| /* |
| * spi_butterfly.c - parport-to-butterfly adapter |
| * |
| * Copyright (C) 2005 David Brownell |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| */ |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/delay.h> |
| #include <linux/device.h> |
| #include <linux/parport.h> |
| |
| #include <linux/sched.h> |
| #include <linux/spi/spi.h> |
| #include <linux/spi/spi_bitbang.h> |
| #include <linux/spi/flash.h> |
| |
| #include <linux/mtd/partitions.h> |
| |
| |
| /* |
| * This uses SPI to talk with an "AVR Butterfly", which is a $US20 card |
| * with a battery powered AVR microcontroller and lots of goodies. You |
| * can use GCC to develop firmware for this. |
| * |
| * See Documentation/spi/butterfly for information about how to build |
| * and use this custom parallel port cable. |
| */ |
| |
| |
| /* DATA output bits (pins 2..9 == D0..D7) */ |
| #define butterfly_nreset (1 << 1) /* pin 3 */ |
| |
| #define spi_sck_bit (1 << 0) /* pin 2 */ |
| #define spi_mosi_bit (1 << 7) /* pin 9 */ |
| |
| #define vcc_bits ((1 << 6) | (1 << 5)) /* pins 7, 8 */ |
| |
| /* STATUS input bits */ |
| #define spi_miso_bit PARPORT_STATUS_BUSY /* pin 11 */ |
| |
| /* CONTROL output bits */ |
| #define spi_cs_bit PARPORT_CONTROL_SELECT /* pin 17 */ |
| |
| |
| |
| static inline struct butterfly *spidev_to_pp(struct spi_device *spi) |
| { |
| return spi->controller_data; |
| } |
| |
| |
| struct butterfly { |
| /* REVISIT ... for now, this must be first */ |
| struct spi_bitbang bitbang; |
| |
| struct parport *port; |
| struct pardevice *pd; |
| |
| u8 lastbyte; |
| |
| struct spi_device *dataflash; |
| struct spi_device *butterfly; |
| struct spi_board_info info[2]; |
| |
| }; |
| |
| /*----------------------------------------------------------------------*/ |
| |
| static inline void |
| setsck(struct spi_device *spi, int is_on) |
| { |
| struct butterfly *pp = spidev_to_pp(spi); |
| u8 bit, byte = pp->lastbyte; |
| |
| bit = spi_sck_bit; |
| |
| if (is_on) |
| byte |= bit; |
| else |
| byte &= ~bit; |
| parport_write_data(pp->port, byte); |
| pp->lastbyte = byte; |
| } |
| |
| static inline void |
| setmosi(struct spi_device *spi, int is_on) |
| { |
| struct butterfly *pp = spidev_to_pp(spi); |
| u8 bit, byte = pp->lastbyte; |
| |
| bit = spi_mosi_bit; |
| |
| if (is_on) |
| byte |= bit; |
| else |
| byte &= ~bit; |
| parport_write_data(pp->port, byte); |
| pp->lastbyte = byte; |
| } |
| |
| static inline int getmiso(struct spi_device *spi) |
| { |
| struct butterfly *pp = spidev_to_pp(spi); |
| int value; |
| u8 bit; |
| |
| bit = spi_miso_bit; |
| |
| /* only STATUS_BUSY is NOT negated */ |
| value = !(parport_read_status(pp->port) & bit); |
| return (bit == PARPORT_STATUS_BUSY) ? value : !value; |
| } |
| |
| static void butterfly_chipselect(struct spi_device *spi, int value) |
| { |
| struct butterfly *pp = spidev_to_pp(spi); |
| |
| /* set default clock polarity */ |
| if (value != BITBANG_CS_INACTIVE) |
| setsck(spi, spi->mode & SPI_CPOL); |
| |
| /* here, value == "activate or not"; |
| * most PARPORT_CONTROL_* bits are negated, so we must |
| * morph it to value == "bit value to write in control register" |
| */ |
| if (spi_cs_bit == PARPORT_CONTROL_INIT) |
| value = !value; |
| |
| parport_frob_control(pp->port, spi_cs_bit, value ? spi_cs_bit : 0); |
| } |
| |
| |
| /* we only needed to implement one mode here, and choose SPI_MODE_0 */ |
| |
| #define spidelay(X) do{}while(0) |
| //#define spidelay ndelay |
| |
| #define EXPAND_BITBANG_TXRX |
| #include <linux/spi/spi_bitbang.h> |
| |
| static u32 |
| butterfly_txrx_word_mode0(struct spi_device *spi, |
| unsigned nsecs, |
| u32 word, u8 bits) |
| { |
| return bitbang_txrx_be_cpha0(spi, nsecs, 0, word, bits); |
| } |
| |
| /*----------------------------------------------------------------------*/ |
| |
| /* override default partitioning with cmdlinepart */ |
| static struct mtd_partition partitions[] = { { |
| /* JFFS2 wants partitions of 4*N blocks for this device, |
| * so sectors 0 and 1 can't be partitions by themselves. |
| */ |
| |
| /* sector 0 = 8 pages * 264 bytes/page (1 block) |
| * sector 1 = 248 pages * 264 bytes/page |
| */ |
| .name = "bookkeeping", // 66 KB |
| .offset = 0, |
| .size = (8 + 248) * 264, |
| // .mask_flags = MTD_WRITEABLE, |
| }, { |
| /* sector 2 = 256 pages * 264 bytes/page |
| * sectors 3-5 = 512 pages * 264 bytes/page |
| */ |
| .name = "filesystem", // 462 KB |
| .offset = MTDPART_OFS_APPEND, |
| .size = MTDPART_SIZ_FULL, |
| } }; |
| |
| static struct flash_platform_data flash = { |
