| /****************************************************************************** |
| * |
| * Name: skgeinit.c |
| * Project: Gigabit Ethernet Adapters, Common Modules |
| * Version: $Revision: 2.116 $ |
| * Date: $Date: 2007/06/27 14:35:58 $ |
| * Purpose: Contains functions to initialize the adapter |
| * |
| ******************************************************************************/ |
| |
| /****************************************************************************** |
| * |
| * LICENSE: |
| * (C)Copyright 1998-2002 SysKonnect. |
| * (C)Copyright 2002-2007 Marvell. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * The information in this file is provided "AS IS" without warranty. |
| * /LICENSE |
| * |
| ******************************************************************************/ |
| |
| #include "h/skdrv1st.h" |
| #include "h/skdrv2nd.h" |
| |
| /* global variables ***********************************************************/ |
| |
| /* local variables ************************************************************/ |
| |
| #if (defined(DEBUG) || ((!defined(LINT)) && (!defined(SK_SLIM)))) |
| static const char SysKonnectFileId[] = |
| "@(#) $Id: skgeinit.c,v 2.116 2007/06/27 14:35:58 rschmidt Exp $ (C) Marvell."; |
| #endif |
| |
| struct s_QOffTab { |
| int RxQOff; /* Receive Queue Address Offset */ |
| int XsQOff; /* Sync Tx Queue Address Offset */ |
| int XaQOff; /* Async Tx Queue Address Offset */ |
| }; |
| |
| static struct s_QOffTab QOffTab[] = { |
| {Q_R1, Q_XS1, Q_XA1}, {Q_R2, Q_XS2, Q_XA2} |
| }; |
| |
| struct s_Config { |
| char ScanString[8]; |
| SK_U32 Value; |
| }; |
| |
| static struct s_Config OemConfig = { |
| {'O','E','M','_','C','o','n','f'}, |
| #ifdef SK_OEM_CONFIG |
| OEM_CONFIG_VALUE, |
| #else |
| 0, |
| #endif |
| }; |
| |
| #ifndef SK_SLIM |
| /****************************************************************************** |
| * |
| * SkGePortVlan() - Enable / Disable VLAN support |
| * |
| * Description: |
| * Enable or disable the VLAN support of the selected port. |
| * The new configuration is *not* saved over any SkGeStopPort() and |
| * SkGeInitPort() calls. |
| * Currently this function is only supported on Yukon-2/EC adapters. |
| * |
| * Returns: |
| * nothing |
| */ |
| void SkGePortVlan( |
| SK_AC *pAC, /* Adapter Context */ |
| SK_IOC IoC, /* I/O Context */ |
| int Port, /* Port number */ |
| SK_BOOL Enable) /* Flag */ |
| { |
| SK_U32 RxCtrl; |
| SK_U32 TxCtrl; |
| |
| if (CHIP_ID_YUKON_2(pAC)) { |
| if (Enable) { |
| RxCtrl = RX_VLAN_STRIP_ON; |
| TxCtrl = TX_VLAN_TAG_ON; |
| } |
| else { |
| RxCtrl = RX_VLAN_STRIP_OFF; |
| TxCtrl = TX_VLAN_TAG_OFF; |
| } |
| |
| SK_OUT32(IoC, MR_ADDR(Port, RX_GMF_CTRL_T), RxCtrl); |
| |
| SK_OUT32(IoC, MR_ADDR(Port, TX_GMF_CTRL_T), TxCtrl); |
| } |
| } /* SkGePortVlan */ |
| |
| |
| /****************************************************************************** |
| * |
| * SkGeRxRss() - Enable / Disable RSS Hash Calculation |
| * |
| * Description: |
| * Enable or disable the RSS hash calculation of the selected port. |
| * The new configuration is *not* saved over any SkGeStopPort() and |
| * SkGeInitPort() calls. |
| * Currently this function is only supported on Yukon-2/EC adapters. |
| * |
| * Returns: |
| * nothing |
| */ |
| void SkGeRxRss( |
| SK_AC *pAC, /* Adapter Context */ |
| SK_IOC IoC, /* I/O Context */ |
| int Port, /* Port number */ |
| SK_BOOL Enable) /* Flag */ |
| { |
| if (CHIP_ID_YUKON_2(pAC)) { |
| SK_OUT32(IoC, Q_ADDR(pAC->GIni.GP[Port].PRxQOff, Q_CSR), |
| Enable ? BMU_ENA_RX_RSS_HASH : BMU_DIS_RX_RSS_HASH); |
| } |
| } /* SkGeRxRss */ |
| |
| |
| /****************************************************************************** |
| * |
| * SkGeRxCsum() - Enable / Disable Receive Checksum |
| * |
| * Description: |
| * Enable or disable the checksum of the selected port. |
| * The new configuration is *not* saved over any SkGeStopPort() and |
| * SkGeInitPort() calls. |
| * Currently this function is only supported on Yukon-2/EC adapters. |
| * |
| * Returns: |
| * nothing |
| */ |
| void SkGeRxCsum( |
| SK_AC *pAC, /* Adapter Context */ |
| SK_IOC IoC, /* I/O Context */ |
| int Port, /* Port number */ |
| SK_BOOL Enable) /* Flag */ |
| { |
| if (CHIP_ID_YUKON_2(pAC)) { |
| SK_OUT32(IoC, Q_ADDR(pAC->GIni.GP[Port].PRxQOff, Q_CSR), |
| Enable ? BMU_ENA_RX_CHKSUM : BMU_DIS_RX_CHKSUM); |
| } |
| } /* SkGeRxCsum */ |
| #endif /* !SK_SLIM */ |
| |
| /****************************************************************************** |
| * |
| * SkGePollRxD() - Enable / Disable Descriptor Polling of RxD Ring |
| * |
| * Description: |
| * Enable or disable the descriptor polling of the receive descriptor |
| * ring (RxD) for port 'Port'. |
| * The new configuration is *not* saved over any SkGeStopPort() and |
| * SkGeInitPort() calls. |
| * |
| * Returns: |
| * nothing |
| */ |
| void SkGePollRxD( |
| SK_AC *pAC, /* Adapter Context */ |
| SK_IOC IoC, /* I/O Context */ |
| int Port, /* Port Index (MAC_1 + n) */ |
| SK_BOOL PollRxD) /* SK_TRUE (enable pol.), SK_FALSE (disable pol.) */ |
| { |
| SK_GEPORT *pPrt; |
| |
| pPrt = &pAC->GIni.GP[Port]; |
| |
| SK_OUT32(IoC, Q_ADDR(pPrt->PRxQOff, Q_CSR), (SK_U32)((PollRxD) ? |
| CSR_ENA_POL : CSR_DIS_POL)); |
| } /* SkGePollRxD */ |
| |
| |
| /****************************************************************************** |
| * |
| * SkGePollTxD() - Enable / Disable Descriptor Polling of TxD Rings |
| * |
| * Description: |
| * Enable or disable the descriptor polling of the transmit descriptor |
| * ring(s) (TxD) for port 'Port'. |
| * The new configuration is *not* saved over any SkGeStopPort() and |
| * SkGeInitPort() calls. |
| * |
| * Returns: |
| * nothing |
| */ |
| void SkGePollTxD( |
| SK_AC *pAC, /* Adapter Context */ |
| SK_IOC IoC, /* I/O Context */ |
| int Port, /* Port Index (MAC_1 + n) */ |
| SK_BOOL PollTxD) /* SK_TRUE (enable pol.), SK_FALSE (disable pol.) */ |
| { |
| SK_GEPORT *pPrt; |
| SK_U32 DWord; |
| |
| pPrt = &pAC->GIni.GP[Port]; |
| |
| DWord = (SK_U32)(PollTxD ? CSR_ENA_POL : CSR_DIS_POL); |
| |
| if (pPrt->PXSQSize != 0) { |
| SK_OUT32(IoC, Q_ADDR(pPrt->PXsQOff, Q_CSR), DWord); |
| } |
| |
| if (pPrt->PXAQSize != 0) { |
| SK_OUT32(IoC, Q_ADDR(pPrt->PXaQOff, Q_CSR), DWord); |
| } |
| } /* SkGePollTxD */ |
| |
| #ifndef SK_SLIM |
| /****************************************************************************** |
| * |
| * SkGeYellowLED() - Switch the yellow LED on or off. |
| * |
| * Description: |
| * Switch the yellow LED on or off. |
| * |
| * Note: |
| * This function may be called any time after SkGeInit(Level 1). |
| * |
| * Returns: |
| * nothing |
| */ |
| void SkGeYellowLED( |
| SK_AC *pAC, /* Adapter Context */ |
| SK_IOC IoC, /* I/O Context */ |
| int State) /* yellow LED state, 0 = OFF, 0 != ON */ |
| { |
| int LedReg; |
| |
| if (CHIP_ID_YUKON_2(pAC)) { |
| /* different mapping on Yukon-2 */ |
| LedReg = B0_CTST + 1; |
| } |
| else { |
| LedReg = B0_LED; |
| } |
| |
| if (State == 0) { |
| /* Switch state LED OFF */ |
| SK_OUT8(IoC, LedReg, LED_STAT_OFF); |
| } |
| else { |
| /* Switch state LED ON */ |
| SK_OUT8(IoC, LedReg, LED_STAT_ON); |
| } |
| } /* SkGeYellowLED */ |
| #endif /* !SK_SLIM */ |
| |
| #if (!defined(SK_SLIM) || defined(GENESIS)) |
| /****************************************************************************** |
| * |
| * SkGeXmitLED() - Modify the Operational Mode of a transmission LED. |
| * |
| * Description: |
| * The Rx or Tx LED which is specified by 'Led' will be |
| * enabled, disabled or switched on in test mode. |
| * |
| * Note: |
| * 'Led' must contain the address offset of the LEDs INI register. |
| * |
| * Usage: |
| * SkGeXmitLED(pAC, IoC, MR_ADDR(Port, TX_LED_INI), SK_LED_ENA); |
| * |
| * Returns: |
| * nothing |
| */ |
| void SkGeXmitLED( |
| SK_AC *pAC, /* Adapter Context */ |
| SK_IOC IoC, /* I/O Context */ |
| int Led, /* offset to the LED Init Value register */ |
| int Mode) /* Mode may be SK_LED_DIS, SK_LED_ENA, SK_LED_TST */ |
| { |
| SK_U32 LedIni; |
| |
| switch (Mode) { |
| case SK_LED_ENA: |
| LedIni = SK_XMIT_DUR * (SK_U32)pAC->GIni.GIHstClkFact / 100; |
| SK_OUT32(IoC, Led + XMIT_LED_INI, LedIni); |
| SK_OUT8(IoC, Led + XMIT_LED_CTRL, LED_START); |
| break; |
| case SK_LED_TST: |
| SK_OUT8(IoC, Led + XMIT_LED_TST, LED_T_ON); |
| SK_OUT32(IoC, Led + XMIT_LED_CNT, 100); |
| SK_OUT8(IoC, Led + XMIT_LED_CTRL, LED_START); |
| break; |
| case SK_LED_DIS: |
| default: |
| /* |
| * Do NOT stop the LED Timer here. The LED might be |
| * in on state. But it needs to go off. |
| */ |
| SK_OUT32(IoC, Led + XMIT_LED_CNT, 0); |
| SK_OUT8(IoC, Led + XMIT_LED_TST, LED_T_OFF); |
| } |
| |
| /* |
| * 1000BT: the Transmit LED is driven by the PHY. |
| * But the default LED configuration is used for |
| * Level One and Broadcom PHYs. |
| * (Broadcom: It may be that PHY_B_PEC_EN_LTR has to be set. |
| * In this case it has to be added here.) |
| */ |
| } /* SkGeXmitLED */ |
| #endif /* !SK_SLIM || GENESIS */ |
| |
| |
| /****************************************************************************** |
| * |
| * DoCalcAddr() - Calculates the start and the end address of a queue. |
| * |
| * Description: |
| * This function calculates the start and the end address of a queue. |
| * Afterwards the 'StartVal' is incremented to the next start position. |
| * If the port is already initialized the calculated values |
| * will be checked against the configured values and an |
| * error will be returned, if they are not equal. |
| * If the port is not initialized the values will be written to |
| * *StartAdr and *EndAddr. |
| * |
| * Returns: |
| * 0: success |
| * 1: configuration error |
| */ |
| static int DoCalcAddr( |
| SK_AC *pAC, /* Adapter Context */ |
| SK_GEPORT SK_FAR *pPrt, /* port index */ |
| int QuSize, /* size of the queue to configure in kB */ |
| SK_U32 SK_FAR *StartVal, /* start value for address calculation */ |
| SK_U32 SK_FAR *QuStartAddr,/* start addr to calculate */ |
| SK_U32 SK_FAR *QuEndAddr) /* end address to calculate */ |
| { |
| SK_U32 EndVal; |
| SK_U32 NextStart; |
| int Rtv; |
| |
| Rtv = 0; |
| if (QuSize == 0) { |
| EndVal = *StartVal; |
| NextStart = EndVal; |
| } |
| else { |
| EndVal = *StartVal + ((SK_U32)QuSize * 1024) - 1; |
| NextStart = EndVal + 1; |
| } |
| |
| if (pPrt->PState >= SK_PRT_INIT) { |
| if (*StartVal != *QuStartAddr || EndVal != *QuEndAddr) { |
| Rtv = 1; |
| } |
| } |
| else { |
| *QuStartAddr = *StartVal; |
| *QuEndAddr = EndVal; |
| } |
| |
| *StartVal = NextStart; |
| return(Rtv); |
| } /* DoCalcAddr */ |
| |
| /****************************************************************************** |
| * |
| * SkGeRoundQueueSize() - Round the given queue size to the adpaters QZ units |
| * |
| * Description: |
| * This function rounds the given queue size in kBs to adapter specific |
| * queue size units (Genesis and Yukon: 8 kB, Yukon-2/EC: 1 kB). |
| * |
| * Returns: |
| * the rounded queue size in kB |
| */ |
| static int SkGeRoundQueueSize( |
| SK_AC *pAC, /* Adapter Context */ |
| int QueueSizeKB) /* Queue size in kB */ |
| { |
| int QueueSizeSteps; |
| |
| QueueSizeSteps = (CHIP_ID_YUKON_2(pAC)) ? QZ_STEP_Y2 : QZ_STEP; |
| |
| return((QueueSizeKB + QueueSizeSteps - 1) & ~(QueueSizeSteps - 1)); |
| } /* SkGeRoundQueueSize */ |
| |
| |
| /****************************************************************************** |
| * |
| * SkGeInitAssignRamToQueues() - allocate default queue sizes |
| * |
| * Description: |
| * This function assigns the memory to the different queues and ports. |
| * When DualNet is set to SK_TRUE all ports get the same amount of memory. |
| * Otherwise the first port gets most of the memory and all the |
| * other ports just the required minimum. |
| * This function can only be called when pAC->GIni.GIRamSize and |
| * pAC->GIni.GIMacsFound have been initialized, usually this happens |
| * at init level 1 |
| * |
| * Returns: |
| * 0 - ok |
| * 1 - invalid input values |
| * 2 - not enough memory |
| */ |
| |
| int SkGeInitAssignRamToQueues( |
| SK_AC *pAC, /* Adapter Context */ |
| int ActivePort, /* Active Port in RLMT mode */ |
| SK_BOOL DualNet) /* Dual Net active */ |
| { |
| int i; |
| int UsedKilobytes; /* memory already assigned */ |
| int ActivePortKilobytes; /* memory available for active port */ |
| int MinQueueSize; /* min. memory for queues */ |
| int TotalRamSize; /* total memory for queues */ |
| SK_BOOL DualPortYukon2; |
| SK_GEPORT *pPrt; |
| |
| if (ActivePort >= pAC->GIni.GIMacsFound) { |
| |
| SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_INIT, |
| ("SkGeInitAssignRamToQueues: ActivePort (%d) invalid\n", |
| ActivePort)); |
| return(1); |
| } |
| |
| DualPortYukon2 = (CHIP_ID_YUKON_2(pAC) && pAC->GIni.GIMacsFound == 2); |
| |
| TotalRamSize = pAC->GIni.GIRamSize; |
| |
| if (DualPortYukon2) { |
| TotalRamSize *= 2; |
| } |
| |
| MinQueueSize = SK_MIN_RXQ_SIZE + SK_MIN_TXQ_SIZE; |
| |
| if (MinQueueSize > pAC->GIni.GIRamSize) { |
| MinQueueSize = pAC->GIni.GIRamSize; |
| } |
| |
| if ((pAC->GIni.GIMacsFound * MinQueueSize + |
| RAM_QUOTA_SYNC * SK_MIN_TXQ_SIZE) > TotalRamSize) { |
| |
| SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_INIT, |
| ("SkGeInitAssignRamToQueues: Not enough memory (%d)\n", |
| TotalRamSize)); |
| return(2); |
| } |
| |
| if (DualNet) { |
| /* every port gets the same amount of memory */ |
| ActivePortKilobytes = TotalRamSize / pAC->GIni.GIMacsFound; |
| |
| for (i = 0; i < pAC->GIni.GIMacsFound; i++) { |
| |
| pPrt = &pAC->GIni.GP[i]; |
| |
| if (DualPortYukon2) { |
| ActivePortKilobytes = pAC->GIni.GIRamSize; |
| } |
| /* take away the minimum memory for active queues */ |
| ActivePortKilobytes -= MinQueueSize; |
| |
| /* receive queue gets the minimum + 80% of the rest */ |
| pPrt->PRxQSize = SkGeRoundQueueSize(pAC, |
| (int)((long)ActivePortKilobytes * RAM_QUOTA_RX) / 100) |
| + SK_MIN_RXQ_SIZE; |
| |
| ActivePortKilobytes -= (pPrt->PRxQSize - SK_MIN_RXQ_SIZE); |
| |
| /* synchronous transmit queue */ |
| pPrt->PXSQSize = 0; |
| |
| /* asynchronous transmit queue */ |
| pPrt->PXAQSize = SkGeRoundQueueSize(pAC, |
| ActivePortKilobytes + SK_MIN_TXQ_SIZE); |
| } |
| } |
