon/octeon.h>
#include <asm/octeon/cvmx-npi-defs.h>
#include <asm/octeon/cvmx-pci-defs.h>
#include <asm/octeon/cvmx-npei-defs.h>
#include <asm/octeon/cvmx-pexp-defs.h>
#include <asm/octeon/pci-octeon.h>
/*
* Each bit in msi_free_irq_bitmask represents a MSI interrupt that is
* in use.
*/
static uint64_t msi_free_irq_bitmask;
/*
* Each bit in msi_multiple_irq_bitmask tells that the device using
* this bit in msi_free_irq_bitmask is also using the next bit. This
* is used so we can disable all of the MSI interrupts when a device
* uses multiple.
*/
static uint64_t msi_multiple_irq_bitmask;
/*
* This lock controls updates to msi_free_irq_bitmask and
* msi_multiple_irq_bitmask.
*/
static DEFINE_SPINLOCK(msi_free_irq_bitmask_lock);
/**
* Called when a driver request MSI interrupts instead of the
* legacy INT A-D. This routine will allocate multiple interrupts
* for MSI devices that support them. A device can override this by
* programming the MSI control bits [6:4] before calling
* pci_enable_msi().
*
* @dev: Device requesting MSI interrupts
* @desc: MSI descriptor
*
* Returns 0 on success.
*/
int arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc)
{
struct msi_msg msg;
uint16_t control;
int configured_private_bits;
int request_private_bits;
int irq;
int irq_step;
uint64_t search_mask;
/*
* Read the MSI config to figure out how many IRQs this device
* wants. Most devices only want 1, which will give
* configured_private_bits and request_private_bits equal 0.
*/
pci_read_config_word(dev, desc->msi_attrib.pos + PCI_MSI_FLAGS,
&control);
/*
* If the number of private bits has been configured then use
* that value instead of the requested number. This gives the
* driver the chance to override the number of interrupts
* before calling pci_enable_msi().
*/
configured_private_bits = (control & PCI_MSI_FLAGS_QSIZE) >> 4;
if (configured_private_bits == 0) {
/* Nothing is configured, so use the hardware requested size */
request_private_bits = (control & PCI_MSI_FLAGS_QMASK) >> 1;
} else {
/*
* Use the number of configured bits, assuming the
* driver wanted to override the hardware request
* value.
*/
request_private_bits = configured_private_bits;
}
/*
* The PCI 2.3 spec mandates that there are at most 32
* interrupts. If this device asks for more, only give it one.
*/
if (request_private_bits > 5)
request_private_bits = 0;
try_only_one:
/*
* The IRQs have to be aligned on a power of two based on the
* number being requested.
*/
irq_step = 1 << request_private_bits;
/* Mask with one bit for each IRQ */
search_mask = (1 << irq_step) - 1;
/*
* We're going to search msi_free_irq_bitmask_lock for zero
* bits. This represents an MSI interrupt number that isn't in
* use.
*/
spin_lock(&msi_free_irq_bitmask_lock);
for (irq = 0; irq < 64; irq += irq_step) {
if ((msi_free_irq_bitmask & (search_mask << irq)) == 0) {
msi_free_irq_bitmask |= search_mask << irq;
msi_multiple_irq_bitmask |= (search_mask >> 1) << irq;
break;
}
}
spin_unlock(&msi_free_irq_bitmask_lock);
/* Make sure the search for available interrupts didn't fail */
if (irq >= 64) {
if (request_private_bits) {
pr_err("arch_setup_msi_irq: Unable to find %d free "
"interrupts, trying just one",
1 << request_private_bits);
request_private_bits = 0;
goto try_only_one;
} else
panic("arch_setup_msi_irq: Unable to find a free MSI "
"interrupt");
}
/* MSI interrupts start at logical IRQ OCTEON_IRQ_MSI_BIT0 */
irq += OCTEON_IRQ_MSI_BIT0;
switch (octeon_dma_bar_type) {
case OCTEON_DMA_BAR_TYPE_SMALL:
/* When not using big bar, Bar 0 is based at 128MB */
msg.address_lo =
((128ul << 20) + CVMX_PCI_MSI_RCV) & 0xffffffff;
msg.address_hi = ((128ul << 20) + CVMX_PCI_MSI_RCV) >> 32;
case OCTEON_DMA_BAR_TYPE_BIG:
/* When using big bar, Bar 0 is based at 0 */
msg.address_lo = (0 + CVMX_PCI_MSI_RCV) & 0xffffffff;
msg.address_hi = (0 + CVMX_PCI_MSI_RCV) >> 32;
break;
case OCTEON_DMA_BAR_TYPE_PCIE:
/* When using PCIe, Bar 0 is based at 0 */
/* FIXME CVMX_NPEI_MSI_RCV* other than 0? */
msg.address_lo = (0 + CVMX_NPEI_PCIE_MSI_RCV) & 0xffffffff;
msg.address_hi = (0 + CVMX_NPEI_PCIE_MSI_RCV) >> 32;
break;
default:
panic("arch_setup_msi_irq: Invalid octeon_dma_bar_type\n");
}
msg.data = irq - OCTEON_IRQ_MSI_BIT0;
/* Update the number of IRQs the device has available to it */
control &= ~PCI_MSI_FLAGS_QSIZE;
control |= request_private_bits << 4;
pci_write_config_word(dev, desc->msi_attrib.pos + PCI_MSI_FLAGS,
control);
set_irq_msi(irq, desc);
write_msi_msg(irq, &msg);
return 0;
}
/**
* Called when a device no longer needs its MSI interrupts. All
* MSI interrupts for the device are freed.