| .name = "butterflash", |
| .parts = partitions, |
| .nr_parts = ARRAY_SIZE(partitions), |
| }; |
| |
| |
| /* REVISIT remove this ugly global and its "only one" limitation */ |
| static struct butterfly *butterfly; |
| |
| static void butterfly_attach(struct parport *p) |
| { |
| struct pardevice *pd; |
| int status; |
| struct butterfly *pp; |
| struct spi_master *master; |
| struct device *dev = p->physport->dev; |
| |
| if (butterfly || !dev) |
| return; |
| |
| /* REVISIT: this just _assumes_ a butterfly is there ... no probe, |
| * and no way to be selective about what it binds to. |
| */ |
| |
| master = spi_alloc_master(dev, sizeof *pp); |
| if (!master) { |
| status = -ENOMEM; |
| goto done; |
| } |
| pp = spi_master_get_devdata(master); |
| |
| /* |
| * SPI and bitbang hookup |
| * |
| * use default setup(), cleanup(), and transfer() methods; and |
| * only bother implementing mode 0. Start it later. |
| */ |
| master->bus_num = 42; |
| master->num_chipselect = 2; |
| |
| pp->bitbang.master = spi_master_get(master); |
| pp->bitbang.chipselect = butterfly_chipselect; |
| pp->bitbang.txrx_word[SPI_MODE_0] = butterfly_txrx_word_mode0; |
| |
| /* |
| * parport hookup |
| */ |
| pp->port = p; |
| pd = parport_register_device(p, "spi_butterfly", |
| NULL, NULL, NULL, |
| 0 /* FLAGS */, pp); |
| if (!pd) { |
| status = -ENOMEM; |
| goto clean0; |
| } |
| pp->pd = pd; |
| |
| status = parport_claim(pd); |
| if (status < 0) |
| goto clean1; |
| |
| /* |
| * Butterfly reset, powerup, run firmware |
| */ |
| pr_debug("%s: powerup/reset Butterfly\n", p->name); |
| |
| /* nCS for dataflash (this bit is inverted on output) */ |
| parport_frob_control(pp->port, spi_cs_bit, 0); |
| |
| /* stabilize power with chip in reset (nRESET), and |
| * spi_sck_bit clear (CPOL=0) |
| */ |
| pp->lastbyte |= vcc_bits; |
| parport_write_data(pp->port, pp->lastbyte); |
| msleep(5); |
| |
| /* take it out of reset; assume long reset delay */ |
| pp->lastbyte |= butterfly_nreset; |
| parport_write_data(pp->port, pp->lastbyte); |
| msleep(100); |
| |
| |
| /* |
| * Start SPI ... for now, hide that we're two physical busses. |
| */ |
| status = spi_bitbang_start(&pp->bitbang); |
| if (status < 0) |
| goto clean2; |
| |
| /* Bus 1 lets us talk to at45db041b (firmware disables AVR SPI), AVR |
| * (firmware resets at45, acts as spi slave) or neither (we ignore |
| * both, AVR uses AT45). Here we expect firmware for the first option. |
| */ |
| |
| pp->info[0].max_speed_hz = 15 * 1000 * 1000; |
| strcpy(pp->info[0].modalias, "mtd_dataflash"); |
| pp->info[0].platform_data = &flash; |
| pp->info[0].chip_select = 1; |
| pp->info[0].controller_data = pp; |
| pp->dataflash = spi_new_device(pp->bitbang.master, &pp->info[0]); |
| if (pp->dataflash) |
| pr_debug("%s: dataflash at %s\n", p->name, |
| dev_name(&pp->dataflash->dev)); |
| |
| // dev_info(_what?_, ...) |
| pr_info("%s: AVR Butterfly\n", p->name); |
| butterfly = pp; |
| return; |
| |
| clean2: |
| /* turn off VCC */ |
| parport_write_data(pp->port, 0); |
| |
| parport_release(pp->pd); |
| clean1: |
| parport_unregister_device(pd); |
| clean0: |
| (void) spi_master_put(pp->bitbang.master); |
| done: |
| pr_debug("%s: butterfly probe, fail %d\n", p->name, status); |
| } |
| |
| static void butterfly_detach(struct parport *p) |
| { |
| struct butterfly *pp; |
| int status; |
| |
| /* FIXME this global is ugly ... but, how to quickly get from |
| * the parport to the "struct butterfly" associated with it? |
| * "old school" driver-internal device lists? |
| */ |
| if (!butterfly || butterfly->port != p) |
| return; |
| pp = butterfly; |
| butterfly = NULL; |
| |
| /* stop() unregisters child devices too */ |
| status = spi_bitbang_stop(&pp->bitbang); |
| |
| /* turn off VCC */ |
| parport_write_data(pp->port, 0); |
| msleep(10); |
| |
| parport_release(pp->pd); |
| parport_unregister_device(pp->pd); |
| |
| (void) spi_master_put(pp->bitbang.master); |
| } |
| |
| static struct parport_driver butterfly_driver = { |
| .name = "spi_butterfly", |
| .attach = butterfly_attach, |
| .detach = butterfly_detach, |
| }; |
| |
| |
| static int __init butterfly_init(void) |
| { |
| return parport_register_driver(&butterfly_driver); |
| } |
| device_initcall(butterfly_init); |
| |
| static void __exit butterfly_exit(void) |
| { |
| parport_unregister_driver(&butterfly_driver); |
| } |
| module_exit(butterfly_exit); |
| |
| MODULE_DESCRIPTION("Parport Adapter driver for AVR Butterfly"); |
| MODULE_LICENSE("GPL"); |