| else { /* RLMT Mode or single link adapter */ |
| |
| UsedKilobytes = 0; |
| |
| /* set standby queue size defaults for all standby ports */ |
| for (i = 0; i < pAC->GIni.GIMacsFound; i++) { |
| |
| if (i != ActivePort) { |
| pPrt = &pAC->GIni.GP[i]; |
| |
| if (DualPortYukon2) { |
| pPrt->PRxQSize = SkGeRoundQueueSize(pAC, |
| (int)((long)(pAC->GIni.GIRamSize - MinQueueSize) * |
| RAM_QUOTA_RX) / 100) + SK_MIN_RXQ_SIZE; |
| |
| pPrt->PXAQSize = pAC->GIni.GIRamSize - pPrt->PRxQSize; |
| } |
| else { |
| pPrt->PRxQSize = SK_MIN_RXQ_SIZE; |
| pPrt->PXAQSize = SK_MIN_TXQ_SIZE; |
| } |
| pPrt->PXSQSize = 0; |
| |
| /* Count used RAM */ |
| UsedKilobytes += pPrt->PRxQSize + pPrt->PXAQSize; |
| } |
| } |
| /* what's left? */ |
| ActivePortKilobytes = TotalRamSize - UsedKilobytes; |
| |
| /* assign it to the active port */ |
| /* first take away the minimum memory */ |
| ActivePortKilobytes -= MinQueueSize; |
| pPrt = &pAC->GIni.GP[ActivePort]; |
| |
| /* receive queue gets 80% of the rest */ |
| pPrt->PRxQSize = SkGeRoundQueueSize(pAC, |
| (int)((long)ActivePortKilobytes * RAM_QUOTA_RX) / 100); |
| |
| ActivePortKilobytes -= pPrt->PRxQSize; |
| |
| /* add the minimum memory for Rx queue */ |
| pPrt->PRxQSize += MinQueueSize/2; |
| |
| /* synchronous transmit queue */ |
| pPrt->PXSQSize = 0; |
| |
| /* asynchronous transmit queue gets 20% of the rest */ |
| pPrt->PXAQSize = SkGeRoundQueueSize(pAC, ActivePortKilobytes) + |
| /* add the minimum memory for Tx queue */ |
| MinQueueSize/2; |
| } |
| |
| #ifdef DEBUG |
| for (i = 0; i < pAC->GIni.GIMacsFound; i++) { |
| |
| pPrt = &pAC->GIni.GP[i]; |
| |
| SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_INIT, |
| ("Port %d: RxQSize=%u, TxAQSize=%u, TxSQSize=%u\n", |
| i, pPrt->PRxQSize, pPrt->PXAQSize, pPrt->PXSQSize)); |
| } |
| #endif /* DEBUG */ |
| |
| return(0); |
| } /* SkGeInitAssignRamToQueues */ |
| |
| |
| /****************************************************************************** |
| * |
| * SkGeCheckQSize() - Checks the Adapters Queue Size Configuration |
| * |
| * Description: |
| * This function verifies the Queue Size Configuration specified |
| * in the variables PRxQSize, PXSQSize, and PXAQSize of all |
| * used ports. |
| * This requirements must be fullfilled to have a valid configuration: |
| * - The size of all queues must not exceed GIRamSize. |
| * - The queue sizes must be specified in units of 8 kB (Genesis & Yukon). |
| * - The size of Rx queues of available ports must not be |
| * smaller than 16 kB (Genesis & Yukon) resp. 10 kB (Yukon-2). |
| * - The size of at least one Tx queue (synch. or asynch.) |
| * of available ports must not be smaller than 16 kB (Genesis & Yukon), |
| * resp. 10 kB (Yukon-2) when Jumbo Frames are used. |
| * - The RAM start and end addresses must not be changed |
| * for ports which are already initialized. |
| * Furthermore SkGeCheckQSize() defines the Start and End Addresses |
| * of all ports and stores them into the HWAC port structure. |
| * |
| * Returns: |
| * 0: Queue Size Configuration valid |
| * 1: Queue Size Configuration invalid |
| */ |
| static int SkGeCheckQSize( |
| SK_AC *pAC, /* Adapter Context */ |
| int Port) /* port index */ |
| { |
| SK_GEPORT *pPrt; |
| int i; |
| int Rtv; |
| int Rtv2; |
| SK_U32 StartAddr; |
| #ifndef SK_SLIM |
| int UsedMem; /* total memory used (max. found ports) */ |
| #endif |
| |
| Rtv = 0; |
| |
| #ifndef SK_SLIM |
| |
| UsedMem = 0; |
| |
| for (i = 0; i < pAC->GIni.GIMacsFound; i++) { |
| pPrt = &pAC->GIni.GP[i]; |
| |
| if (CHIP_ID_YUKON_2(pAC)) { |
| UsedMem = 0; |
| } |
| else if (((pPrt->PRxQSize & QZ_UNITS) != 0 || |
| (pPrt->PXSQSize & QZ_UNITS) != 0 || |
| (pPrt->PXAQSize & QZ_UNITS) != 0)) { |
| |
| SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E012, SKERR_HWI_E012MSG); |
| return(1); |
| } |
| |
| #ifndef SK_DIAG |
| if (i == Port && pAC->GIni.GIRamSize > SK_MIN_RXQ_SIZE && |
| pPrt->PRxQSize < SK_MIN_RXQ_SIZE) { |
| SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E011, SKERR_HWI_E011MSG); |
| return(1); |
| } |
| |
| /* |
| * the size of at least one Tx queue (synch. or asynch.) has to be > 0. |
| * if Jumbo Frames are used, this size has to be >= 16 kB. |
| */ |
| if ((i == Port && pPrt->PXSQSize == 0 && pPrt->PXAQSize == 0) || |
| (pPrt->PPortUsage == SK_JUMBO_LINK && |
| ((pPrt->PXSQSize > 0 && pPrt->PXSQSize < SK_MIN_TXQ_SIZE) || |
| (pPrt->PXAQSize > 0 && pPrt->PXAQSize < SK_MIN_TXQ_SIZE)))) { |
| SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E023, SKERR_HWI_E023MSG); |
| return(1); |
| } |
| #endif /* !SK_DIAG */ |
| |
| UsedMem += pPrt->PRxQSize + pPrt->PXSQSize + pPrt->PXAQSize; |
| |
| if (UsedMem > pAC->GIni.GIRamSize) { |
| SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E012, SKERR_HWI_E012MSG); |
| return(1); |
| } |
| } |
| |
| #endif /* !SK_SLIM */ |
| |
| /* Now start address calculation */ |
| StartAddr = pAC->GIni.GIRamOffs; |
| for (i = 0; i < pAC->GIni.GIMacsFound; i++) { |
| |
| pPrt = &pAC->GIni.GP[i]; |
| |
| if (CHIP_ID_YUKON_2(pAC)) { |
| StartAddr = 0; |
| } |
| |
| /* Calculate/Check values for the receive queue */ |
| Rtv2 = DoCalcAddr(pAC, pPrt, pPrt->PRxQSize, &StartAddr, |
| &pPrt->PRxQRamStart, &pPrt->PRxQRamEnd); |
| Rtv |= Rtv2; |
| |
| /* Calculate/Check values for the synchronous Tx queue */ |
| Rtv2 = DoCalcAddr(pAC, pPrt, pPrt->PXSQSize, &StartAddr, |
| &pPrt->PXsQRamStart, &pPrt->PXsQRamEnd); |
| Rtv |= Rtv2; |
| |
| /* Calculate/Check values for the asynchronous Tx queue */ |
| Rtv2 = DoCalcAddr(pAC, pPrt, pPrt->PXAQSize, &StartAddr, |
| &pPrt->PXaQRamStart, &pPrt->PXaQRamEnd); |
| Rtv |= Rtv2; |
| |
| if (Rtv) { |
| SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E013, SKERR_HWI_E013MSG); |
| return(1); |
| } |
| } |
| |
| return(0); |
| } /* SkGeCheckQSize */ |
| |
| |
| #ifdef GENESIS |
| /****************************************************************************** |
| * |
| * SkGeInitMacArb() - Initialize the MAC Arbiter |
| * |
| * Description: |
| * This function initializes the MAC Arbiter. |
| * It must not be called if there is still an |
| * initialized or active port. |
| * |
| * Returns: |
| * nothing |
| */ |
| static void SkGeInitMacArb( |
| SK_AC *pAC, /* Adapter Context */ |
| SK_IOC IoC) /* I/O Context */ |
| { |
| /* release local reset */ |
| SK_OUT16(IoC, B3_MA_TO_CTRL, MA_RST_CLR); |
| |
| /* configure timeout values */ |
| SK_OUT8(IoC, B3_MA_TOINI_RX1, SK_MAC_TO_53); |
| SK_OUT8(IoC, B3_MA_TOINI_RX2, SK_MAC_TO_53); |
| SK_OUT8(IoC, B3_MA_TOINI_TX1, SK_MAC_TO_53); |
| SK_OUT8(IoC, B3_MA_TOINI_TX2, SK_MAC_TO_53); |
| |
| SK_OUT8(IoC, B3_MA_RCINI_RX1, 0); |
| SK_OUT8(IoC, B3_MA_RCINI_RX2, 0); |
| SK_OUT8(IoC, B3_MA_RCINI_TX1, 0); |
| SK_OUT8(IoC, B3_MA_RCINI_TX2, 0); |
| |
| /* recovery values are needed for XMAC II Rev. B2 only */ |
| /* Fast Output Enable Mode was intended to use with Rev. B2, but now? */ |
| |
| /* |
| * There is no start or enable button to push, therefore |
| * the MAC arbiter is configured and enabled now. |
| */ |
| } /* SkGeInitMacArb */ |
| |
| |
| /****************************************************************************** |
| * |
| * SkGeInitPktArb() - Initialize the Packet Arbiter |
| * |
| * Description: |
| * This function initializes the Packet Arbiter. |
| * It must not be called if there is still an |
| * initialized or active port. |
| * |
| * Returns: |
| * nothing |
| */ |
| static void SkGeInitPktArb( |
| SK_AC *pAC, /* Adapter Context */ |
| SK_IOC IoC) /* I/O Context */ |
| { |
| /* release local reset */ |
| SK_OUT16(IoC, B3_PA_CTRL, PA_RST_CLR); |
| |
| /* configure timeout values */ |
| SK_OUT16(IoC, B3_PA_TOINI_RX1, SK_PKT_TO_MAX); |
| SK_OUT16(IoC, B3_PA_TOINI_RX2, SK_PKT_TO_MAX); |
| SK_OUT16(IoC, B3_PA_TOINI_TX1, SK_PKT_TO_MAX); |
| SK_OUT16(IoC, B3_PA_TOINI_TX2, SK_PKT_TO_MAX); |
| |
| /* |
| * enable timeout timers if jumbo frames not used |
| * NOTE: the packet arbiter timeout interrupt is needed for |
| * half duplex hangup workaround |
| */ |
| if (pAC->GIni.GP[MAC_1].PPortUsage != SK_JUMBO_LINK && |
| pAC->GIni.GP[MAC_2].PPortUsage != SK_JUMBO_LINK) { |
| if (pAC->GIni.GIMacsFound == 1) { |
| SK_OUT16(IoC, B3_PA_CTRL, PA_ENA_TO_TX1); |
| } |
| else { |
| SK_OUT16(IoC, B3_PA_CTRL, PA_ENA_TO_TX1 | PA_ENA_TO_TX2); |
| } |
| } |
| } /* SkGeInitPktArb */ |
| #endif /* GENESIS */ |
| |
| |
| /****************************************************************************** |
| * |
| * SkGeInitMacFifo() - Initialize the MAC FIFOs |
| * |
| * Description: |
| * Initialize all MAC FIFOs of the specified port |
| * |
| * Returns: |
| * nothing |
| */ |
| static void SkGeInitMacFifo( |
| SK_AC *pAC, /* Adapter Context */ |
| SK_IOC IoC, /* I/O Context */ |
| int Port) /* Port Index (MAC_1 + n) */ |
| { |
| SK_U16 Word; |
| /* |
| * For each FIFO: |
| * - release local reset |
| * - use default value for MAC FIFO size |
| * - setup defaults for the control register |
| * - enable the FIFO |
| */ |
| |
| #ifdef GENESIS |
| if (pAC->GIni.GIGenesis) { |
| /* configure Rx MAC FIFO */ |
| SK_OUT8(IoC, MR_ADDR(Port, RX_MFF_CTRL2), MFF_RST_CLR); |
| SK_OUT16(IoC, MR_ADDR(Port, RX_MFF_CTRL1), MFF_RX_CTRL_DEF); |
| SK_OUT8(IoC, MR_ADDR(Port, RX_MFF_CTRL2), MFF_ENA_OP_MD); |
| |
| /* configure Tx MAC FIFO */ |
| SK_OUT8(IoC, MR_ADDR(Port, TX_MFF_CTRL2), MFF_RST_CLR); |
| SK_OUT16(IoC, MR_ADDR(Port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF); |
| SK_OUT8(IoC, MR_ADDR(Port, TX_MFF_CTRL2), MFF_ENA_OP_MD); |
| |
| /* enable frame flushing if jumbo frames used */ |
| if (pAC->GIni.GP[Port].PPortUsage == SK_JUMBO_LINK) { |
| SK_OUT16(IoC, MR_ADDR(Port, RX_MFF_CTRL1), MFF_ENA_FLUSH); |
| } |
| } |
| #endif /* GENESIS */ |
| |
| #ifdef YUKON |
| if (pAC->GIni.GIYukon) { |
| |
| Word = (SK_U16)GMF_RX_CTRL_DEF; |
| |
| /* disable Rx GMAC FIFO Flush for YUKON-Plus */ |
| if (pAC->GIni.GIYukonLite) { |
| |
| Word &= ~GMF_RX_F_FL_ON; |
| } |
| |
| /* configure Rx GMAC FIFO */ |
| SK_OUT8(IoC, MR_ADDR(Port, RX_GMF_CTRL_T), (SK_U8)GMF_RST_CLR); |
| SK_OUT16(IoC, MR_ADDR(Port, RX_GMF_CTRL_T), Word); |
| |
| Word = RX_FF_FL_DEF_MSK; |
| |
| #ifndef SK_DIAG |
| if (HW_FEATURE(pAC, HWF_WA_DEV_4115)) { |
| /* |
| * Flushing must be enabled (needed for ASF see dev. #4.29), |
| * but the flushing mask should be disabled (see dev. #4.115) |
| */ |
| Word = 0; |
| } |
| #endif /* !SK_DIAG */ |
| |
| /* set Rx GMAC FIFO Flush Mask (after clearing reset) */ |
| SK_OUT16(IoC, MR_ADDR(Port, RX_GMF_FL_MSK), Word); |
| |
| /* default: 0x0a -> 56 bytes on Yukon-1 and 64 bytes on Yukon-2 */ |
| Word = (SK_U16)RX_GMF_FL_THR_DEF; |
| |
| if (CHIP_ID_YUKON_2(pAC) && pAC->GIni.GIAsfEnabled) { |
| /* WA for dev. #4.30 & 4.89 (reduce to 0x08 -> 48 bytes) */ |
| Word -= 2; |
| } |
| else if (HW_FEATURE(pAC, HWF_WA_DEV_521)) { |
| Word = 0x178; |
| } |
| else { |
| /* |
| * because Pause Packet Truncation in GMAC is not working |
| * we have to increase the Flush Threshold to 64 bytes |
| * in order to flush pause packets in Rx FIFO on Yukon-1 |
| */ |
| Word++; |
| } |
| |
| /* set Rx GMAC FIFO Flush Threshold (after clearing reset) */ |
| SK_OUT16(IoC, MR_ADDR(Port, RX_GMF_FL_THR), Word); |
| |
| /* configure Tx GMAC FIFO */ |
| SK_OUT8(IoC, MR_ADDR(Port, TX_GMF_CTRL_T), (SK_U8)GMF_RST_CLR); |
| SK_OUT16(IoC, MR_ADDR(Port, TX_GMF_CTRL_T), (SK_U16)GMF_TX_CTRL_DEF); |
| |
| if (pAC->GIni.GIChipId == CHIP_ID_YUKON_EC_U || |
| pAC->GIni.GIChipId == CHIP_ID_YUKON_EX || |
| pAC->GIni.GIChipId == CHIP_ID_YUKON_FE_P) { |
| /* set Rx Pause Threshold */ |
| SK_OUT16(IoC, MR_ADDR(Port, RX_GMF_LP_THR), (SK_U16)SK_ECU_LLPP); |
| SK_OUT16(IoC, MR_ADDR(Port, RX_GMF_UP_THR), (SK_U16)SK_ECU_ULPP); |
| |
| if ((pAC->GIni.GIChipId == CHIP_ID_YUKON_EX && |
| pAC->GIni.GIChipRev != CHIP_REV_YU_EX_A0) || |
| pAC->GIni.GIChipId == CHIP_ID_YUKON_FE_P) { |
| /* Yukon-Extreme BO and further Extreme devices */ |
| /* enable Store & Forward mode for TX */ |
| SK_OUT32(IoC, MR_ADDR(Port, TX_GMF_CTRL_T), TX_STFW_ENA); |
| } |
| else { |
| if (pAC->GIni.GP[Port].PPortUsage == SK_JUMBO_LINK) { |
| /* set Tx GMAC FIFO Almost Empty Threshold */ |
| SK_OUT32(IoC, MR_ADDR(Port, TX_GMF_AE_THR), |
| (SK_ECU_JUMBO_WM << 16) | (SK_U16)SK_ECU_AE_THR); |
| /* disable Store & Forward mode for TX */ |
| SK_OUT32(IoC, MR_ADDR(Port, TX_GMF_CTRL_T), TX_STFW_DIS); |
| } |
| #ifdef TEST_ONLY |
| else { |
| /* enable Store & Forward mode for TX */ |
| SK_OUT32(IoC, MR_ADDR(Port, TX_GMF_CTRL_T), TX_STFW_ENA); |
| } |
| #endif /* TEST_ONLY */ |
| } |
| } |
| } |
| |
| if (HW_FEATURE(pAC, HWF_WA_DEV_520)) { |
| /* disable dynamic watermark */ |
| SK_IN16(IoC, MR_ADDR(Port, TX_GMF_EA), &Word); |
| |
| SK_OUT16(IoC, MR_ADDR(Port, TX_GMF_EA), Word & ~TX_DYN_WM_ENA); |
| } |
| |
| #endif /* YUKON */ |
| |
| } /* SkGeInitMacFifo */ |
| |
| #ifdef SK_LNK_SYNC_CNT |
| /****************************************************************************** |
| * |
| * SkGeLoadLnkSyncCnt() - Load the Link Sync Counter and starts counting |
| * |
| * Description: |
| * This function starts the Link Sync Counter of the specified |
| * port and enables the generation of an Link Sync IRQ. |
| * The Link Sync Counter may be used to detect an active link, |
| * if autonegotiation is not used. |
| * |
| * Note: |
| * o To ensure receiving the Link Sync Event the LinkSyncCounter |
| * should be initialized BEFORE clearing the XMAC's reset! |
| * o Enable IS_LNK_SYNC_M1 and IS_LNK_SYNC_M2 after calling this |
| * function. |
| * |
| * Returns: |
| * nothing |
| */ |
| void SkGeLoadLnkSyncCnt( |
| SK_AC *pAC, /* Adapter Context */ |
| SK_IOC IoC, /* I/O Context */ |
| int Port, /* Port Index (MAC_1 + n) */ |
| SK_U32 CntVal) /* Counter value */ |
| { |
| SK_U32 OrgIMsk; |
| SK_U32 NewIMsk; |
| SK_U32 ISrc; |
| SK_BOOL IrqPend; |
| |
| /* stop counter */ |
| SK_OUT8(IoC, MR_ADDR(Port, LNK_SYNC_CTRL), LNK_STOP); |
| |
| /* |
| * ASIC problem: |
| * Each time starting the Link Sync Counter an IRQ is generated |
| * by the adapter. See problem report entry from 21.07.98 |
| * |
| * Workaround: Disable Link Sync IRQ and clear the unexpeced IRQ |
| * if no IRQ is already pending. |
| */ |
| IrqPend = SK_FALSE; |
| SK_IN32(IoC, B0_ISRC, &ISrc); |