*
* @irq: The devices first irq number. There may be multple in sequence.
*/
void arch_teardown_msi_irq(unsigned int irq)
{
int number_irqs;
uint64_t bitmask;
if ((irq < OCTEON_IRQ_MSI_BIT0) || (irq > OCTEON_IRQ_MSI_BIT63))
panic("arch_teardown_msi_irq: Attempted to teardown illegal "
"MSI interrupt (%d)", irq);
irq -= OCTEON_IRQ_MSI_BIT0;
/*
* Count the number of IRQs we need to free by looking at the
* msi_multiple_irq_bitmask. Each bit set means that the next
* IRQ is also owned by this device.
*/
number_irqs = 0;
while ((irq+number_irqs < 64) &&
(msi_multiple_irq_bitmask & (1ull << (irq + number_irqs))))
number_irqs++;
number_irqs++;
/* Mask with one bit for each IRQ */
bitmask = (1 << number_irqs) - 1;
/* Shift the mask to the correct bit location */
bitmask <<= irq;
if ((msi_free_irq_bitmask & bitmask) != bitmask)
panic("arch_teardown_msi_irq: Attempted to teardown MSI "
"interrupt (%d) not in use", irq);
/* Checks are done, update the in use bitmask */
spin_lock(&msi_free_irq_bitmask_lock);
msi_free_irq_bitmask &= ~bitmask;
msi_multiple_irq_bitmask &= ~bitmask;
spin_unlock(&msi_free_irq_bitmask_lock);
}
/*
* Called by the interrupt handling code when an MSI interrupt
* occurs.
*/
static irqreturn_t octeon_msi_interrupt(int cpl, void *dev_id)
{
uint64_t msi_bits;
int irq;
if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_PCIE)
msi_bits = cvmx_read_csr(CVMX_PEXP_NPEI_MSI_RCV0);
else
msi_bits = cvmx_read_csr(CVMX_NPI_NPI_MSI_RCV);
irq = fls64(msi_bits);
if (irq) {
irq += OCTEON_IRQ_MSI_BIT0 - 1;
if (irq_desc[irq].action) {
do_IRQ(irq);
return IRQ_HANDLED;
} else {
pr_err("Spurious MSI interrupt %d\n", irq);
if (octeon_has_feature(OCTEON_FEATURE_PCIE)) {
/* These chips have PCIe */
cvmx_write_csr(CVMX_PEXP_NPEI_MSI_RCV0,
1ull << (irq -
OCTEON_IRQ_MSI_BIT0));
} else {
/* These chips have PCI */
cvmx_write_csr(CVMX_NPI_NPI_MSI_RCV,
1ull << (irq -
OCTEON_IRQ_MSI_BIT0));
}
}
}
return IRQ_NONE;
}
/*
* Initializes the MSI interrupt handling code
*/
int octeon_msi_initialize(void)
{
if (octeon_has_feature(OCTEON_FEATURE_PCIE)) {
if (request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt,
IRQF_SHARED,
"MSI[0:63]", octeon_msi_interrupt))
panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed");
} else if (octeon_is_pci_host()) {
if (request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt,
IRQF_SHARED,
"MSI[0:15]", octeon_msi_interrupt))
panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed");
if (request_irq(OCTEON_IRQ_PCI_MSI1, octeon_msi_interrupt,
IRQF_SHARED,
"MSI[16:31]", octeon_msi_interrupt))
panic("request_irq(OCTEON_IRQ_PCI_MSI1) failed");
if (request_irq(OCTEON_IRQ_PCI_MSI2, octeon_msi_interrupt,
IRQF_SHARED,
"MSI[32:47]", octeon_msi_interrupt))
panic("request_irq(OCTEON_IRQ_PCI_MSI2) failed");
if (request_irq(OCTEON_IRQ_PCI_MSI3, octeon_msi_interrupt,
IRQF_SHARED,
"MSI[48:63]", octeon_msi_interrupt))
panic("request_irq(OCTEON_IRQ_PCI_MSI3) failed");
}
return 0;
}
subsys_initcall(octeon_msi_initialize);