| SK_IN32(IoC, B0_IMSK, &OrgIMsk); |
| |
| if (Port == MAC_1) { |
| NewIMsk = OrgIMsk & ~IS_LNK_SYNC_M1; |
| if ((ISrc & IS_LNK_SYNC_M1) != 0) { |
| IrqPend = SK_TRUE; |
| } |
| } |
| else { |
| NewIMsk = OrgIMsk & ~IS_LNK_SYNC_M2; |
| if ((ISrc & IS_LNK_SYNC_M2) != 0) { |
| IrqPend = SK_TRUE; |
| } |
| } |
| |
| if (!IrqPend) { |
| SK_OUT32(IoC, B0_IMSK, NewIMsk); |
| } |
| |
| /* load counter */ |
| SK_OUT32(IoC, MR_ADDR(Port, LNK_SYNC_INI), CntVal); |
| |
| /* start counter */ |
| SK_OUT8(IoC, MR_ADDR(Port, LNK_SYNC_CTRL), LNK_START); |
| |
| if (!IrqPend) { |
| /* clear the unexpected IRQ */ |
| SK_OUT8(IoC, MR_ADDR(Port, LNK_SYNC_CTRL), LNK_CLR_IRQ); |
| |
| /* restore the interrupt mask */ |
| SK_OUT32(IoC, B0_IMSK, OrgIMsk); |
| } |
| } /* SkGeLoadLnkSyncCnt*/ |
| #endif /* SK_LNK_SYNC_CNT */ |
| |
| #if defined(SK_DIAG) || defined(SK_CFG_SYNC) |
| /****************************************************************************** |
| * |
| * SkGeCfgSync() - Configure synchronous bandwidth for this port. |
| * |
| * Description: |
| * This function may be used to configure synchronous bandwidth |
| * to the specified port. This may be done any time after |
| * initializing the port. The configuration values are NOT saved |
| * in the HWAC port structure and will be overwritten any |
| * time when stopping and starting the port. |
| * Any values for the synchronous configuration will be ignored |
| * if the size of the synchronous queue is zero! |
| * |
| * The default configuration for the synchronous service is |
| * TXA_ENA_FSYNC. This means if the size of |
| * the synchronous queue is unequal zero but no specific |
| * synchronous bandwidth is configured, the synchronous queue |
| * will always have the 'unlimited' transmit priority! |
| * |
| * This mode will be restored if the synchronous bandwidth is |
| * deallocated ('IntTime' = 0 and 'LimCount' = 0). |
| * |
| * Returns: |
| * 0: success |
| * 1: parameter configuration error |
| * 2: try to configure quality of service although no |
| * synchronous queue is configured |
| */ |
| int SkGeCfgSync( |
| SK_AC *pAC, /* Adapter Context */ |
| SK_IOC IoC, /* I/O Context */ |
| int Port, /* Port Index (MAC_1 + n) */ |
| SK_U32 IntTime, /* Interval Timer Value in units of 8ns */ |
| SK_U32 LimCount, /* Number of bytes to transfer during IntTime */ |
| int SyncMode) /* Sync Mode: TXA_ENA_ALLOC | TXA_DIS_ALLOC | 0 */ |
| { |
| int Rtv; |
| |
| Rtv = 0; |
| |
| /* check the parameters */ |
| if (LimCount > IntTime || |
| (LimCount == 0 && IntTime != 0) || |
| (LimCount != 0 && IntTime == 0)) { |
| |
| SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E010, SKERR_HWI_E010MSG); |
| return(1); |
| } |
| |
| if (pAC->GIni.GP[Port].PXSQSize == 0) { |
| SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E009, SKERR_HWI_E009MSG); |
| return(2); |
| } |
| |
| /* calculate register values */ |
| IntTime = (IntTime / 2) * pAC->GIni.GIHstClkFact / 100; |
| LimCount = LimCount / 8; |
| |
| if (IntTime > TXA_MAX_VAL || LimCount > TXA_MAX_VAL) { |
| SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E010, SKERR_HWI_E010MSG); |
| return(1); |
| } |
| |
| /* |
| * - Enable 'Force Sync' to ensure the synchronous queue |
| * has the priority while configuring the new values. |
| * - Also 'disable alloc' to ensure the settings complies |
| * to the SyncMode parameter. |
| * - Disable 'Rate Control' to configure the new values. |
| * - write IntTime and LimCount |
| * - start 'Rate Control' and disable 'Force Sync' |
| * if Interval Timer or Limit Counter not zero. |
| */ |
| SK_OUT8(IoC, MR_ADDR(Port, TXA_CTRL), |
| TXA_ENA_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC); |
| |
| SK_OUT32(IoC, MR_ADDR(Port, TXA_ITI_INI), IntTime); |
| SK_OUT32(IoC, MR_ADDR(Port, TXA_LIM_INI), LimCount); |
| |
| SK_OUT8(IoC, MR_ADDR(Port, TXA_CTRL), |
| (SK_U8)(SyncMode & (TXA_ENA_ALLOC | TXA_DIS_ALLOC))); |
| |
| if (IntTime != 0 || LimCount != 0) { |
| SK_OUT8(IoC, MR_ADDR(Port, TXA_CTRL), TXA_DIS_FSYNC | TXA_START_RC); |
| } |
| |
| return(0); |
| } /* SkGeCfgSync */ |
| #endif /* SK_DIAG || SK_CFG_SYNC*/ |
| |
| |
| /****************************************************************************** |
| * |
| * DoInitRamQueue() - Initialize the RAM Buffer Address of a single Queue |
| * |
| * Desccription: |
| * If the queue is used, enable and initialize it. |
| * Make sure the queue is still reset, if it is not used. |
| * |
| * Returns: |
| * nothing |
| */ |
| void DoInitRamQueue( |
| SK_AC *pAC, /* Adapter Context */ |
| SK_IOC IoC, /* I/O Context */ |
| int QuIoOffs, /* Queue I/O Address Offset */ |
| SK_U32 QuStartAddr, /* Queue Start Address */ |
| SK_U32 QuEndAddr, /* Queue End Address */ |
| int QuType) /* Queue Type (SK_RX_SRAM_Q|SK_RX_BRAM_Q|SK_TX_RAM_Q) */ |
| { |
| SK_U32 RxUpThresVal; |
| SK_U32 RxLoThresVal; |
| |
| if (QuStartAddr != QuEndAddr) { |
| /* calculate thresholds, assume we have a big Rx queue */ |
| RxUpThresVal = (QuEndAddr + 1 - QuStartAddr - SK_RB_ULPP) / 8; |
| RxLoThresVal = (QuEndAddr + 1 - QuStartAddr - SK_RB_LLPP_B)/8; |
| |
| /* build HW address format */ |
| QuStartAddr = QuStartAddr / 8; |
| QuEndAddr = QuEndAddr / 8; |
| |
| /* release local reset */ |
| SK_OUT8(IoC, RB_ADDR(QuIoOffs, RB_CTRL), RB_RST_CLR); |
| |
| /* configure addresses */ |
| SK_OUT32(IoC, RB_ADDR(QuIoOffs, RB_START), QuStartAddr); |
| SK_OUT32(IoC, RB_ADDR(QuIoOffs, RB_END), QuEndAddr); |
| SK_OUT32(IoC, RB_ADDR(QuIoOffs, RB_WP), QuStartAddr); |
| SK_OUT32(IoC, RB_ADDR(QuIoOffs, RB_RP), QuStartAddr); |
| |
| switch (QuType) { |
| case SK_RX_SRAM_Q: |
| /* configure threshold for small Rx Queue */ |
| RxLoThresVal += (SK_RB_LLPP_B - SK_RB_LLPP_S) / 8; |
| |
| /* continue with SK_RX_BRAM_Q */ |
| case SK_RX_BRAM_Q: |
| /* write threshold for Rx Queue (Pause packets) */ |
| SK_OUT32(IoC, RB_ADDR(QuIoOffs, RB_RX_UTPP), RxUpThresVal); |
| SK_OUT32(IoC, RB_ADDR(QuIoOffs, RB_RX_LTPP), RxLoThresVal); |
| |
| /* the high priority threshold not used */ |
| break; |
| case SK_TX_RAM_Q: |
| /* |
| * Do NOT use Store & Forward under normal operation due to |
| * performance optimization (GENESIS only). |
| * But if Jumbo Frames are configured (XMAC Tx FIFO is only 4 kB) |
| * or YUKON is used ((GMAC Tx FIFO is only 1 kB) |
| * we NEED Store & Forward of the RAM buffer. |
| */ |
| if (pAC->GIni.GP[MAC_1].PPortUsage == SK_JUMBO_LINK || |
| pAC->GIni.GP[MAC_2].PPortUsage == SK_JUMBO_LINK || |
| pAC->GIni.GIYukon) { |
| /* enable Store & Forward Mode for the Tx Side */ |
| SK_OUT8(IoC, RB_ADDR(QuIoOffs, RB_CTRL), RB_ENA_STFWD); |
| } |
| break; |
| } |
| |
| /* set queue operational */ |
| SK_OUT8(IoC, RB_ADDR(QuIoOffs, RB_CTRL), RB_ENA_OP_MD); |
| } |
| else { |
| /* ensure the queue is still disabled */ |
| SK_OUT8(IoC, RB_ADDR(QuIoOffs, RB_CTRL), RB_RST_SET); |
| } |
| } /* DoInitRamQueue */ |
| |
| |
| /****************************************************************************** |
| * |
| * SkGeInitRamBufs() - Initialize the RAM Buffer Queues |
| * |
| * Description: |
| * Initialize all RAM Buffer Queues of the specified port |
| * |
| * Returns: |
| * nothing |
| */ |
| static void SkGeInitRamBufs( |
| SK_AC *pAC, /* Adapter Context */ |
| SK_IOC IoC, /* I/O Context */ |
| int Port) /* Port Index (MAC_1 + n) */ |
| { |
| SK_GEPORT *pPrt; |
| int RxQType; |
| |
| if (!HW_IS_RAM_IF_AVAIL(pAC)) { |
| return; |
| } |
| |
| pPrt = &pAC->GIni.GP[Port]; |
| |
| if (pPrt->PRxQSize <= SK_MIN_RXQ_SIZE) { |
| RxQType = SK_RX_SRAM_Q; /* small Rx Queue */ |
| } |
| else { |
| RxQType = SK_RX_BRAM_Q; /* big Rx Queue */ |
| } |
| |
| DoInitRamQueue(pAC, IoC, pPrt->PRxQOff, pPrt->PRxQRamStart, |
| pPrt->PRxQRamEnd, RxQType); |
| |
| DoInitRamQueue(pAC, IoC, pPrt->PXsQOff, pPrt->PXsQRamStart, |
| pPrt->PXsQRamEnd, SK_TX_RAM_Q); |
| |
| DoInitRamQueue(pAC, IoC, pPrt->PXaQOff, pPrt->PXaQRamStart, |
| pPrt->PXaQRamEnd, SK_TX_RAM_Q); |
| |
| } /* SkGeInitRamBufs */ |
| |
| |
| /****************************************************************************** |
| * |
| * SkGeInitRamIface() - Initialize the RAM Interface |
| * |
| * Description: |
| * This function initializes the Adapters RAM Interface. |
| * |
| * Note: |
| * This function is used in the diagnostics. |
| * |
| * Returns: |
| * nothing |
| */ |
| void SkGeInitRamIface( |
| SK_AC *pAC, /* Adapter Context */ |
| SK_IOC IoC) /* I/O Context */ |
| { |
| int i; |
| int RamBuffers; |
| |
| if (!HW_IS_RAM_IF_AVAIL(pAC)) { |
| return; |
| } |
| |
| if (CHIP_ID_YUKON_2(pAC)) { |
| RamBuffers = pAC->GIni.GIMacsFound; |
| } |
| else { |
| RamBuffers = 1; |
| } |
| |
| for (i = 0; i < RamBuffers; i++) { |
| /* release local reset */ |
| SK_OUT8(IoC, SELECT_RAM_BUFFER(i, B3_RI_CTRL), (SK_U8)RI_RST_CLR); |
| |
| /* configure timeout values */ |
| SK_OUT8(IoC, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1), SK_RI_TO_53); |
| SK_OUT8(IoC, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1), SK_RI_TO_53); |
| SK_OUT8(IoC, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1), SK_RI_TO_53); |
| SK_OUT8(IoC, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1), SK_RI_TO_53); |
| SK_OUT8(IoC, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1), SK_RI_TO_53); |
| SK_OUT8(IoC, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1), SK_RI_TO_53); |
| SK_OUT8(IoC, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2), SK_RI_TO_53); |
| SK_OUT8(IoC, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2), SK_RI_TO_53); |
| SK_OUT8(IoC, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2), SK_RI_TO_53); |
| SK_OUT8(IoC, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2), SK_RI_TO_53); |
| SK_OUT8(IoC, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2), SK_RI_TO_53); |
| SK_OUT8(IoC, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2), SK_RI_TO_53); |
| } |
| } /* SkGeInitRamIface */ |
| |
| |
| /****************************************************************************** |
| * |
| * SkGeInitBmu() - Initialize the BMU state machines |
| * |
| * Description: |
| * Initialize all BMU state machines of the specified port |
| * |
| * Returns: |
| * nothing |
| */ |
| static void SkGeInitBmu( |
| SK_AC *pAC, /* Adapter Context */ |
| SK_IOC IoC, /* I/O Context */ |
| int Port) /* Port Index (MAC_1 + n) */ |
| { |
| SK_GEPORT *pPrt; |
| SK_U16 RxWm; |
| SK_U16 TxWm; |
| |
| pPrt = &pAC->GIni.GP[Port]; |
| |
| RxWm = SK_BMU_RX_WM; |
| TxWm = SK_BMU_TX_WM; |
| |
| if (CHIP_ID_YUKON_2(pAC)) { |
| |
| if (pAC->GIni.GIPciBus == SK_PEX_BUS) { |
| /* for better performance set it to 128 */ |
| RxWm = SK_BMU_RX_WM_PEX; |
| } |
| |
| /* Rx Queue: Release all local resets and set the watermark */ |
| SK_OUT32(IoC, Q_ADDR(pPrt->PRxQOff, Q_CSR), BMU_CLR_RESET); |
| SK_OUT32(IoC, Q_ADDR(pPrt->PRxQOff, Q_CSR), BMU_OPER_INIT); |
| SK_OUT32(IoC, Q_ADDR(pPrt->PRxQOff, Q_CSR), BMU_FIFO_OP_ON); |
| |
| SK_OUT16(IoC, Q_ADDR(pPrt->PRxQOff, Q_WM), RxWm); |
| |
| if (pAC->GIni.GIChipId == CHIP_ID_YUKON_EC_U && |
| pAC->GIni.GIChipRev >= CHIP_REV_YU_EC_U_A1) { |
| /* MAC Rx RAM Read is controlled by hardware */ |
| SK_OUT32(IoC, Q_ADDR(pPrt->PRxQOff, Q_F), F_M_RX_RAM_DIS); |
| } |
| |
| /* |
| * Tx Queue: Release all local resets if the queue is used ! |
| * set watermark |
| */ |
| if (pPrt->PXSQSize != 0 && HW_SYNC_TX_SUPPORTED(pAC)) { |
| /* Yukon-EC doesn't have a synchronous Tx queue */ |
| SK_OUT32(IoC, Q_ADDR(pPrt->PXsQOff, Q_CSR), BMU_CLR_RESET); |
| SK_OUT32(IoC, Q_ADDR(pPrt->PXsQOff, Q_CSR), BMU_OPER_INIT); |
| SK_OUT32(IoC, Q_ADDR(pPrt->PXsQOff, Q_CSR), BMU_FIFO_OP_ON); |
| |
| SK_OUT16(IoC, Q_ADDR(pPrt->PXsQOff, Q_WM), TxWm); |
| } |
| |
| if (pPrt->PXAQSize != 0) { |
| |
| SK_OUT32(IoC, Q_ADDR(pPrt->PXaQOff, Q_CSR), BMU_CLR_RESET); |
| SK_OUT32(IoC, Q_ADDR(pPrt->PXaQOff, Q_CSR), BMU_OPER_INIT); |
| SK_OUT32(IoC, Q_ADDR(pPrt->PXaQOff, Q_CSR), BMU_FIFO_OP_ON); |
| |
| #if (!defined(SK_SLIM) && !defined(SK_DIAG)) |
| if (HW_FEATURE(pAC, HWF_TX_IP_ID_INCR_ON)) { |
| /* Enable Tx IP ID Increment */ |
| SK_OUT32(IoC, Q_ADDR(pPrt->PXaQOff, Q_CSR), BMU_TX_IPIDINCR_ON); |
| } |
| #endif /* !SK_SLIM && !SK_DIAG */ |
| |
| SK_OUT16(IoC, Q_ADDR(pPrt->PXaQOff, Q_WM), TxWm); |
| |
| if (pAC->GIni.GIChipId == CHIP_ID_YUKON_EC_U && |
| pAC->GIni.GIChipRev == CHIP_REV_YU_EC_U_A0) { |
| /* fix for Yukon-EC Ultra: set BMU FIFO level */ |
| SK_OUT16(IoC, Q_ADDR(pPrt->PXaQOff, Q_AL), SK_ECU_TXFF_LEV); |
| } |
| } |
| } |
| else { |
| if (!pAC->GIni.GIPciSlot64 && !pAC->GIni.GIPciClock66) { |
| /* for better performance */ |
| RxWm /= 2; |
| TxWm /= 2; |
| } |
| |
| /* Rx Queue: Release all local resets and set the watermark */ |
| SK_OUT32(IoC, Q_ADDR(pPrt->PRxQOff, Q_CSR), CSR_CLR_RESET); |
| SK_OUT32(IoC, Q_ADDR(pPrt->PRxQOff, Q_F), RxWm); |
| |
| /* |
| * Tx Queue: Release all local resets if the queue is used ! |
| * set watermark |
| */ |
| if (pPrt->PXSQSize != 0) { |
| SK_OUT32(IoC, Q_ADDR(pPrt->PXsQOff, Q_CSR), CSR_CLR_RESET); |
| SK_OUT32(IoC, Q_ADDR(pPrt->PXsQOff, Q_F), TxWm); |
| } |
| |
| if (pPrt->PXAQSize != 0) { |
| SK_OUT32(IoC, Q_ADDR(pPrt->PXaQOff, Q_CSR), CSR_CLR_RESET); |
| SK_OUT32(IoC, Q_ADDR(pPrt->PXaQOff, Q_F), TxWm); |
| } |
| } |
| /* |
| * Do NOT enable the descriptor poll timers here, because |
| * the descriptor addresses are not specified yet. |
| */ |
| } /* SkGeInitBmu */ |
| |
| |
| /****************************************************************************** |
| * |
| * TestStopBit() - Test the stop bit of the queue |
| * |
| * Description: |
| * Stopping a queue is not as simple as it seems to be. |
| * If descriptor polling is enabled, it may happen |
| * that RX/TX stop is done and SV idle is NOT set. |
| * In this case we have to issue another stop command. |
| * |
| * Returns: |
| * The queues control status register |
| */ |
| static SK_U32 TestStopBit( |
| SK_AC *pAC, /* Adapter Context */ |
| SK_IOC IoC, /* I/O Context */ |
| int QuIoOffs) /* Queue I/O Address Offset */ |
| { |
| SK_U32 QuCsr; /* CSR contents */ |
| |
| SK_IN32(IoC, Q_ADDR(QuIoOffs, Q_CSR), &QuCsr); |
| |
| if (CHIP_ID_YUKON_2(pAC)) { |
| if ((QuCsr & (BMU_STOP | BMU_IDLE)) == 0) { |
| /* Stop Descriptor overridden by start command */ |
| SK_OUT32(IoC, Q_ADDR(QuIoOffs, Q_CSR), BMU_STOP); |
| |
| SK_IN32(IoC, Q_ADDR(QuIoOffs, Q_CSR), &QuCsr); |
| } |
| } |
| else { |
| if ((QuCsr & (CSR_STOP | CSR_SV_IDLE)) == 0) { |
| /* Stop Descriptor overridden by start command */ |
| SK_OUT32(IoC, Q_ADDR(QuIoOffs, Q_CSR), CSR_STOP); |
| |
| SK_IN32(IoC, Q_ADDR(QuIoOffs, Q_CSR), &QuCsr); |
| } |
| } |
| return(QuCsr); |
| } /* TestStopBit */ |
| |
| |
| /****************************************************************************** |
| * |
| * SkGeStopPort() - Stop the Rx/Tx activity of the port 'Port'. |
| * |
| * Description: |
| * After calling this function the descriptor rings and Rx and Tx |
| * queues of this port may be reconfigured. |
| * |
| * It is possible to stop the receive and transmit path separate or |
| * both together. |
| * |
| * Dir = SK_STOP_TX Stops the transmit path only and resets the MAC. |
| * The receive queue is still active and |
| * the pending Rx frames may be still transferred |
| * into the RxD. |
| * SK_STOP_RX Stop the receive path. The tansmit path |
| * has to be stopped once before. |
| * SK_STOP_ALL SK_STOP_TX + SK_STOP_RX |
| * |
| * RstMode = SK_SOFT_RST Resets the MAC, the PHY is still alive. |
| * SK_HARD_RST Resets the MAC and the PHY. |
| * |
| * Example: |
| * 1) A Link Down event was signaled for a port. Therefore the activity |
| * of this port should be stopped and a hardware reset should be issued |
| * to enable the workaround of XMAC Errata #2. But the received frames |
| * should not be discarded. |
| * ... |
| * SkGeStopPort(pAC, IoC, Port, SK_STOP_TX, SK_HARD_RST); |
| * (transfer all pending Rx frames) |
| * SkGeStopPort(pAC, IoC, Port, SK_STOP_RX, SK_HARD_RST); |
| * ... |
| * |
| * 2) An event was issued which request the driver to switch |
| * the 'virtual active' link to an other already active port |
| * as soon as possible. The frames in the receive queue of this |
| * port may be lost. But the PHY must not be reset during this |
| * event. |
| * ... |
| * SkGeStopPort(pAC, IoC, Port, SK_STOP_ALL, SK_SOFT_RST); |
| * ... |
| * |
| * Extended Description: |
| * If SK_STOP_TX is set, |
| * o disable the MAC's receive and transmitter to prevent |
| * from sending incomplete frames |
| * o stop the port's transmit queues before terminating the |
| * BMUs to prevent from performing incomplete PCI cycles |
| * on the PCI bus |
| * - The network Rx and Tx activity and PCI Tx transfer is |
| * disabled now. |
| * o reset the MAC depending on the RstMode |
| * o Stop Interval Timer and Limit Counter of Tx Arbiter, |
| * also disable Force Sync bit and Enable Alloc bit. |
| * o perform a local reset of the port's Tx path |
| * - reset the PCI FIFO of the async Tx queue |
| * - reset the PCI FIFO of the sync Tx queue |
| * - reset the RAM Buffer async Tx queue |
| * - reset the RAM Buffer sync Tx queue |
| * - reset the MAC Tx FIFO |
| * o switch Link and Tx LED off, stop the LED counters |
| * |
| * If SK_STOP_RX is set, |
| * o stop the port's receive queue |
| * - The path data transfer activity is fully stopped now. |
| * o perform a local reset of the port's Rx path |
| * - reset the PCI FIFO of the Rx queue |
| * - reset the RAM Buffer receive queue |
| * - reset the MAC Rx FIFO |
| * o switch Rx LED off, stop the LED counter |
| * |
| * If all ports are stopped, |
| * o reset the RAM Interface. |
| * |
| * Notes: |
| * o This function may be called during the driver states RESET_PORT and |
| * SWITCH_PORT. |
| */ |
| void SkGeStopPort( |
| SK_AC *pAC, /* Adapter Context */ |
| SK_IOC IoC, /* I/O Context */ |
| int Port, /* Port to stop (MAC_1 + n) */ |
| int Dir, /* Direction to Stop (SK_STOP_RX, SK_STOP_TX, SK_STOP_ALL) */ |
| int RstMode)/* Reset Mode (SK_SOFT_RST, SK_HARD_RST) */ |
| { |
| SK_GEPORT *pPrt; |
| SK_U32 RxCsr; |
| SK_U32 XsCsr; |
| SK_U32 XaCsr; |
| SK_U64 ToutStart; |
| SK_U32 CsrStart; |
| SK_U32 CsrStop; |
| SK_U32 CsrIdle; |
| SK_U32 CsrTest; |
| SK_U8 rsl; /* FIFO read shadow level */ |
| SK_U8 rl; /* FIFO read level */ |
| int i; |
| int ToutCnt; |
| |
| pPrt = &pAC->GIni.GP[Port]; |
| |
| SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL, |
| ("SkGeStopPort: Port %d, Dir %d, RstMode %d\n", |
| Port, Dir, RstMode)); |
| |
| /* set the proper values of Q_CSR register layout depending on the chip */ |
| if (CHIP_ID_YUKON_2(pAC)) { |
| CsrStart = BMU_START; |
| CsrStop = BMU_STOP; |
| CsrIdle = BMU_IDLE; |
| CsrTest = BMU_IDLE; |
| } |
| else { |
| CsrStart = CSR_START; |
| CsrStop = CSR_STOP; |
| CsrIdle = CSR_SV_IDLE; |
| CsrTest = CSR_SV_IDLE | CSR_STOP; |
| } |
| |
| if ((Dir & SK_STOP_TX) != 0) { |
| |
| if (!pAC->GIni.GIAsfEnabled) { |
| /* disable receiver and transmitter */ |
| SkMacRxTxDisable(pAC, IoC, Port); |
| } |
| else if (pAC->GIni.GIChipId == CHIP_ID_YUKON_EX) { |
| /* |
| * Enable flushing of non ASF packets; |
| * required, because MAC is not disabled |
| */ |
| SK_OUT32(IoC, MR_ADDR(Port, RX_GMF_CTRL_T), |
| RXMF_TCTL_MACSEC_FLSH_ENA); |
| } |
| |
| /* stop both transmit queues */ |
| SK_OUT32(IoC, Q_ADDR(pPrt->PXsQOff, Q_CSR), CsrStop); |
| SK_OUT32(IoC, Q_ADDR(pPrt->PXaQOff, Q_CSR), CsrStop); |
| /* |
| * If the BMU is in the reset state CSR_STOP will terminate |
| * immediately. |
| */ |
| |
| ToutStart = SkOsGetTime(pAC); |
| ToutCnt = 0; |
| do { |
| #ifdef GENESIS |
| if (pAC->GIni.GIGenesis) { |
| /* clear Tx packet arbiter timeout IRQ */ |
| SK_OUT16(IoC, B3_PA_CTRL, (SK_U16)((Port == MAC_1) ? |
| PA_CLR_TO_TX1 : PA_CLR_TO_TX2)); |
| /* |
| * If the transfer stucks at the XMAC the STOP command will not |
| * terminate if we don't flush the XMAC's transmit FIFO ! |
| */ |
| SkMacFlushTxFifo(pAC, IoC, Port); |
| } |
| #endif /* GENESIS */ |
| |
| XaCsr = TestStopBit(pAC, IoC, pPrt->PXaQOff); |
| |
| if (HW_SYNC_TX_SUPPORTED(pAC)) { |
| XsCsr = TestStopBit(pAC, IoC, pPrt->PXsQOff); |
| } |
| else { |
| XsCsr = XaCsr; |
| } |
| |
| if (SkOsGetTime(pAC) - ToutStart > (SK_TICKS_PER_SEC / 18)) { |
| /* |
| * Timeout of 1/18 second reached. |
| * This needs to be checked at 1/18 sec only. |
| */ |
| ToutCnt++; |
| if (ToutCnt > 1) { |
| /* |
| * If BMU stop doesn't terminate, we assume that |
| * we have a stable state and can reset the BMU, |
| * the Prefetch Unit, and RAM buffer now. |
| */ |
| break; /* ===> leave do/while loop here */ |
| } |
| /* |
| * Cache incoherency workaround: assume a start command |
| * has been lost while sending the frame. |
| */ |
| ToutStart = SkOsGetTime(pAC); |
| |
| if ((XsCsr & CsrStop) != 0) { |
| SK_OUT32(IoC, Q_ADDR(pPrt->PXsQOff, Q_CSR), CsrStart); |
| } |
| |
| if ((XaCsr & CsrStop) != 0) { |
| SK_OUT32(IoC, Q_ADDR(pPrt->PXaQOff, Q_CSR), CsrStart); |
| } |
| |
| /* |
| * After the previous operations the X(s|a)Csr does no |
| * longer contain the proper values |
| */ |
| XaCsr = TestStopBit(pAC, IoC, pPrt->PXaQOff); |
| |
| if (HW_SYNC_TX_SUPPORTED(pAC)) { |
| XsCsr = TestStopBit(pAC, IoC, pPrt->PXsQOff); |
| } |
| else { |
| XsCsr = XaCsr; |
| } |
| } |
| /* |
| * Because of the ASIC problem report entry from 21.08.1998 it is |
| * required to wait until CSR_STOP is reset and CSR_SV_IDLE is set. |
| * (valid for GENESIS only) |
| */ |
| } while (((XsCsr & CsrTest) != CsrIdle || |
| (XaCsr & CsrTest) != CsrIdle)); |
| |
| if (pAC->GIni.GIAsfEnabled) { |
| |
| pPrt->PState = (RstMode == SK_SOFT_RST) ? SK_PRT_STOP : |
| SK_PRT_RESET; |
| } |
| else { |
| /* Reset the MAC depending on the RstMode */ |
| if (RstMode == SK_SOFT_RST) { |
| |
| SkMacSoftRst(pAC, IoC, Port); |
| } |
| else { |
| #ifdef SK_DIAG |
| if (HW_FEATURE(pAC, HWF_WA_DEV_472) && Port == MAC_1 && |
| pAC->GIni.GP[MAC_2].PState == SK_PRT_RUN) { |
| |
| pAC->GIni.GP[MAC_1].PState = SK_PRT_RESET; |
| |
| /* set GPHY Control reset */ |
| SK_OUT8(IoC, MR_ADDR(MAC_1, GPHY_CTRL), (SK_U8)GPC_RST_SET); |
| } |
| else { |
| |
| SkMacHardRst(pAC, IoC, Port); |
| } |
| #else /* !SK_DIAG */ |
| SkMacHardRst(pAC, IoC, Port); |
| #endif /* !SK_DIAG */ |
| } |
| } |
| |
| /* disable Force Sync bit and Enable Alloc bit */ |
| SK_OUT8(IoC, MR_ADDR(Port, TXA_CTRL), |
| TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC); |
| |
| /* Stop Interval Timer and Limit Counter of Tx Arbiter */ |
| SK_OUT32(IoC, MR_ADDR(Port, TXA_ITI_INI), 0L); |
| SK_OUT32(IoC, MR_ADDR(Port, TXA_LIM_INI), 0L); |
| |
| /* Perform a local reset of the port's Tx path */ |
| if (CHIP_ID_YUKON_2(pAC)) { |
| /* Reset the PCI FIFO of the async Tx queue */ |
| SK_OUT32(IoC, Q_ADDR(pPrt->PXaQOff, Q_CSR), |
| BMU_RST_SET | BMU_FIFO_RST); |
| |
| /* Reset the PCI FIFO of the sync Tx queue */ |
| SK_OUT32(IoC, Q_ADDR(pPrt->PXsQOff, Q_CSR), |
| BMU_RST_SET | BMU_FIFO_RST); |
| |
| /* Reset the Tx prefetch units */ |
| SK_OUT32(IoC, Y2_PREF_Q_ADDR(pPrt->PXaQOff, PREF_UNIT_CTRL_REG), |
| PREF_UNIT_RST_SET); |
| SK_OUT32(IoC, Y2_PREF_Q_ADDR(pPrt->PXsQOff, PREF_UNIT_CTRL_REG), |
| PREF_UNIT_RST_SET); |
| } |
| else { |
| /* Reset the PCI FIFO of the async Tx queue */ |
| SK_OUT32(IoC, Q_ADDR(pPrt->PXaQOff, Q_CSR), CSR_SET_RESET); |
| /* Reset the PCI FIFO of the sync Tx queue */ |
| SK_OUT32(IoC, Q_ADDR(pPrt->PXsQOff, Q_CSR), CSR_SET_RESET); |
| } |
| |
| /* Reset the RAM Buffer async Tx queue */ |
| SK_OUT8(IoC, RB_ADDR(pPrt->PXaQOff, RB_CTRL), RB_RST_SET); |
| /* Reset the RAM Buffer sync Tx queue */ |
| SK_OUT8(IoC, RB_ADDR(pPrt->PXsQOff, RB_CTRL), RB_RST_SET); |
| |
| /* Reset Tx MAC FIFO */ |
| #ifdef GENESIS |
| if (pAC->GIni.GIGenesis) { |
| /* Note: MFF_RST_SET does NOT reset the XMAC ! */ |
| SK_OUT8(IoC, MR_ADDR(Port, TX_MFF_CTRL2), MFF_RST_SET); |
| |
| /* switch Link and Tx LED off, stop the LED counters */ |
| /* Link LED is switched off by the RLMT and the Diag itself */ |
| SkGeXmitLED(pAC, IoC, MR_ADDR(Port, TX_LED_INI), SK_LED_DIS); |
| } |
| #endif /* GENESIS */ |
| |
| #ifdef YUKON |
| if (pAC->GIni.GIYukon) { |
| /* do the reset only if ASF is not enabled */ |
| if (!pAC->GIni.GIAsfEnabled) { |
| /* Reset Tx MAC FIFO */ |
| SK_OUT8(IoC, MR_ADDR(Port, TX_GMF_CTRL_T), (SK_U8)GMF_RST_SET); |
| } |
| |
| /* set Pause Off */ |
| SK_OUT8(IoC, MR_ADDR(Port, GMAC_CTRL), (SK_U8)GMC_PAUSE_OFF); |
| } |
| #endif /* YUKON */ |
| } |
| |
| if ((Dir & SK_STOP_RX) != 0) { |
| |
| if (CHIP_ID_YUKON_2(pAC)) { |
| /* |
| * The RX Stop command will not work for Yukon-2 if the BMU does not |
| * reach the end of packet and since we can't make sure that we have |
| * incoming data, we must reset the BMU while it is not during a DMA |
| * transfer. Since it is possible that the RX path is still active, |
| * the RX RAM buffer will be stopped first, so any possible incoming |
| * data will not trigger a DMA. After the RAM buffer is stopped, the |
| * BMU is polled until any DMA in progress is ended and only then it |
| * will be reset. |
| */ |
| |
| /* disable the RAM Buffer receive queue */ |
| SK_OUT8(IoC, RB_ADDR(pPrt->PRxQOff, RB_CTRL), RB_DIS_OP_MD); |
| |
| i = 0xffff; |
| while (--i) { |
| SK_IN8(IoC, RB_ADDR(pPrt->PRxQOff, Q_RX_RSL), &rsl); |
| SK_IN8(IoC, RB_ADDR(pPrt->PRxQOff, Q_RX_RL), &rl); |
| |
| if (rsl == rl) { |
| break; |
| } |
| } |
| |
| /* |
| * If the Rx side is blocked, the above loop cannot terminate. |
| * But, if there was any traffic it should be terminated, now. |
| * However, stop the Rx BMU and the Prefetch Unit ! |
| */ |
| SK_OUT32(IoC, Q_ADDR(pPrt->PRxQOff, Q_CSR), |
| BMU_RST_SET | BMU_FIFO_RST); |
| /* reset the Rx prefetch unit */ |
| SK_OUT32(IoC, Y2_PREF_Q_ADDR(pPrt->PRxQOff, PREF_UNIT_CTRL_REG), |
| PREF_UNIT_RST_SET); |
| } |
| else { |
| /* |
| * The RX Stop Command will not terminate if no buffers |
| * are queued in the RxD ring. But it will always reach |
| * the Idle state. Therefore we can use this feature to |
| * stop the transfer of received packets. |
| */ |
| /* stop the port's receive queue */ |
| SK_OUT32(IoC, Q_ADDR(pPrt->PRxQOff, Q_CSR), CsrStop); |
| |
| i = 100; |
| do { |
| #ifdef GENESIS |
| if (pAC->GIni.GIGenesis) { |
| /* clear Rx packet arbiter timeout IRQ */ |
| SK_OUT16(IoC, B3_PA_CTRL, (SK_U16)((Port == MAC_1) ? |
| PA_CLR_TO_RX1 : PA_CLR_TO_RX2)); |
| } |
| #endif /* GENESIS */ |
| |
| RxCsr = TestStopBit(pAC, IoC, pPrt->PRxQOff); |
| |
| /* timeout if i==0 (bug fix for #10748) */ |
| if (--i == 0) { |
| SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_HWI_E024, |
| SKERR_HWI_E024MSG); |
| break; |
| } |
| /* |
| * Because of the ASIC problem report entry from 21.08.1998 it is |
| * required to wait until CSR_STOP is reset and CSR_SV_IDLE is set. |
| * (valid for GENESIS only) |
| */ |
| } while ((RxCsr & CsrTest) != CsrIdle); |
| /* The path data transfer activity is fully stopped now */ |
| |
| /* Perform a local reset of the port's Rx path */ |
| /* Reset the PCI FIFO of the Rx queue */ |
| SK_OUT32(IoC, Q_ADDR(pPrt->PRxQOff, Q_CSR), CSR_SET_RESET); |
| } |
| |
| /* Reset the RAM Buffer receive queue */ |
| SK_OUT8(IoC, RB_ADDR(pPrt->PRxQOff, RB_CTRL), RB_RST_SET); |
| |
| #ifdef GENESIS |
| if (pAC->GIni.GIGenesis) { |
| /* Reset Rx MAC FIFO */ |
| SK_OUT8(IoC, MR_ADDR(Port, RX_MFF_CTRL2), MFF_RST_SET); |
| |
| /* switch Rx LED off, stop the LED counter */ |
| SkGeXmitLED(pAC, IoC, MR_ADDR(Port, RX_LED_INI), SK_LED_DIS); |
| } |
| #endif /* GENESIS */ |
| |
| #ifdef YUKON |
| if (pAC->GIni.GIYukon && !pAC->GIni.GIAsfEnabled) { |
| /* Reset Rx MAC FIFO */ |
| SK_OUT8(IoC, MR_ADDR(Port, RX_GMF_CTRL_T), (SK_U8)GMF_RST_SET); |
| } |
| |
| #ifndef NDIS_MINIPORT_DRIVER /* temp. ifndef, remove after PM module rework*/ |
| /* WA for Dev. #4.169 */ |
| if ((pAC->GIni.GIChipId == CHIP_ID_YUKON || |
| pAC->GIni.GIChipId == CHIP_ID_YUKON_LITE) && |
| RstMode == SK_HARD_RST) { |
| /* set Link Control reset */ |
| SK_OUT8(IoC, MR_ADDR(Port, GMAC_LINK_CTRL), (SK_U8)GMLC_RST_SET); |
| |
| /* clear Link Control reset */ |
| SK_OUT8(IoC, MR_ADDR(Port, GMAC_LINK_CTRL), (SK_U8)GMLC_RST_CLR); |
| } |
| #endif /* !NDIS_MINIPORT */ |
| #endif /* YUKON */ |
| } |
| } /* SkGeStopPort */ |
| |
| |
| /****************************************************************************** |
| * |
| * SkGeInit0() - Level 0 Initialization |
| * |
| * Description: |
| * - Initialize the BMU address offsets |
| * |
| * Returns: |
| * nothing |
| */ |
| static void SkGeInit0( |
| SK_AC *pAC, /* Adapter Context */ |
| SK_IOC IoC) /* I/O Context */ |
| { |
| int i; |
| SK_GEPORT *pPrt; |
| |
| for (i = 0; i < SK_MAX_MACS; i++) { |
| pPrt = &pAC->GIni.GP[i]; |
| |
| pPrt->PState = SK_PRT_RESET; |
| pPrt->PPortUsage = SK_RED_LINK; |
| pPrt->PRxQOff = QOffTab[i].RxQOff; |
| pPrt->PXsQOff = QOffTab[i].XsQOff; |
| pPrt->PXaQOff = QOffTab[i].XaQOff; |
| pPrt->PCheckPar = SK_FALSE; |
| pPrt->PIsave = 0; |
| pPrt->PPrevShorts = 0; |
| pPrt->PLinkResCt = 0; |
| pPrt->PAutoNegTOCt = 0; |
| pPrt->PPrevRx = 0; |
| pPrt->PPrevFcs = 0; |
| pPrt->PRxLim = SK_DEF_RX_WA_LIM; |
| pPrt->PLinkMode = (SK_U8)SK_LMODE_AUTOFULL; |
| pPrt->PLinkSpeedCap = (SK_U8)SK_LSPEED_CAP_1000MBPS; |
| pPrt->PLinkSpeed = (SK_U8)SK_LSPEED_1000MBPS; |
| pPrt->PLinkSpeedUsed = (SK_U8)SK_LSPEED_STAT_UNKNOWN; |
| pPrt->PLinkModeConf = (SK_U8)SK_LMODE_AUTOSENSE; |
| pPrt->PFlowCtrlMode = (SK_U8)SK_FLOW_MODE_SYM_OR_REM; |
| pPrt->PLinkCap = (SK_U8)(SK_LMODE_CAP_HALF | SK_LMODE_CAP_FULL | |
| SK_LMODE_CAP_AUTOHALF | SK_LMODE_CAP_AUTOFULL); |
| pPrt->PLinkModeStatus = (SK_U8)SK_LMODE_STAT_UNKNOWN; |
| pPrt->PFlowCtrlCap = (SK_U8)SK_FLOW_MODE_SYM_OR_REM; |
| pPrt->PFlowCtrlStatus = (SK_U8)SK_FLOW_STAT_NONE; |
| pPrt->PMSCap = 0; |
| pPrt->PMSMode = (SK_U8)SK_MS_MODE_AUTO; |
| pPrt->PMSStatus = (SK_U8)SK_MS_STAT_UNSET; |
| pPrt->PLipaAutoNeg = (SK_U8)SK_LIPA_UNKNOWN; |
| pPrt->PEnDetMode = SK_FALSE; |
| pPrt->PAutoNegFail = SK_FALSE; |
| pPrt->PHWLinkUp = SK_FALSE; |
| pPrt->PLinkBroken = SK_TRUE; /* See WA code */ |
| pPrt->PPhyPowerState = PHY_PM_OPERATIONAL_MODE; |
| pPrt->PMacColThres = TX_COL_DEF; |
| pPrt->PMacJamLen = TX_JAM_LEN_DEF; |
| pPrt->PMacJamIpgVal = TX_JAM_IPG_DEF; |
| pPrt->PMacJamIpgData = TX_IPG_JAM_DEF; |
| pPrt->PMacBackOffLim = TX_BOF_LIM_DEF; |
| pPrt->PMacDataBlind = DATA_BLIND_DEF; |
| pPrt->PMacIpgData = IPG_DATA_DEF; |
| pPrt->PMacLimit4 = SK_FALSE; |
| } |
| |
| pAC->GIni.GILedBlinkCtrl = (SK_U16)OemConfig.Value; |
| pAC->GIni.GIChipCap = 0; |
| pAC->GIni.GIPexCapOffs = 0; |
| pAC->GIni.GIExtLeFormat = SK_FALSE; |
| pAC->GIni.GIJumTcpSegSup = SK_FALSE; |
| pAC->GIni.GIGotoD3Cold = SK_FALSE; |
| pAC->GIni.GIVMainAvail = SK_TRUE; |
| pAC->GIni.GITxIdxRepThres = 10; |
| |
| for (i = 0; i < 4; i++) { |
| pAC->GIni.HwF.Features[i] = 0x00000000; |
| pAC->GIni.HwF.OnMask[i] = 0x00000000; |
| pAC->GIni.HwF.OffMask[i] = 0x00000000; |
| } |
| |
| } /* SkGeInit0*/ |
| |
| #ifdef SK_PCI_RESET |
| /****************************************************************************** |
| * |
| * SkGePciReset() - Reset PCI interface |
| * |
| * Description: |
| * o Read PCI configuration. |
| * o Change power state to 3. |
| * o Change power state to 0. |
| * o Restore PCI configuration. |
| * |
| * Returns: |
| * 0: Success. |
| * 1: Power state could not be changed to 3. |
| */ |
| static int SkGePciReset( |
| SK_AC *pAC, /* Adapter Context */ |
| SK_IOC IoC) /* I/O Context */ |
| { |
| int i; |
| SK_U16 PmCtlSts; |
| SK_U32 Bp1; |
| SK_U32 Bp2; |
| SK_U16 PciCmd; |
| SK_U8 Cls; |
| SK_U8 Lat; |
| SK_U8 ConfigSpace[PCI_CFG_SIZE]; |
| |
| /* |
| * Note: Switching to D3 state is like a software reset. |
| * Switching from D3 to D0 is a hardware reset. |
| * We have to save and restore the configuration space. |
| */ |
| for (i = 0; i < PCI_CFG_SIZE; i++) { |
| SkPciReadCfgDWord(pAC, i*4, &ConfigSpace[i]); |
| } |
| |
| /* We know the RAM Interface Arbiter is enabled. */ |
| SkPciWriteCfgWord(pAC, PCI_PM_CTL_STS, PCI_PM_STATE_D3); |
| |
| SkPciReadCfgWord(pAC, PCI_PM_CTL_STS, &PmCtlSts); |
| |
| if ((PmCtlSts & PCI_PM_STATE_MSK) != PCI_PM_STATE_D3) { |
| return(1); |
| } |
| |
| /* Return to D0 state. */ |
| SkPciWriteCfgWord(pAC, PCI_PM_CTL_STS, PCI_PM_STATE_D0); |
| |
| /* Check for D0 state. */ |
| SkPciReadCfgWord(pAC, PCI_PM_CTL_STS, &PmCtlSts); |
| |
| if ((PmCtlSts & PCI_PM_STATE_MSK) != PCI_PM_STATE_D0) { |
| return(1); |
| } |
| |
| /* Check PCI Config Registers. */ |
| SkPciReadCfgWord(pAC, PCI_COMMAND, &PciCmd); |
| SkPciReadCfgByte(pAC, PCI_CACHE_LSZ, &Cls); |
| SkPciReadCfgDWord(pAC, PCI_BASE_1ST, &Bp1); |
| |
| /* |
| * Compute the location in PCI config space of BAR2 |
| * relativ to the location of BAR1 |
| */ |
| if ((Bp1 & PCI_MEM_TYP_MSK) == PCI_MEM64BIT) { |
| /* BAR1 is 64 bits wide */ |
| i = 8; |
| } |
| else { |
| i = 4; |
| } |
| |
| SkPciReadCfgDWord(pAC, PCI_BASE_1ST + i, &Bp2); |
| SkPciReadCfgByte(pAC, PCI_LAT_TIM, &Lat); |
| |
| if (PciCmd != 0 || Cls != 0 || (Bp1 & 0xfffffff0L) != 0 || Bp2 != 1 || |
| Lat != 0) { |
| return(1); |
| } |
| |
| /* Restore PCI Config Space. */ |
| for (i = 0; i < PCI_CFG_SIZE; i++) { |
| SkPciWriteCfgDWord(pAC, i*4, ConfigSpace[i]); |
| } |
| |
| return(0); |
| } /* SkGePciReset */ |
| #endif /* SK_PCI_RESET */ |
| |
| |
| /****************************************************************************** |
| * |
| * SkGeSetUpSupFeatures() - Collect Feature List for HW_FEATURE Macro |
| * |
| * Description: |
| * This function collects the available features and required |
| * deviation services of the Adapter and provides these |
| * information in the GIHwF struct. This information is used as |
| * default value and may be overritten by the driver using the |
| * SET_HW_FEATURE_MASK() macro in its Init0 phase. |
| * |
| * Notice: |
| * Using the On and Off mask: Never switch on the same bit in both |
| * masks simultaneously. However, if doing the Off mask will win. |
| * |
| * Returns: |
| * nothing |
| */ |
| static void SkGeSetUpSupFeatures( |
| SK_AC *pAC, /* Adapter Context */ |
| SK_IOC IoC) /* I/O Context */ |
| { |
| int i; |
| SK_U16 Word; |
| |
| switch (pAC->GIni.GIChipId) { |
| case CHIP_ID_YUKON_EC: |
| pAC->GIni.GIJumTcpSegSup = SK_TRUE; |
| |
| if (pAC->GIni.GIChipRev == CHIP_REV_YU_EC_A1) { |
| /* A0/A1 */ |
| pAC->GIni.HwF.Features[HW_DEV_LIST] = |
| HWF_WA_DEV_42 | HWF_WA_DEV_46 | HWF_WA_DEV_43_418 | |
| HWF_WA_DEV_420 | HWF_WA_DEV_423 | HWF_WA_DEV_424 | |
| HWF_WA_DEV_425 | HWF_WA_DEV_427 | HWF_WA_DEV_428 | |
| HWF_WA_DEV_483 | HWF_WA_DEV_4109 | |
| HWF_WA_DEV_4152 | HWF_WA_DEV_4167; |
| } |
| else { |
| /* A2/A3 */ |
| pAC->GIni.HwF.Features[HW_DEV_LIST] = |
| HWF_WA_DEV_424 | HWF_WA_DEV_425 | HWF_WA_DEV_427 | |
| HWF_WA_DEV_428 | HWF_WA_DEV_483 | HWF_WA_DEV_4109 | |
| HWF_WA_DEV_4152 | HWF_WA_DEV_4167; |
| } |
| pAC->GIni.HwF.Features[HW_DEV_LIST] |= HWF_WA_DEV_4222 | HWF_WA_DEV_463; |
| break; |
| case CHIP_ID_YUKON_FE: |
| pAC->GIni.HwF.Features[HW_DEV_LIST] = |
| HWF_WA_DEV_427 | HWF_WA_DEV_4109 | HWF_WA_DEV_463 | |
| HWF_WA_DEV_4152 | HWF_WA_DEV_4167 | HWF_WA_DEV_4222; |
| break; |
| case CHIP_ID_YUKON_XL: |
| pAC->GIni.GIJumTcpSegSup = SK_TRUE; |
| |
| switch (pAC->GIni.GIChipRev) { |
| case CHIP_REV_YU_XL_A0: /* still needed for Diag */ |
| pAC->GIni.HwF.Features[HW_DEV_LIST] = |
| HWF_WA_DEV_427 | HWF_WA_DEV_463 | HWF_WA_DEV_472 | |
| HWF_WA_DEV_479 | HWF_WA_DEV_483 | HWF_WA_DEV_4115 | |
| HWF_WA_DEV_4152 | HWF_WA_DEV_4167; |
| break; |
| |
| case CHIP_REV_YU_XL_A1: |
| pAC->GIni.HwF.Features[HW_DEV_LIST] = |
| HWF_WA_DEV_427 | HWF_WA_DEV_483 | HWF_WA_DEV_4109 | |
| HWF_WA_DEV_4115 | HWF_WA_DEV_4152 | HWF_WA_DEV_4167; |
| break; |
| |
| case CHIP_REV_YU_XL_A2: |
| pAC->GIni.HwF.Features[HW_DEV_LIST] = |
| HWF_WA_DEV_427 | HWF_WA_DEV_483 | HWF_WA_DEV_4109 | |
| HWF_WA_DEV_4115 | HWF_WA_DEV_4167; |
| break; |
| |
| case CHIP_REV_YU_XL_A3: |
| pAC->GIni.HwF.Features[HW_DEV_LIST] = |
| HWF_WA_DEV_427 | HWF_WA_DEV_483 | HWF_WA_DEV_4109 | |
| HWF_WA_DEV_4115; |
| break; |
| } |
| if (pAC->GIni.GIPciBus == SK_PEX_BUS) { |
| pAC->GIni.HwF.Features[HW_DEV_LIST] |= HWF_WA_DEV_4222; |
| } |
| break; |
| case CHIP_ID_YUKON_EC_U: |
| if (pAC->GIni.GIChipRev == CHIP_REV_YU_EC_U_A0) { |
| pAC->GIni.HwF.Features[HW_DEV_LIST] = |
| HWF_WA_DEV_427 | HWF_WA_DEV_483 | HWF_WA_DEV_4109 | |
| HWF_WA_DEV_4217; |
| } |
| else if (pAC->GIni.GIChipRev == CHIP_REV_YU_EC_U_A1) { |
| pAC->GIni.HwF.Features[HW_DEV_LIST] = |
| HWF_WA_DEV_427 | HWF_WA_DEV_4109 | HWF_WA_DEV_4185 | |
| HWF_WA_DEV_4217; |
| |
| /* check for Rev. A1 */ |
| SK_IN16(IoC, Q_ADDR(Q_XA1, Q_WM), &Word); |
| |
| if (Word == 0) { |
| pAC->GIni.HwF.Features[HW_DEV_LIST] |= |
| HWF_WA_DEV_4185CS | HWF_WA_DEV_4200; |
| } |
| } |
| else { /* CHIP_REV_YU_EC_U_B0 */ |
| pAC->GIni.HwF.Features[HW_DEV_LIST] = |
| HWF_WA_DEV_427 | HWF_WA_DEV_4109 | HWF_WA_DEV_4185 | |
| HWF_WA_DEV_4217; |
| pAC->GIni.HwF.Features[HW_FEAT_LIST] |= HWF_ENA_POW_SAV_W_WOL; |
| } |
| pAC->GIni.HwF.Features[HW_DEV_LIST] |= HWF_WA_DEV_4222; |
| |
| break; |
| case CHIP_ID_YUKON_EX: |
| if (pAC->GIni.GIChipRev == CHIP_REV_YU_EX_A0) { |
| pAC->GIni.HwF.Features[HW_DEV_LIST] = |
| HWF_WA_DEV_4217 | HWF_WA_DEV_LIM_IPV6_RSS | HWF_WA_DEV_53 | |
| HWF_WA_DEV_54 | HWF_WA_DEV_56 | HWF_WA_DEV_4109 | |
| HWF_WA_DEV_4222; |
| pAC->GIni.HwF.Features[HW_DEV_LIST_2] = HWF_WA_DEV_51; |
| } |
| else { |
| if (pAC->GIni.GIChipRev == CHIP_REV_YU_EX_B0) { |
| pAC->GIni.HwF.Features[HW_DEV_LIST_2] = |
| HWF_WA_DEV_510 | HWF_WA_DEV_511; |
| } |
| pAC->GIni.HwF.Features[HW_FEAT_LIST] = |
| HWF_ADV_CSUM_SUPPORT | HWF_PSM_SUPPORTED | HWF_ENA_POW_SAV_W_WOL; |
| pAC->GIni.HwF.Features[HW_DEV_LIST] = HWF_WA_DEV_4109; |
| pAC->GIni.GIJumTcpSegSup = SK_TRUE; |
| } |
| break; |
| case CHIP_ID_YUKON_FE_P: |
| pAC->GIni.HwF.Features[HW_FEAT_LIST] = |
| HWF_ADV_CSUM_SUPPORT | HWF_PSM_SUPPORTED | HWF_ENA_POW_SAV_W_WOL; |
| pAC->GIni.HwF.Features[HW_DEV_LIST] = HWF_WA_DEV_4109; |
| |
| if (pAC->GIni.GIChipRev == CHIP_REV_YU_FE2_A0) { |
| pAC->GIni.HwF.Features[HW_DEV_LIST_2] = |
| HWF_WA_DEV_520 | HWF_WA_DEV_521; |
| } |
| break; |
| } |
| |
| for (i = 0; i < 4; i++) { |
| pAC->GIni.HwF.Features[i] = |
| (pAC->GIni.HwF.Features[i] | pAC->GIni.HwF.OnMask[i]) & |
| ~pAC->GIni.HwF.OffMask[i]; |
| } |
| } /* SkGeSetUpSupFeatures */ |
| |
| |
| /****************************************************************************** |
| * |
| * SkGeInit1() - Level 1 Initialization |
| * |
| * Description: |
| * o Do a software reset. |
| * o Clear all reset bits. |
| * o Verify that the detected hardware is present. |
| * Return an error if not. |
| * o Get the hardware configuration |
| * + Read the number of MACs/Ports. |
| * + Read the RAM size. |
| * + Read the PCI Revision Id. |
| * + Find out the adapters host clock speed |
| * + Read and check the PHY type |
| * |
| * Returns: |
| * 0: success |
| * 5: Unexpected PHY type detected |
| * 6: HW self test failed |
| */ |
| static int SkGeInit1( |
| SK_AC *pAC, /* Adapter Context */ |
| SK_IOC IoC) /* I/O Context */ |
| { |
| SK_U8 Byte; |
| SK_U16 Word; |
| SK_U32 CtrlStat; |
| SK_U32 VauxAvail; |
| SK_U32 DWord; |
| SK_U32 Our1; |
| SK_U32 PowerDownBit; |
| SK_BOOL FiberType; |
| SK_GEPORT *pPrt; |
| int LedCfg; |
| int RetVal; |
| int i, j; |
| |
| RetVal = 0; |
| |
| #ifdef SK_SLIM |
| #ifndef SK_ASF |
| SkPciWriteCfgDWord(IoC, PCI_OUR_REG_3, 0); |
| #endif /* !SK_ASF */ |
| #else /* !SK_SLIM */ |
| /* read Chip Identification Number */ |
| SK_IN8(IoC, B2_CHIP_ID, &Byte); |
| pAC->GIni.GIChipId = Byte; |
| |
| if (Byte == CHIP_ID_YUKON_EC_U || Byte == CHIP_ID_YUKON_EX) { |
| /* Enable all clocks: otherwise the system will hang */ |
| /* Do not use PCI_C here */ |
| SK_OUT32(IoC, Y2_CFG_SPC + PCI_OUR_REG_3, 0); |
| } |
| #endif /* !SK_SLIM */ |
| |
| /* save CLK_RUN & ASF_ENABLE bits (YUKON-Lite, YUKON-EC) */ |
| SK_IN32(IoC, B0_CTST, &CtrlStat); |
| |
| #ifdef SK_PCI_RESET |
| (void)SkGePciReset(pAC, IoC); |
| #endif /* SK_PCI_RESET */ |
| |
| /* release the SW-reset */ |
| /* Important: SW-reset has to be cleared here, to ensure |
| * the CHIP_ID can be read I/O-mapped based, too - |
| * remember the RAP register can only be written if SW-reset is cleared. |
| */ |
| SK_OUT8(IoC, B0_CTST, CS_RST_CLR); |
| |
| #ifdef SK_SLIM |
| /* read Chip Identification Number */ |
| SK_IN8(IoC, B2_CHIP_ID, &Byte); |
| pAC->GIni.GIChipId = Byte; |
| |
| pAC->GIni.GIAsfEnabled = SK_FALSE; |
| #endif /* SK_SLIM */ |
| |
| /* ASF support only for Yukon-2 */ |
| if ((pAC->GIni.GIChipId >= CHIP_ID_YUKON_XL) && |
| (pAC->GIni.GIChipId <= CHIP_ID_YUKON_EC)) { |
| #ifdef SK_ASF |
| if ((CtrlStat & Y2_ASF_ENABLE) != 0) { |
| /* do the SW-reset only if ASF is not enabled */ |
| pAC->GIni.GIAsfEnabled = SK_TRUE; |
| } |
| #else /* !SK_ASF */ |
| |
| /* put ASF system in reset state */ |
| if (pAC->GIni.GIChipId == CHIP_ID_YUKON_EX) { |
| /* Do not touch bit 5..3 */ |
| SK_IN16(IoC, B28_Y2_ASF_STAT_CMD, &Word); |
| |
| pAC->GIni.GIAsfRunning = |
| ((Word & HCU_CCSR_UC_STATE_MSK) == HCU_CCSR_ASF_RUNNING); |
| |
| Word &= ~(HCU_CCSR_AHB_RST | HCU_CCSR_CPU_RST_MODE | |
| HCU_CCSR_UC_STATE_MSK); |
| |
| SK_OUT16(IoC, B28_Y2_ASF_STAT_CMD, Word); |
| } |
| else { /* Yukon-EC / Yukon-2 */ |
| SK_IN8(IoC, B28_Y2_ASF_STAT_CMD, &Byte); |
| |
| pAC->GIni.GIAsfRunning = Byte & Y2_ASF_RUNNING; |
| |
| SK_OUT8(IoC, B28_Y2_ASF_STAT_CMD, (SK_U8)Y2_ASF_RESET); |
| } |
| |
| /* disable ASF Unit */ |
| SK_OUT16(IoC, B0_CTST, Y2_ASF_DISABLE); |
| #endif /* !SK_ASF */ |
| } |
| |
| if (!pAC->GIni.GIAsfEnabled) { |
| /* Yukon-2: required for Diag and Power Management */ |
| /* set the SW-reset */ |
| SK_OUT8(IoC, B0_CTST, CS_RST_SET); |
| |
| /* release the SW-reset */ |
| SK_OUT8(IoC, B0_CTST, CS_RST_CLR); |
| } |
| |
| /* enable Config Write */ |
| SK_TST_MODE_ON(IoC); |
| |
| /* reset all error bits in the PCI STATUS register */ |
| /* |
| * Note: PCI Cfg cycles cannot be used, because they are not |
| * available on some platforms after 'boot time'. |
| */ |
| SK_IN16(IoC, PCI_C(pAC, PCI_STATUS), &Word); |
| |
| SK_OUT16(IoC, PCI_C(pAC, PCI_STATUS), Word | (SK_U16)PCI_ERRBITS); |
| |
| /* release Master Reset */ |
| SK_OUT8(IoC, B0_CTST, CS_MRST_CLR); |
| |
| #ifdef CLK_RUN |
| CtrlStat |= CS_CLK_RUN_ENA; |
| |
| /* restore CLK_RUN bits */ |
| SK_OUT16(IoC, B0_CTST, (SK_U16)(CtrlStat & |
| (CS_CLK_RUN_HOT | CS_CLK_RUN_RST | CS_CLK_RUN_ENA))); |
| #endif /* CLK_RUN */ |
| |
| if ((pAC->GIni.GIChipId >= CHIP_ID_YUKON_XL) && |
| (pAC->GIni.GIChipId <= CHIP_ID_YUKON_FE_P)) { |
| |
| pAC->GIni.GIYukon2 = SK_TRUE; |
| pAC->GIni.GIValIrqMask = Y2_IS_ALL_MSK; |
| pAC->GIni.GIValHwIrqMask = Y2_HWE_ALL_MSK; |
| |
| VauxAvail = Y2_VAUX_AVAIL; |
| |
| /* check if VMAIN is available */ |
| if ((CtrlStat & Y2_VMAIN_AVAIL) == 0) { |
| pAC->GIni.GIVMainAvail = SK_FALSE; |
| } |
| |
| /* needed before using PEX_CAP_REG() macro */ |
| if ((pAC->GIni.GIChipId == CHIP_ID_YUKON_EX && |
| pAC->GIni.GIChipRev > CHIP_REV_YU_EX_A0) || |
| pAC->GIni.GIChipId == CHIP_ID_YUKON_FE_P) { |
| |
| pAC->GIni.GIPexCapOffs = PEX_CAP_REG_OFFS; |
| } |
| |
| SK_IN32(IoC, PCI_C(pAC, PCI_OUR_STATUS), &DWord); |
| |
| if ((DWord & PCI_OS_PCI_X) != 0) { |
| #ifndef SK_SLIM |
| /* this is a PCI / PCI-X bus */ |
| if ((DWord & PCI_OS_PCIX) != 0) { |
| /* this is a PCI-X bus */ |
| pAC->GIni.GIPciBus = SK_PCIX_BUS; |
| |
| /* PCI-X is always 64-bit wide */ |
| pAC->GIni.GIPciSlot64 = SK_TRUE; |
| |
| pAC->GIni.GIPciMode = (SK_U8)(PCI_OS_SPEED(DWord)); |
| } |
| else { |
| /* this is a conventional PCI bus */ |
| pAC->GIni.GIPciBus = SK_PCI_BUS; |
| |
| SK_IN16(IoC, PCI_C(pAC, PCI_OUR_REG_2), &Word); |
| |
| /* check if 64-bit width is used */ |
| pAC->GIni.GIPciSlot64 = (SK_BOOL) |
| (((DWord & PCI_OS_PCI64B) != 0) && |
| ((Word & PCI_USEDATA64) != 0)); |
| |
| /* check if 66 MHz PCI Clock is active */ |
| pAC->GIni.GIPciClock66 = (SK_BOOL)((DWord & PCI_OS_PCI66M) != 0); |
| } |
| #endif /* !SK_SLIM */ |
| } |
| else { |
| /* this is a PEX bus */ |
| pAC->GIni.GIPciBus = SK_PEX_BUS; |
| |
| /* clear any PEX errors */ |
| SK_OUT32(IoC, PCI_C(pAC, PEX_UNC_ERR_STAT), 0xffffffffUL); |
| |
| SK_IN32(IoC, PCI_C(pAC, PEX_UNC_ERR_STAT), &DWord); |
| |
| if ((DWord & PEX_RX_OV) != 0) { |
| /* Dev. #4.205 occured */ |
| pAC->GIni.GIValHwIrqMask &= ~Y2_IS_PCI_EXP; |
| pAC->GIni.GIValIrqMask &= ~Y2_IS_HW_ERR; |
| } |
| |
| SK_IN16(IoC, PCI_C(pAC, PEX_CAP_REGS(PEX_LNK_STAT)), &Word); |
| |
| pAC->GIni.GIPexWidth = (SK_U8)((Word & PEX_LS_LINK_WI_MSK) >> 4); |
| } |
| /* |
| * Yukon-2 chips family has a different way of providing |
| * the number of MACs available |
| */ |
| pAC->GIni.GIMacsFound = 1; |
| |
| /* get HW Resources */ |
| SK_IN8(IoC, B2_Y2_HW_RES, &Byte); |
| |
| if (CHIP_ID_YUKON_2(pAC)) { |
| /* |
| * OEM config value is overwritten and should not |
| * be used for Yukon-2 |
| */ |
| pAC->GIni.GILedBlinkCtrl |= SK_ACT_LED_BLINK; |
| |
| #ifndef SK_SLIM |
| if (pAC->GIni.GIChipId == CHIP_ID_YUKON_EC_U || |
| pAC->GIni.GIChipId == CHIP_ID_YUKON_EX || |
| pAC->GIni.GIChipId == CHIP_ID_YUKON_FE_P) { |
| /* LED Configuration is stored in GPIO */ |
| SK_IN8(IoC, B2_GP_IO, &Byte); |
| } |
| #endif /* !SK_SLIM */ |
| |
| if ((LedCfg = CFG_LED_MODE(Byte)) == CFG_LED_DUAL_ACT_LNK) { |
| |
| pAC->GIni.GILedBlinkCtrl |= SK_DUAL_LED_ACT_LNK; |
| } |
| else if (LedCfg == CFG_LED_LINK_MUX_P60) { |
| /* LED pin 60 used differently */ |
| pAC->GIni.GILedBlinkCtrl |= SK_LED_LINK_MUX_P60; |
| } |
| else if (LedCfg == CFG_LED_ACT_OFF_NOTR) { |
| /* Activity LED off if no traffic */ |
| pAC->GIni.GILedBlinkCtrl |= SK_ACT_LED_NOTR_OFF; |
| } |
| else if (LedCfg == CFG_LED_COMB_ACT_LNK) { |
| /* Combined Activity/Link LED mode */ |
| pAC->GIni.GILedBlinkCtrl |= SK_LED_COMB_ACT_LNK; |
| } |
| } |
| |
| /* save HW Resources / Application Information */ |
| pAC->GIni.GIHwResInfo = Byte; |
| |
| if ((Byte & CFG_DUAL_MAC_MSK) == CFG_DUAL_MAC_MSK) { |
| |
| SK_IN8(IoC, B2_Y2_CLK_GATE, &Byte); |
| |
| if (!(Byte & Y2_STATUS_LNK2_INAC)) { |
| /* Link 2 activ */ |
| pAC->GIni.GIMacsFound++; |
| } |
| } |
| |
| #ifdef VCPU |
| if (pAC->GIni.GIChipId == CHIP_ID_YUKON_XL) { |
| /* temporary WA for reported number of links */ |
| pAC->GIni.GIMacsFound = 2; |
| } |
| #endif /* VCPU */ |
| |
| /* read Chip Revision */ |
| SK_IN8(IoC, B2_MAC_CFG, &Byte); |
| |
| pAC->GIni.GIChipCap = Byte & 0x0f; |
| } |
| else { |
| pAC->GIni.GIYukon2 = SK_FALSE; |
| pAC->GIni.GIValIrqMask = IS_ALL_MSK; |
| pAC->GIni.GIValHwIrqMask = 0; /* not activated */ |
| |
| VauxAvail = CS_VAUX_AVAIL; |
| |
| /* read number of MACs and Chip Revision */ |
| SK_IN8(IoC, B2_MAC_CFG, &Byte); |
| |
| pAC->GIni.GIMacsFound = (Byte & CFG_SNG_MAC) ? 1 : 2; |
| } |
| |
| /* get Chip Revision Number */ |
| pAC->GIni.GIChipRev = (SK_U8)((Byte & CFG_CHIP_R_MSK) >> 4); |
| |
| #ifndef SK_DIAG |
| if (pAC->GIni.GIChipId == CHIP_ID_YUKON_XL && |
| pAC->GIni.GIChipRev == CHIP_REV_YU_XL_A0) { |
| /* Yukon-2 Chip Rev. A0 */ |
| return(6); |
| } |
| #endif /* !SK_DIAG */ |
| |
| /* read the adapters RAM size */ |
| SK_IN8(IoC, B2_E_0, &Byte); |
| |
| pAC->GIni.GIGenesis = SK_FALSE; |
| pAC->GIni.GIYukon = SK_FALSE; |
| pAC->GIni.GIYukonLite = SK_FALSE; |
| pAC->GIni.GIVauxAvail = SK_FALSE; |
| |
| #ifdef GENESIS |
| if (pAC->GIni.GIChipId == CHIP_ID_GENESIS) { |
| |
| pAC->GIni.GIGenesis = SK_TRUE; |
| |
| if (Byte == (SK_U8)3) { |
| /* special case: 4 x 64k x 36, offset = 0x80000 */ |
| pAC->GIni.GIRamSize = 1024; |
| pAC->GIni.GIRamOffs = (SK_U32)512 * 1024; |
| } |
| else { |
| pAC->GIni.GIRamSize = (int)Byte * 512; |
| pAC->GIni.GIRamOffs = 0; |
| } |
| /* all GENESIS adapters work with 53.125 MHz host clock */ |
| pAC->GIni.GIHstClkFact = SK_FACT_53; |
| |
| /* set Descr. Poll Timer Init Value to 250 ms */ |
| pAC->GIni.GIPollTimerVal = |
| SK_DPOLL_DEF * (SK_U32)pAC->GIni.GIHstClkFact / 100; |
| } |
| #endif /* GENESIS */ |
| |
| #ifdef YUKON |
| if (pAC->GIni.GIChipId != CHIP_ID_GENESIS) { |
| |
| pAC->GIni.GIYukon = SK_TRUE; |
| |
| pAC->GIni.GIRamSize = (Byte == (SK_U8)0) ? 128 : (int)Byte * 4; |
| |
| #ifndef SK_SLIM |
| pAC->GIni.GIRamOffs = 0; |
| |
| /* WA for Yukon chip Rev. A0 */ |
| pAC->GIni.GIWolOffs = (pAC->GIni.GIChipId == CHIP_ID_YUKON && |
| pAC->GIni.GIChipRev == 0) ? WOL_REG_OFFS : 0; |
| |
| /* get PM Capabilities of PCI config space */ |
| SK_IN16(IoC, PCI_C(pAC, PCI_PM_CAP_REG), &Word); |
| |
| /* check if VAUX is available */ |
| if (((CtrlStat & VauxAvail) != 0) && |
| /* check also if PME from D3cold is set */ |
| ((Word & PCI_PME_D3C_SUP) != 0)) { |
| /* set entry in GE init struct */ |
| pAC->GIni.GIVauxAvail = SK_TRUE; |
| } |
| #endif /* !SK_SLIM */ |
| |
| if (!CHIP_ID_YUKON_2(pAC)) { |
| |
| if (pAC->GIni.GIChipId == CHIP_ID_YUKON_LITE) { |
| /* this is Rev. A1 */ |
| pAC->GIni.GIYukonLite = SK_TRUE; |
| } |
| #ifndef SK_SLIM |
| else { |
| /* save Flash-Address Register */ |
| SK_IN32(IoC, B2_FAR, &DWord); |
| |
| /* test Flash-Address Register */ |
| SK_OUT8(IoC, B2_FAR + 3, 0xff); |
| SK_IN8(IoC, B2_FAR + 3, &Byte); |
| |
| if (Byte != 0) { |
| /* this is Rev. A0 */ |
| pAC->GIni.GIYukonLite = SK_TRUE; |
| |
| /* restore Flash-Address Register */ |
| SK_OUT32(IoC, B2_FAR, DWord); |
| } |
| } |
| #endif /* !SK_SLIM */ |
| } |
| else { |
| /* Check for CLS = 0 (dev. #4.55) */ |
| if (pAC->GIni.GIPciBus != SK_PEX_BUS) { |
| /* PCI and PCI-X */ |
| SK_IN8(IoC, PCI_C(pAC, PCI_CACHE_LSZ), &Byte); |
| |
| if (Byte == 0) { |
| /* set CLS to 2 if configured to 0 */ |
| SK_OUT8(IoC, PCI_C(pAC, PCI_CACHE_LSZ), 2); |
| } |
| |
| if (pAC->GIni.GIPciBus == SK_PCIX_BUS) { |
| /* set Cache Line Size opt. */ |
| SK_IN32(IoC, PCI_C(pAC, PCI_OUR_REG_1), &DWord); |
| DWord |= PCI_CLS_OPT; |
| SK_OUT32(IoC, PCI_C(pAC, PCI_OUR_REG_1), DWord); |
| } |
| } |
| } |
| |
| /* GeCommon also used in ASF firmware: VMain may not be available */ |
| if (pAC->GIni.GIVMainAvail) { |
| /* switch power to VCC (WA for VAUX problem) */ |
| SK_OUT8(IoC, B0_POWER_CTRL, (SK_U8)(PC_VAUX_ENA | PC_VCC_ENA | |
| PC_VAUX_OFF | PC_VCC_ON)); |
| #ifdef DEBUG |
| SK_IN32(IoC, B0_CTST, &DWord); |
| |
| SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL, |
| ("Ctrl/Stat & Switch: 0x%08X\n", DWord)); |
| #endif /* DEBUG */ |
| } |
| |
| Byte = 0; |
| |
| if (CHIP_ID_YUKON_2(pAC)) { |
| switch (pAC->GIni.GIChipId) { |
| /* PEX adapters work with different host clock */ |
| case CHIP_ID_YUKON_EC: |
| case CHIP_ID_YUKON_EC_U: |
| case CHIP_ID_YUKON_EX: /* to be checked */ |
| /* Yukon-EC works with 125 MHz host clock */ |
| pAC->GIni.GIHstClkFact = SK_FACT_125; |
| break; |
| case CHIP_ID_YUKON_FE: |
| /* Yukon-FE works with 100 MHz host clock */ |
| pAC->GIni.GIHstClkFact = SK_FACT_100; |
| break; |
| case CHIP_ID_YUKON_FE_P: |
| /* Yukon-FE+ works with 50 MHz core clock */ |
| pAC->GIni.GIHstClkFact = SK_FACT_50; |
| break; |
| case CHIP_ID_YUKON_XL: |
| /* all Yukon-2 adapters work with 156 MHz host clock */ |
| pAC->GIni.GIHstClkFact = 2 * SK_FACT_78; |
| |
| if (pAC->GIni.GIChipRev > CHIP_REV_YU_XL_A1) { |
| /* enable bits are inverted */ |
| Byte = (SK_U8)(Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS | |
| Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS | |
| Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS); |
| } |
| break; |
| default: |
| SK_ERR_LOG(pAC, SK_ERRCL_SW | SK_ERRCL_INIT, SKERR_HWI_E006, |
| SKERR_HWI_E006MSG); |
| } |
| |
| pAC->GIni.GIPollTimerVal = |
| SK_DPOLL_DEF_Y2 * (SK_U32)pAC->GIni.GIHstClkFact / 100; |
| |
| /* set power down bit */ |
| PowerDownBit = PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD; |
| |
| /* disable Core Clock Division, set Clock Select to 0 (Yukon-2) */ |
| SK_OUT32(IoC, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS); |
| |
| /* enable MAC/PHY, PCI and Core Clock for both Links */ |
| SK_OUT8(IoC, B2_Y2_CLK_GATE, Byte); |
| } |
| else { |
| /* YUKON adapters work with 78 MHz host clock */ |
| pAC->GIni.GIHstClkFact = SK_FACT_78; |
| |
| pAC->GIni.GIPollTimerVal = SK_DPOLL_MAX; /* 215 ms */ |
| |
| /* read the Interrupt source */ |
| SK_IN32(IoC, B0_ISRC, &DWord); |
| |
| if ((DWord & IS_HW_ERR) != 0) { |
| /* read the HW Error Interrupt source */ |
| SK_IN32(IoC, B0_HWE_ISRC, &DWord); |
| |
| if ((DWord & IS_IRQ_SENSOR) != 0) { |
| /* disable HW Error IRQ */ |
| pAC->GIni.GIValIrqMask &= ~IS_HW_ERR; |
| } |
| } |
| /* set power down bit */ |
| PowerDownBit = PCI_PHY_COMA; |
| } |
| |
| SK_IN32(IoC, PCI_C(pAC, PCI_OUR_REG_1), &Our1); |
| |
| Our1 &= ~PowerDownBit; |
| |
| if (pAC->GIni.GIChipId == CHIP_ID_YUKON_XL && |
| pAC->GIni.GIChipRev > CHIP_REV_YU_XL_A1) { |
| /* deassert Low Power for 1st PHY */ |
| Our1 |= PCI_Y2_PHY1_COMA; |
| |
| if (pAC->GIni.GIMacsFound > 1) { |
| /* deassert Low Power for 2nd PHY */ |
| Our1 |= PCI_Y2_PHY2_COMA; |
| } |
| } |
| else if (pAC->GIni.GIChipId == CHIP_ID_YUKON_EC_U || |
| pAC->GIni.GIChipId == CHIP_ID_YUKON_EX || |
| pAC->GIni.GIChipId == CHIP_ID_YUKON_FE_P) { |
| |
| /* enable all clocks; PCI_OUR_REG_3 is set at the top of the function */ |
| SK_IN32(IoC, PCI_C(pAC, PCI_OUR_REG_4), &DWord); |
| |
| DWord &= P_ASPM_CONTROL_MSK; |
| /* set all bits to 0 except bits 15..12 and 8 */ |
| SK_OUT32(IoC, PCI_C(pAC, PCI_OUR_REG_4), DWord); |
| |
| SK_IN32(IoC, PCI_C(pAC, PCI_OUR_REG_5), &DWord); |
| |
| DWord &= P_CTL_TIM_VMAIN_AV_MSK; |
| /* set all bits to 0 except bits 28 & 27 */ |
| SK_OUT32(IoC, PCI_C(pAC, PCI_OUR_REG_5), DWord); |
| |
| /* set all bits to 0 */ |
| SK_OUT32(IoC, PCI_C(pAC, PCI_CFG_REG_1), 0); |
| |
| #if (!defined(SK_SLIM) && !defined(SK_DIAG)) |
| /* enable HW WOL */ |
| SK_OUT16(IoC, B0_CTST, (SK_U16)Y2_HW_WOL_ON); |
| #endif /* !SK_SLIM && !SK_DIAG */ |
| |
| /* Enable workaround for dev. #4.107 on Yukon-Ultra & Extreme */ |
| SK_IN32(IoC, B2_GP_IO, &DWord); |
| DWord |= GLB_GPIO_STAT_RACE_DIS; |
| SK_OUT32(IoC, B2_GP_IO, DWord); |
| } |
| |
| /* release PHY from PowerDown/COMA Mode */ |
| SK_OUT32(IoC, PCI_C(pAC, PCI_OUR_REG_1), Our1); |
| |
| if (!pAC->GIni.GIAsfEnabled) { |
| |
| for (i = 0; i < pAC->GIni.GIMacsFound; i++) { |
| /* set Link Control reset */ |
| SK_OUT8(IoC, MR_ADDR(i, GMAC_LINK_CTRL), (SK_U8)GMLC_RST_SET); |
| |
| /* clear Link Control reset */ |
| SK_OUT8(IoC, MR_ADDR(i, GMAC_LINK_CTRL), (SK_U8)GMLC_RST_CLR); |
| } |
| } |
| } |
| #endif /* YUKON */ |
| |
| SK_TST_MODE_OFF(IoC); |
| |
| #ifndef SK_SLIM |
| if (!CHIP_ID_YUKON_2(pAC)) { |
| /* this is a conventional PCI bus */ |
| pAC->GIni.GIPciBus = SK_PCI_BUS; |
| |
| /* check if 64-bit PCI Slot is present */ |
| pAC->GIni.GIPciSlot64 = (SK_BOOL)((CtrlStat & CS_BUS_SLOT_SZ) != 0); |
| |
| /* check if 66 MHz PCI Clock is active */ |
| pAC->GIni.GIPciClock66 = (SK_BOOL)((CtrlStat & CS_BUS_CLOCK) != 0); |
| } |
| |
| /* read PCI HW Revision Id. */ |
| SK_IN8(IoC, PCI_C(pAC, PCI_REV_ID), &pAC->GIni.GIPciHwRev); |
| |
| /* read connector type */ |
| SK_IN8(IoC, B2_CONN_TYP, &pAC->GIni.GIConTyp); |
| #endif /* !SK_SLIM */ |
| |
| /* read the PMD type */ |
| SK_IN8(IoC, B2_PMD_TYP, &Byte); |
| |
| pAC->GIni.GIPmdTyp = Byte; |
| |
| FiberType = (Byte == 'L' || Byte == 'S' || Byte == 'P'); |
| |
| pAC->GIni.GICopperType = (SK_BOOL)(Byte == 'T' || Byte == '1' || |
| (pAC->GIni.GIYukon2 && !FiberType)); |
| |
| /* read the PHY type (Yukon and Genesis) */ |
| SK_IN8(IoC, B2_E_1, &Byte); |
| |
| Byte &= 0x0f; /* the PHY type is stored in the lower nibble */ |
| for (i = 0; i < pAC->GIni.GIMacsFound; i++) { |
| |
| pPrt = &pAC->GIni.GP[i]; |
| |
| /* get the MAC addresses */ |
| for (j = 0; j < 3; j++) { |
| SK_IN16(IoC, B2_MAC_1 + i * 8 + j * 2, &pPrt->PMacAddr[j]); |
| } |
| |
| #ifdef GENESIS |
| if (pAC->GIni.GIGenesis) { |
| switch (Byte) { |
| case SK_PHY_XMAC: |
| pPrt->PhyAddr = PHY_ADDR_XMAC; |
| break; |
| case SK_PHY_BCOM: |
| pPrt->PhyAddr = PHY_ADDR_BCOM; |
| pPrt->PMSCap = (SK_U8)(SK_MS_CAP_AUTO | |
| SK_MS_CAP_MASTER | SK_MS_CAP_SLAVE); |
| break; |
| #ifdef OTHER_PHY |
| case SK_PHY_LONE: |
| pPrt->PhyAddr = PHY_ADDR_LONE; |
| break; |
| case SK_PHY_NAT: |
| pPrt->PhyAddr = PHY_ADDR_NAT; |
| break; |
| #endif /* OTHER_PHY */ |
| default: |
| /* ERROR: unexpected PHY type detected */ |
| RetVal = 5; |
| } |
| } |
| #endif /* GENESIS */ |
| |
| #ifdef YUKON |
| if (pAC->GIni.GIYukon) { |
| |
| if (((Byte < (SK_U8)SK_PHY_MARV_COPPER) || pAC->GIni.GIYukon2) && |
| !FiberType) { |
| /* if this field is not initialized */ |
| Byte = (SK_U8)SK_PHY_MARV_COPPER; |
| |
| pAC->GIni.GICopperType = SK_TRUE; |
| } |
| |
| pPrt->PhyAddr = PHY_ADDR_MARV; |
| |
| if (pAC->GIni.GICopperType) { |
| |
| if (pAC->GIni.GIChipId == CHIP_ID_YUKON_FE || |
| pAC->GIni.GIChipId == CHIP_ID_YUKON_FE_P || |
| (pAC->GIni.GIChipId == CHIP_ID_YUKON_EC && |
| pAC->GIni.GIChipCap == 2)) { |
| |
| pPrt->PLinkSpeedCap = (SK_U8)(SK_LSPEED_CAP_100MBPS | |
| SK_LSPEED_CAP_10MBPS); |
| |
| pAC->GIni.GIRamSize = 4; |
| } |
| else { |
| pPrt->PLinkSpeedCap = (SK_U8)(SK_LSPEED_CAP_1000MBPS | |
| SK_LSPEED_CAP_100MBPS | SK_LSPEED_CAP_10MBPS | |
| SK_LSPEED_CAP_AUTO); |
| } |
| |
| pPrt->PLinkSpeed = (SK_U8)SK_LSPEED_AUTO; |
| |
| pPrt->PMSCap = (SK_U8)(SK_MS_CAP_AUTO | |
| SK_MS_CAP_MASTER | SK_MS_CAP_SLAVE); |
| } |
| else { |
| Byte = (SK_U8)SK_PHY_MARV_FIBER; |
| } |
| } |
| |
| /* clear TWSI IRQ */ |
| SK_OUT32(IoC, B2_I2C_IRQ, I2C_CLR_IRQ); |
| |
| #endif /* YUKON */ |
| |
| pPrt->PhyType = (int)Byte; |
| |
| SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_INIT, |
| ("PHY type: %d PHY addr: %04x\n", |
| Byte, pPrt->PhyAddr)); |
| } |
| |
| /* get MAC Type & set function pointers dependent on */ |
| #ifdef GENESIS |
| if (pAC->GIni.GIGenesis) { |
| |
| pAC->GIni.GINumOfPattern = 0; |
| pAC->GIni.GIMacType = SK_MAC_XMAC; |
| |
| pAC->GIni.GIFunc.pFnMacUpdateStats = SkXmUpdateStats; |
| pAC->GIni.GIFunc.pFnMacStatistic = SkXmMacStatistic; |
| pAC->GIni.GIFunc.pFnMacResetCounter = SkXmResetCounter; |
| pAC->GIni.GIFunc.pFnMacOverflow = SkXmOverflowStatus; |
| #ifdef SK_DIAG |
| pAC->GIni.GIFunc.pFnMacPhyRead = SkXmPhyRead; |
| pAC->GIni.GIFunc.pFnMacPhyWrite = SkXmPhyWrite; |
| #else /* SK_DIAG */ |
| pAC->GIni.GIFunc.pSkGeSirqIsr = SkGeYuSirqIsr; |
| #endif /* !SK_DIAG */ |
| } |
| #endif /* GENESIS */ |
| |
| #ifdef YUKON |
| if (pAC->GIni.GIYukon) { |
| |
| pAC->GIni.GINumOfPattern = SK_NUM_WOL_PATTERN; |
| |
| if (pAC->GIni.GIChipId == CHIP_ID_YUKON_EX) { |
| |
| pAC->GIni.GIExtLeFormat = SK_TRUE; |
| pAC->GIni.GINumOfPattern += 2; |
| |
| /* Bypass MACSec unit */ |
| SK_OUT32(IoC, GMAC_CTRL, MAC_CTRL_BYP_MACSECRX_ON | |
| MAC_CTRL_BYP_MACSECTX_ON | MAC_CTRL_BYP_RETR_ON); |
| } |
| else if (pAC->GIni.GIChipId == CHIP_ID_YUKON_FE_P) { |
| |
| pAC->GIni.GIExtLeFormat = SK_TRUE; |
| pAC->GIni.GINumOfPattern -= 1; |
| } |
| |
| #ifndef SK_SLIM |
| pAC->GIni.GIMacType = SK_MAC_GMAC; |
| |
| pAC->GIni.GIFunc.pFnMacUpdateStats = SkGmUpdateStats; |
| pAC->GIni.GIFunc.pFnMacStatistic = SkGmMacStatistic; |
| pAC->GIni.GIFunc.pFnMacResetCounter = SkGmResetCounter; |
| pAC->GIni.GIFunc.pFnMacOverflow = SkGmOverflowStatus; |
| #endif /* !SK_SLIM */ |
| |
| #ifdef SK_DIAG |
| pAC->GIni.GIFunc.pFnMacPhyRead = SkGmPhyRead; |
| pAC->GIni.GIFunc.pFnMacPhyWrite = SkGmPhyWrite; |
| #else /* SK_DIAG */ |
| if (CHIP_ID_YUKON_2(pAC)) { |
| pAC->GIni.GIFunc.pSkGeSirqIsr = SkYuk2SirqIsr; |
| } |
| else { |
| pAC->GIni.GIFunc.pSkGeSirqIsr = SkGeYuSirqIsr; |
| } |
| #endif /* !SK_DIAG */ |
| |
| #ifdef SPECIAL_HANDLING |
| if (pAC->GIni.GIChipId == CHIP_ID_YUKON) { |
| /* check HW self test result */ |
| SK_IN8(IoC, B2_E_3, &Byte); |
| if (Byte & B2_E3_RES_MASK) { |
| RetVal = 6; |
| } |
| } |
| #endif |
| } |
| #endif /* YUKON */ |
| |
| SkGeSetUpSupFeatures(pAC, IoC); |
| |
| return(RetVal); |
| } /* SkGeInit1 */ |
| |
| |
| /****************************************************************************** |
| * |
| * SkGeInit2() - Level 2 Initialization |
| * |
| * Description: |
| * - start the Blink Source Counter |
| * - start the Descriptor Poll Timer |
| * - configure the MAC-Arbiter |
| * - configure the Packet-Arbiter |
| * - enable the Tx Arbiters |
| * - enable the RAM Interface Arbiter |
| * |
| * Returns: |
| * nothing |
| */ |
| static void SkGeInit2( |
| SK_AC *pAC, /* Adapter Context */ |
| SK_IOC IoC) /* I/O Context */ |
| { |
| #ifdef YUKON |
| SK_U16 Word; |
| #if (!defined(SK_SLIM) && !defined(SK_DIAG)) |
| SK_EVPARA Para; |
| #endif /* !SK_SLIM && !SK_DIAG */ |
| #endif /* YUKON */ |
| #ifdef GENESIS |
| SK_U32 DWord; |
| #endif /* GENESIS */ |
| int i; |
| |
| /* start the Descriptor Poll Timer */ |
| if (pAC->GIni.GIPollTimerVal != 0) { |
| if (pAC->GIni.GIPollTimerVal > SK_DPOLL_MAX) { |
| pAC->GIni.GIPollTimerVal = SK_DPOLL_MAX; |
| |
| SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E017, SKERR_HWI_E017MSG); |
| } |
| |
| SK_OUT32(IoC, B28_DPT_INI, pAC->GIni.GIPollTimerVal); |
| |
| SK_OUT8(IoC, B28_DPT_CTRL, DPT_START); |
| } |
| |
| #ifdef GENESIS |
| if (pAC->GIni.GIGenesis) { |
| /* start the Blink Source Counter */ |
| DWord = SK_BLK_DUR * (SK_U32)pAC->GIni.GIHstClkFact / 100; |
| |
| SK_OUT32(IoC, B2_BSC_INI, DWord); |
| |
| SK_OUT8(IoC, B2_BSC_CTRL, BSC_START); |
| |
| /* |
| * Configure the MAC Arbiter and the Packet Arbiter. |
| * They will be started once and never be stopped. |
| */ |
| SkGeInitMacArb(pAC, IoC); |
| |
| SkGeInitPktArb(pAC, IoC); |
| } |
| #endif /* GENESIS */ |
| |
| #ifdef xSK_DIAG |
| if (pAC->GIni.GIYukon) { |
| /* start Time Stamp Timer */ |
| SK_OUT8(IoC, GMAC_TI_ST_CTRL, (SK_U8)GMT_ST_START); |
| } |
| #endif /* SK_DIAG */ |
| |
| /* enable the Tx Arbiters */ |
| for (i = 0; i < pAC->GIni.GIMacsFound; i++) { |
| SK_OUT8(IoC, MR_ADDR(i, TXA_CTRL), TXA_ENA_ARB); |
| } |
| |
| /* enable the RAM Interface Arbiter */ |
| SkGeInitRamIface(pAC, IoC); |
| |
| #ifdef YUKON |
| if (CHIP_ID_YUKON_2(pAC)) { |
| |
| if (pAC->GIni.GIPciBus == SK_PEX_BUS) { |
| |
| SK_TST_MODE_ON(IoC); |
| |
| /* get Max. Read Request Size */ |
| SK_IN16(IoC, PCI_C(pAC, PEX_CAP_REGS(PEX_DEV_CTRL)), &Word); |
| |
| /* check for HW-default value of 512 bytes */ |
| if ((Word & PEX_DC_MAX_RRS_MSK) == PEX_DC_MAX_RD_RQ_SIZE(2)) { |
| /* change Max. Read Request Size to 2048 bytes */ |
| Word &= ~PEX_DC_MAX_RRS_MSK; |
| Word |= PEX_DC_MAX_RD_RQ_SIZE(4); |
| |
| SK_OUT16(IoC, PCI_C(pAC, PEX_CAP_REGS(PEX_DEV_CTRL)), Word); |
| } |
| |
| #ifdef REPLAY_TIMER |
| if (pAC->GIni.GIChipId == CHIP_ID_YUKON_EC) { |
| /* PEX Ack Reply Timeout to 40 us */ |
| SK_OUT16(IoC, PCI_C(pAC, PEX_ACK_RPLY_TOX1), 0x2710); |
| } |
| #endif |
| |
| SK_TST_MODE_OFF(IoC); |
| |
| #if (!defined(SK_SLIM) && !defined(SK_DIAG)) |
| SK_IN16(IoC, PCI_C(pAC, PEX_CAP_REGS(PEX_LNK_CAP)), &Word); |
| |
| Word = (Word & PEX_CAP_MAX_WI_MSK) >> 4; |
| |
| /* compare PEX Negotiated Link Width against max. capabil */ |
| if (pAC->GIni.GIPexWidth != (SK_U8)Word) { |
| |
| SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL, |
| ("PEX negotiated Link width is: %d, exp.: %d\n", |
| pAC->GIni.GIPexWidth, Word)); |
| |
| #ifndef NDIS_MINIPORT_DRIVER |
| SK_ERR_LOG(pAC, SK_ERRCL_INFO, SKERR_HWI_E026, |
| SKERR_HWI_E026MSG); |
| #endif |
| Para.Para64 = 0; |
| SkEventQueue(pAC, SKGE_DRV, SK_DRV_PEX_LINK_WIDTH, Para); |
| } |
| #endif /* !SK_SLIM && !SK_DIAG */ |
| } |
| |
| /* |
| * Writing the HW Error Mask Reg. will not generate an IRQ |
| * as long as the B0_IMSK is not set by the driver. |
| */ |
| SK_OUT32(IoC, B0_HWE_IMSK, pAC->GIni.GIValHwIrqMask); |
| } |
| #endif /* YUKON */ |
| } /* SkGeInit2 */ |
| |
| |
| /****************************************************************************** |
| * |
| * SkGeInit() - Initialize the GE Adapter with the specified level. |
| * |
| * Description: |
| * Level 0: Initialize the Module structures. |
| * Level 1: Generic Hardware Initialization. The IOP/MemBase pointer has |
| * to be set before calling this level. |
| * |
| * o Do a software reset. |
| * o Clear all reset bits. |
| * o Verify that the detected hardware is present. |
| * Return an error if not. |
| * o Get the hardware configuration |
| * + Set GIMacsFound with the number of MACs. |
| * + Store the RAM size in GIRamSize. |
| * + Save the PCI Revision ID in GIPciHwRev. |
| * o return an error |
| * if Number of MACs > SK_MAX_MACS |
| * |
| * After returning from Level 0 the adapter |
| * may be accessed with I/O operations. |
| * |
| * Level 2: start the Blink Source Counter |
| * |
| * Returns: |
| * 0: success |
| * 1: Number of MACs exceeds SK_MAX_MACS (after level 1) |
| * 2: Adapter not present or not accessible |
| * 3: Illegal initialization level |
| * 4: Initialization level 1 call missing |
| * 5: Unexpected PHY type detected |
| * 6: HW self test failed |
| */ |
| int SkGeInit( |
| SK_AC *pAC, /* Adapter Context */ |
| SK_IOC IoC, /* I/O Context */ |
| int Level) /* Initialization Level */ |
| { |
| int RetVal; /* return value */ |
| SK_U32 DWord; |
| |
| RetVal = 0; |
| SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_INIT, |
| ("SkGeInit(Level %d)\n", Level)); |
| |
| switch (Level) { |
| case SK_INIT_DATA: |
| /* Initialization Level 0 */ |
| SkGeInit0(pAC, IoC); |
| pAC->GIni.GILevel = SK_INIT_DATA; |
| break; |
| |
| case SK_INIT_IO: |
| /* Initialization Level 1 */ |
| RetVal = SkGeInit1(pAC, IoC); |
| if (RetVal != 0) { |
| break; |
| } |
| |
| /* check if the adapter seems to be accessible */ |
| SK_OUT32(IoC, B2_IRQM_INI, SK_TEST_VAL); |
| SK_IN32(IoC, B2_IRQM_INI, &DWord); |
| SK_OUT32(IoC, B2_IRQM_INI, 0L); |
| |
| if (DWord != SK_TEST_VAL) { |
| SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_INIT, |
| ("Error accessing IRQM register, 0x%08lX\n", DWord)); |
| RetVal = 2; |
| break; |
| } |
| |
| #ifdef DEBUG |
| /* check if the number of GIMacsFound matches SK_MAX_MACS */ |
| if (pAC->GIni.GIMacsFound > SK_MAX_MACS) { |
| RetVal = 1; |
| break; |
| } |
| #endif /* DEBUG */ |
| |
| /* Level 1 successfully passed */ |
| pAC->GIni.GILevel = SK_INIT_IO; |
| break; |
| |
| case SK_INIT_RUN: |
| /* Initialization Level 2 */ |
| if (pAC->GIni.GILevel != SK_INIT_IO) { |
| #ifndef SK_DIAG |
| SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E002, SKERR_HWI_E002MSG); |
| #endif /* !SK_DIAG */ |
| RetVal = 4; |
| break; |
| } |
| |
| SkGeInit2(pAC, IoC); |
| |
| /* Level 2 successfully passed */ |
| pAC->GIni.GILevel = SK_INIT_RUN; |
| break; |
| |
| default: |
| SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E003, SKERR_HWI_E003MSG); |
| RetVal = 3; |
| break; |
| } |
| |
| return(RetVal); |
| } /* SkGeInit */ |
| |
| |
| /****************************************************************************** |
| * |
| * SkGeDeInit() - Deinitialize the adapter |
| * |
| * Description: |
| * All ports of the adapter will be stopped if not already done. |
| * Do a software reset and switch off all LEDs. |
| * |
| * Returns: |
| * nothing |
| */ |
| void SkGeDeInit( |
| SK_AC *pAC, /* Adapter Context */ |
| SK_IOC IoC) /* I/O Context */ |
| { |
| int i; |
| SK_U16 Word; |
| #ifdef SK_PHY_LP_MODE_DEEP_SLEEP |
| SK_U32 DWord; |
| #endif /* SK_PHY_LP_MODE_DEEP_SLEEP */ |
| |
| SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL, |
| ("SkGeDeInit: GILevel = %d, PState = %d\n", |
| pAC->GIni.GILevel, pAC->GIni.GP[0].PState)); |
| |
| /* check for static clock gating */ |
| if (pAC->GIni.GILevel == SK_INIT_DATA) { |
| SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_ERR, |
| ("Adapter is already de-initialized\n")); |
| |
| return; |
| } |
| |
| #if (!defined(SK_SLIM) && !defined(VCPU)) |
| /* ensure I2C is ready */ |
| SkI2cWaitIrq(pAC, IoC); |
| #endif |
| |
| #ifdef SK_PHY_LP_MODE_DEEP_SLEEP |
| /* |
| * for power saving purposes within mobile environments |
| * we set the PHY to coma mode. |
| */ |
| |
| if (CHIP_ID_YUKON_2(pAC) && !pAC->GIni.GIAsfEnabled |
| #ifdef XXX |
| || (pAC->GIni.GIYukonLite && pAC->GIni.GIChipRev >= CHIP_REV_YU_LITE_A3) |
| #endif /* XXX */ |
| ) { |
| |
| /* flag for SkGmEnterLowPowerMode() that the call was from here */ |
| pAC->GIni.GILevel = SK_INIT_IO; |
| |
| /* for all ports switch PHY to coma mode */ |
| for (i = 0; i < pAC->GIni.GIMacsFound; i++) { |
| |
| /* Reset Rx MAC FIFO */ |
| SK_OUT8(IoC, MR_ADDR(i, RX_GMF_CTRL_T), (SK_U8)GMF_RST_SET); |
| |
| (void)SkGmEnterLowPowerMode(pAC, IoC, i, PHY_PM_DEEP_SLEEP); |
| } |
| |
| if (pAC->GIni.GIVauxAvail) { |
| /* switch power to VAUX */ |
| SK_OUT8(IoC, B0_POWER_CTRL, (SK_U8)(PC_VAUX_ENA | PC_VCC_ENA | |
| PC_VAUX_ON | PC_VCC_OFF)); |
| #ifdef DEBUG |
| SK_IN32(IoC, B0_CTST, &DWord); |
| |
| SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL, |
| ("Ctrl/Stat & Switch: 0x%08X\n", DWord)); |
| #endif /* DEBUG */ |
| } |
| |
| if (pAC->GIni.GIChipId == CHIP_ID_YUKON_EC_U || |
| pAC->GIni.GIChipId == CHIP_ID_YUKON_EX || |
| pAC->GIni.GIChipId == CHIP_ID_YUKON_FE_P) { |
| /* disable HW WOL */ |
| SK_OUT16(IoC, B0_CTST, (SK_U16)Y2_HW_WOL_OFF); |
| |
| if (HW_FEATURE(pAC, HWF_ENA_POW_SAV_W_WOL)) { |
| |
| SK_IN32(IoC, GPHY_CTRL, &DWord); |
| |
| /* Enable Shutdown of 2.5V regulator when Vmain not present */ |
| SK_OUT32(IoC, GPHY_CTRL, DWord | PHY_CFG_INT_REG_PD_ENA); |
| |
| /* put CPU into halt state */ |
| SK_OUT8(IoC, B28_Y2_ASF_STAT_CMD, (SK_U8)HCU_CCSR_ASF_RESET); |
| |
| SK_OUT8(IoC, B28_Y2_ASF_STAT_CMD, (SK_U8)HCU_CCSR_ASF_HALTED); |
| |
| /* check for Yukon-Ultra A3,B0 / Yukon-Extreme A0 */ |
| if ((pAC->GIni.GIChipId == CHIP_ID_YUKON_EC_U && |
| pAC->GIni.GIChipRev >= CHIP_REV_YU_EC_U_A1 && |
| (pAC->GIni.GIPciHwRev >> 4) > 1) || |
| (pAC->GIni.GIChipId == CHIP_ID_YUKON_EX && |
| pAC->GIni.GIChipRev == CHIP_REV_YU_EX_A0)) { |
| |
| SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL, |
| ("Enable static clock gating, Chip Rev.=%d\n", |
| pAC->GIni.GIChipRev)); |
| |
| /* Enable static clock gating */ |
| SK_OUT32(IoC, PCI_C(pAC, PCI_OUR_REG_3), PCIE_OUR3_WOL_D3_COLD_SET); |
| } |
| else if (pAC->GIni.GIChipId == CHIP_ID_YUKON_EX && |
| pAC->GIni.GIChipRev != CHIP_REV_YU_EX_A0 || |
| pAC->GIni.GIChipId == CHIP_ID_YUKON_FE_P) { |
| |
| SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL, |
| ("Enable dynamic clock gating, Chip Rev.=%d\n", |
| pAC->GIni.GIChipRev)); |
| |
| /* set events for gate / release core clock in D3 */ |
| SK_OUT32(IoC, PCI_C(pAC, PCI_OUR_REG_5), PCIE_OUR5_EVENT_CLK_D3_SET); |
| |
| SK_OUT32(IoC, PCI_C(pAC, PCI_CFG_REG_1), PCIE_CFG1_EVENT_CLK_D3_SET); |
| |
| SK_IN32(IoC, PCI_C(pAC, PCI_OUR_REG_4), &DWord); |
| |
| /* save bit 8 for LED scheme #3 */ |
| DWord &= P_PIN63_LINK_LED_ENA; |
| DWord |= PCIE_OUR4_DYN_CLK_GATE_SET; |
| |
| /* set dynamic core clock gating */ |
| SK_OUT32(IoC, PCI_C(pAC, PCI_OUR_REG_4), DWord); |
| } |
| } |
| } |
| } |
| else if (pAC->GIni.GIYukonLite) { |
| /* switch PHY to IEEE Power Down mode */ |
| (void)SkGmEnterLowPowerMode(pAC, IoC, 0, PHY_PM_IEEE_POWER_DOWN); |
| |
| if (pAC->GIni.GIVauxAvail) { |
| /* switch power to VAUX */ |
| SK_OUT8(IoC, B0_POWER_CTRL, (SK_U8)(PC_VAUX_ENA | PC_VCC_ENA | |
| PC_VAUX_ON | PC_VCC_OFF)); |
| } |
| } |
| |
| #else /* !SK_PHY_LP_MODE_DEEP_SLEEP */ |
| |
| if (!pAC->GIni.GIAsfEnabled) { |
| /* stop all current transfer activity */ |
| for (i = 0; i < pAC->GIni.GIMacsFound; i++) { |
| if (pAC->GIni.GP[i].PState != SK_PRT_STOP && |
| pAC->GIni.GP[i].PState != SK_PRT_RESET) { |
| |
| SkGeStopPort(pAC, IoC, i, SK_STOP_ALL, SK_HARD_RST); |
| } |
| } |
| } |
| |
| /* reset all bits in the PCI STATUS register */ |
| /* |
| * Note: PCI Cfg cycles cannot be used, because they are not |
| * available on some platforms after 'boot time'. |
| */ |
| SK_IN16(IoC, PCI_C(pAC, PCI_STATUS), &Word); |
| |
| SK_TST_MODE_ON(IoC); |
| |
| SK_OUT16(IoC, PCI_C(pAC, PCI_STATUS), Word | (SK_U16)PCI_ERRBITS); |
| |
| SK_TST_MODE_OFF(IoC); |
| |
| if (!pAC->GIni.GIAsfEnabled) { |
| /* set the SW-reset */ |
| SK_OUT8(IoC, B0_CTST, CS_RST_SET); |
| } |
| #endif /* !SK_PHY_LP_MODE_DEEP_SLEEP */ |
| |
| pAC->GIni.GILevel = SK_INIT_DATA; |
| |
| } /* SkGeDeInit */ |
| |
| |
| #ifdef XXX |
| /****************************************************************************** |
| * |
| * SkGeByPassMacSec() - Startup initialization for MAC Security unit |
| * |
| * Description: |
| * Set the MAC security unit into a state to bypass all data. |
| * |
| * Returns: |
| * nothing |
| */ |
| static void SkGeByPassMacSec( |
| SK_AC *pAC, /* Adapter Context */ |
| SK_IOC IoC, /* I/O Context */ |
| int Port) /* Port to configure */ |
| { |
| if (HW_IS_EXT_LE_FORMAT(pAC)) { |
| /* Bypass all MacSec frames */ |
| SK_OUT32(IoC, MR_ADDR(Port, MAC_CTRL), |
| MAC_CTRL_BYP_MACSECRX_ON | |
| MAC_CTRL_BYP_MACSECTX_ON | |
| MAC_CTRL_BYP_RETR_ON); |
| } |
| } |
| #endif |
| |
| /****************************************************************************** |
| * |
| * SkGeInitPort() Initialize the specified port. |
| * |
| * Description: |
| * PRxQSize, PXSQSize, and PXAQSize has to be |
| * configured for the specified port before calling this function. |
| * The descriptor rings has to be initialized too. |
| * |
| * o (Re)configure queues of the specified port. |
| * o configure the MAC of the specified port. |
| * o put ASIC and MAC(s) in operational mode. |
| * o initialize Rx/Tx and Sync LED |
| * o initialize RAM Buffers and MAC FIFOs |
| * |
| * The port is ready to connect when returning. |
| * |
| * Note: |
| * The MAC's Rx and Tx state machine is still disabled when returning. |
| * |
| * Returns: |
| * 0: success |
| * 1: Queue size initialization error. The configured values |
| * for PRxQSize, PXSQSize, or PXAQSize are invalid for one |
| * or more queues. The specified port was NOT initialized. |
| * An error log entry was generated. |
| * 2: The port has to be stopped before it can be initialized again. |
| */ |
| int SkGeInitPort( |
| SK_AC *pAC, /* Adapter Context */ |
| SK_IOC IoC, /* I/O Context */ |
| int Port) /* Port to configure */ |
| { |
| SK_GEPORT *pPrt; |
| |
| pPrt = &pAC->GIni.GP[Port]; |
| |
| if (SkGeCheckQSize(pAC, Port) != 0) { |
| SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E004, SKERR_HWI_E004MSG); |
| return(1); |
| } |
| |
| if (pPrt->PState >= SK_PRT_INIT) { |
| SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E005, SKERR_HWI_E005MSG); |
| return(2); |
| } |
| |
| /* configuration ok, initialize the Port now */ |
| |
| #ifdef GENESIS |
| if (pAC->GIni.GIGenesis) { |
| /* initialize Rx, Tx and Link LED */ |
| /* |
| * If 1000BT PHY needs LED initialization than swap |
| * LED and XMAC initialization order |
| */ |
| SkGeXmitLED(pAC, IoC, MR_ADDR(Port, TX_LED_INI), SK_LED_ENA); |
| SkGeXmitLED(pAC, IoC, MR_ADDR(Port, RX_LED_INI), SK_LED_ENA); |
| /* The Link LED is initialized by RLMT or Diagnostics itself */ |
| |
| SkXmInitMac(pAC, IoC, Port); |
| } |
| #endif /* GENESIS */ |
| |
| #ifdef YUKON |
| if (pAC->GIni.GIYukon) { |
| |
| SkGmInitMac(pAC, IoC, Port); |
| } |
| #endif /* YUKON */ |
| |
| /* do NOT initialize the Link Sync Counter */ |
| |
| SkGeInitMacFifo(pAC, IoC, Port); |
| |
| SkGeInitRamBufs(pAC, IoC, Port); |
| |
| if (pPrt->PXSQSize != 0) { |
| /* enable Force Sync bit if synchronous queue available */ |
| SK_OUT8(IoC, MR_ADDR(Port, TXA_CTRL), TXA_ENA_FSYNC); |
| } |
| |
| SkGeInitBmu(pAC, IoC, Port); |
| |
| if (pAC->GIni.GIChipId == CHIP_ID_YUKON_EX) { |
| /* |
| * Disable flushing of non ASF packets; |
| * must be done after initializing the BMUs; |
| * drivers without ASF support should do this too, otherwise |
| * it may happen that they cannot run on an ASF devices; |
| * remember that the MAC FIFO isn't reset during initialization. |
| */ |
| SK_OUT32(IoC, MR_ADDR(Port, RX_GMF_CTRL_T), RXMF_TCTL_MACSEC_FLSH_DIS); |
| } |
| |
| /* mark port as initialized */ |
| pPrt->PState = SK_PRT_INIT; |
| |
| return(0); |
| } /* SkGeInitPort */ |
| |
| |
| #if (defined(YUK2) && !defined(SK_SLIM)) |
| /****************************************************************************** |
| * |
| * SkGeRamWrite() - Writes One quadword to RAM |
| * |
| * Returns: |
| * 0 |
| */ |
| static void SkGeRamWrite( |
| SK_AC *pAC, /* Adapter Context */ |
| SK_IOC IoC, /* I/O Context */ |
| SK_U32 Addr, /* Address to be written to (in quadwords) */ |
| SK_U32 LowDword, /* Lower Dword to be written */ |
| SK_U32 HighDword, /* Upper Dword to be written */ |
| int Port) /* Select RAM buffer (Yukon-2 has 2 RAM buffers) */ |
| { |
| SK_OUT32(IoC, SELECT_RAM_BUFFER(Port, B3_RAM_ADDR), Addr); |
| |
| /* Write Access is initiated by writing the upper Dword */ |
| SK_OUT32(IoC, SELECT_RAM_BUFFER(Port, B3_RAM_DATA_LO), LowDword); |
| |
| SK_OUT32(IoC, SELECT_RAM_BUFFER(Port, B3_RAM_DATA_HI), HighDword); |
| } |
| |
| /****************************************************************************** |
| * |
| * SkYuk2RestartRxBmu() - Restart Receive BMU on Yukon-2 |
| * |
| * return: |
| * 0 o.k. |
| * 1 timeout |
| */ |
| int SkYuk2RestartRxBmu( |
| SK_AC *pAC, /* Adapter Context */ |
| SK_IOC IoC, /* I/O Context */ |
| int Port) /* Port Index (MAC_1 + n) */ |
| { |
| SK_U8 Byte; |
| SK_U16 Word; |
| SK_U16 MacCtrl; |
| SK_U16 MacCtrlSave; |
| SK_U16 RxCtrl; |
| SK_U16 FlushMask; |
| SK_U16 FlushTrsh; |
| SK_U32 RamAdr; |
| SK_U32 StartTime; |
| SK_U32 CurrTime; |
| SK_U32 Delta; |
| SK_U32 TimeOut; |
| SK_BOOL TimeStampDisabled; |
| SK_GEPORT *pPrt; /* GIni Port struct pointer */ |
| SK_U16 WordBuffer[4]; /* Buffer to handle MAC address */ |
| int i; |
| int Rtv; |
| |
| Rtv = 0; |
| |
| /* read the MAC Interrupt source register */ |
| SK_IN16(IoC, MR_ADDR(Port, GMAC_IRQ_SRC), &Word); |
| |
| /* check if a packet was received by the MAC */ |
| if ((Word & GM_IS_RX_COMPL) == 0) { |
| /* workaround not necessary */ |
| return(0); |
| } |
| |
| pPrt = &pAC->GIni.GP[Port]; |
| |
| /* |
| 1. save Rx MAC FIFO Flush Mask and Rx MAC FIFO Flush Threshold |
| 2. save MAC Rx Control Register |
| 3. re-initialize MAC Rx FIFO, Rx RAM Buffer Queue, PCI Rx FIFO, |
| Rx BMU and Rx Prefetch Unit of the link. |
| 4. set Rx MAC FIFO Flush Mask to 0xffff |
| set Rx MAC FIFO Flush Threshold to a high value, e.g. 0x20 |
| 5. set MAC to loopback mode and switch MAC back to Rx/Tx enable |
| 6. clear Rx/Tx Frame Complete IRQ in Rx/T MAC FIFO Control Register |
| 7. send one packet with a size of 64bytes (size below flush threshold) |
| from TXA RAM Buffer Queue to set the rx_sop flop: |
| - set TxAQ Write Pointer to (packet size in qwords + 2) |
| - set TxAQ Level to (packet size in qwords + 2) |
| - write Internal Status Word 1 and 2 to TxAQ RAM Buffer Queue QWord 0,1 |
| according to figure 61 on page 330 of Yukon-2 Spec. |
| - write MAC header with Destination Address = own MAC address to |
| TxAQ RAM Buffer Queue QWords 2 and 3 |
| - set TxAQ Packet Counter to 1 -> packet is transmitted immediately |
| 8. poll MAC IRQ Source Register for IRQ Rx/Tx Frame Complete |
| 9. restore MAC Rx Control Register |
| 10. restore Rx MAC FIFO Flush Mask and Rx MAC FIFO Flush Threshold |
| 11. set MAC back to GMII mode |
| */ |
| |
| /* save MAC General Purpose Control */ |
| GM_IN16(IoC, Port, GM_GP_CTRL, &MacCtrlSave); |
| |
| /* save Rx MAC FIFO Flush Mask */ |
| SK_IN16(IoC, MR_ADDR(Port, RX_GMF_FL_MSK), &FlushMask); |
| |
| /* save Rx MAC FIFO Flush Threshold */ |
| SK_IN16(IoC, MR_ADDR(Port, RX_GMF_FL_THR), &FlushTrsh); |
| |
| /* save MAC Rx Control Register */ |
| GM_IN16(IoC, Port, GM_RX_CTRL, &RxCtrl); |
| |
| SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_CTRL, |
| ("SkYuk2RestartRxBmu: Port %d, RxCtrl=0x%04X\n", |
| Port, RxCtrl)); |
| |
| /* configure the MAC FIFOs */ |
| SkGeInitMacFifo(pAC, IoC, Port); |
| |
| SkGeInitRamBufs(pAC, IoC, Port); |
| |
| SkGeInitBmu(pAC, IoC, Port); |
| |
| SK_IN8(IoC, GMAC_TI_ST_CTRL, &Byte); |
| |
| TimeStampDisabled = (Byte & GMT_ST_START) == 0; |
| |
| if (TimeStampDisabled) { |
| /* start Time Stamp Timer */ |
| SkMacTimeStamp(pAC, IoC, Port, SK_TRUE); |
| } |
| |
| /* configure Rx MAC FIFO */ |
| SK_OUT16(IoC, MR_ADDR(Port, RX_GMF_CTRL_T), GMF_RX_CTRL_DEF); |
| |
| /* set Rx MAC FIFO Flush Mask */ |
| SK_OUT16(IoC, MR_ADDR(Port, RX_GMF_FL_MSK), 0xffff); |
| |
| /* set Rx MAC FIFO Flush Threshold */ |
| SK_OUT16(IoC, MR_ADDR(Port, RX_GMF_FL_THR), 0x20); |
| |
| /* set to promiscuous mode */ |
| Word = RxCtrl & ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA); |
| |
| /* set MAC Rx Control Register */ |
| GM_OUT16(IoC, Port, GM_RX_CTRL, Word); |
| |
| MacCtrl = MacCtrlSave | GM_GPCR_LOOP_ENA | GM_GPCR_FL_PASS | |
| GM_GPCR_DUP_FULL | GM_GPCR_AU_ALL_DIS; |
| |
| /* enable MAC Loopback Mode */ |
| GM_OUT16(IoC, Port, GM_GP_CTRL, MacCtrl); |
| |
| /* enable MAC Rx/Tx */ |
| GM_OUT16(IoC, Port, GM_GP_CTRL, MacCtrl | GM_GPCR_RX_ENA | GM_GPCR_TX_ENA); |
| |
| /* clear MAC IRQ Rx Frame Complete */ |
| SK_OUT8(IoC, MR_ADDR(Port, RX_GMF_CTRL_T), (SK_U8)GMF_CLI_RX_FC); |
| |
| /* clear MAC IRQ Tx Frame Complete */ |
| SK_OUT8(IoC, MR_ADDR(Port, TX_GMF_CTRL_T), (SK_U8)GMF_CLI_TX_FC); |
| |
| /* get current value of timestamp timer */ |
| SK_IN32(IoC, GMAC_TI_ST_VAL, &StartTime); |
| |
| /* check for half-duplex */ |
| if ((MacCtrlSave & GM_GPCR_DUP_FULL) == 0) { |
| /* set delay to 20 ms */ |
| TimeOut = HW_MS_TO_TICKS(pAC, 20); |
| |
| do { |
| /* dummy read */ |
| GM_IN16(IoC, Port, GM_GP_STAT, &Word); |
| |
| /* get current value of timestamp timer */ |
| SK_IN32(IoC, GMAC_TI_ST_VAL, &CurrTime); |
| |
| if (CurrTime >= StartTime) { |
| Delta = CurrTime - StartTime; |
| } |
| else { |
| Delta = CurrTime + ~StartTime + 1; |
| } |
| |
| } while (Delta < TimeOut); |
| } |
| |
| /* send one packet with a size of 64bytes from RAM buffer*/ |
| |
| RamAdr = pPrt->PXaQRamStart / 8; |
| |
| SK_OUT32(IoC, RB_ADDR(pPrt->PXaQOff, RB_WP), RamAdr + 10); |
| |
| SK_OUT32(IoC, RB_ADDR(pPrt->PXaQOff, RB_LEV), 10); |
| |
| /* write 1st status quad word (packet end address in RAM, packet length */ |
| SkGeRamWrite(pAC, IoC, RamAdr, (RamAdr + 9) << 16, 64, Port); |
| |
| /* write 2nd status quad word */ |
| SkGeRamWrite(pAC, IoC, RamAdr + 1, 0, 0, Port); |
| |
| for (i = 0; i < 3; i++) { |
| /* set MAC Destination Address */ |
| WordBuffer[i] = pPrt->PMacAddr[i]; |
| } |
| |
| WordBuffer[3] = WordBuffer[0]; |
| |
| /* write DA to MAC header */ |
| SkGeRamWrite(pAC, IoC, RamAdr + 2, (SK_U32)(*(SK_U32 *)&WordBuffer[0]), |
| (SK_U32)(*(SK_U32 *)&WordBuffer[2]), Port); |
| |
| WordBuffer[0] = WordBuffer[1]; |
| WordBuffer[1] = WordBuffer[2]; |
| WordBuffer[2] = 0x3200; /* len / type field (big endian) */ |
| WordBuffer[3] = 0; |
| |
| /* write SA and type field to MAC header */ |
| SkGeRamWrite(pAC, IoC, RamAdr + 3, (SK_U32)(*(SK_U32 *)&WordBuffer[0]), |
| (SK_U32)(*(SK_U32 *)&WordBuffer[2]), Port); |
| |
| SkGeRamWrite(pAC, IoC, RamAdr + 4, 0x4c56524d, /* "MRVL" */ |
| 0x00464d2d, Port); /* "-MF" */ |
| |
| for (i = 0; i < 5; i++) { |
| /* fill packet with zeroes */ |
| SkGeRamWrite(pAC, IoC, RamAdr + 5 + i, 0, 0, Port); |
| } |
| |
| SK_OUT32(IoC, RB_ADDR(pPrt->PXaQOff, RB_PC), 1); |
| |
| /* get current value of timestamp timer */ |
| SK_IN32(IoC, GMAC_TI_ST_VAL, &StartTime); |
| |
| /* set timeout to 10 ms */ |
| TimeOut = HW_MS_TO_TICKS(pAC, 10); |
| |
| do { |
| /* get current value of timestamp timer */ |
| SK_IN32(IoC, GMAC_TI_ST_VAL, &CurrTime); |
| |
| if (CurrTime >= StartTime) { |
| Delta = CurrTime - StartTime; |
| } |
| else { |
| Delta = CurrTime + ~StartTime + 1; |
| } |
| |
| if (Delta > TimeOut) { |
| Rtv = 1; |
| break; |
| } |
| |
| /* read the MAC Interrupt source register */ |
| SK_IN16(IoC, MR_ADDR(Port, GMAC_IRQ_SRC), &Word); |
| |
| } while ((Word & (GM_IS_TX_COMPL | GM_IS_RX_COMPL)) != |
| (GM_IS_TX_COMPL | GM_IS_RX_COMPL)); |
| |
| /* clear MAC IRQ Rx Frame Complete */ |
| SK_OUT8(IoC, MR_ADDR(Port, RX_GMF_CTRL_T), (SK_U8)GMF_CLI_RX_FC); |
| |
| if (TimeStampDisabled) { |
| /* stop Time Stamp Timer */ |
| SkMacTimeStamp(pAC, IoC, Port, SK_FALSE); |
| } |
| |
| /* restore MAC General Purpose Control */ |
| GM_OUT16(IoC, Port, GM_GP_CTRL, MacCtrlSave); |
| |
| /* restore MAC Rx Control Register */ |
| GM_OUT16(IoC, Port, GM_RX_CTRL, RxCtrl); |
| |
| /* restore Rx MAC FIFO Flush Mask */ |
| SK_OUT16(IoC, MR_ADDR(Port, RX_GMF_FL_MSK), FlushMask); |
| |
| /* restore Rx MAC FIFO Flush Threshold */ |
| SK_OUT16(IoC, MR_ADDR(Port, RX_GMF_FL_THR), FlushTrsh); |
| |
| return(Rtv); |
| |
| } /* SkYuk2RestartRxBmu */ |
| |
| |
| /****************************************************************************** |
| * |
| * SkYuk2StopTx() - Stop Tx Path on Yukon-2 device family |
| * |
| * Description: |
| * This fuction stop the transmit path of Yukon devices. |
| * Currently this fuction is only tested for Yukon-Extreme. |
| * Please use SkYuk2StartTx() to restart a stopped port. |
| * |
| * return: |
| * nothing |
| */ |
| void SkYuk2StopTx( |
| SK_AC *pAC, /* Adapter Context */ |
| SK_IOC IoC, /* I/O Context */ |
| int Port) /* Port Index 0 or 1 */ |
| { |
| SK_U16 Word; |
| SK_GEPORT *pPrt; |
| SK_U64 ToutStart; |
| int ToutCnt; |
| SK_U32 XaCsr; |
| |
| pPrt = &pAC->GIni.GP[Port]; |
| |
| /* Disable MAC Tx */ |
| GM_IN16(IoC, Port, GM_GP_CTRL, &Word); |
| Word &= ~GM_GPCR_TX_ENA; |
| GM_OUT16(IoC, Port, GM_GP_CTRL, Word); |
| |
| /* stop transmit queue */ |
| SK_OUT32(IoC, Q_ADDR(pPrt->PXaQOff, Q_CSR), BMU_STOP); |
| |
| /* If the BMU is in the reset state CSR_STOP will terminate immediately */ |
| |
| ToutStart = SkOsGetTime(pAC); |
| ToutCnt = 0; |
| |
| do { |
| XaCsr = TestStopBit(pAC, IoC, pPrt->PXaQOff); |
| |
| if (SkOsGetTime(pAC) - ToutStart > (SK_TICKS_PER_SEC / 18)) { |
| /* |
| * Timeout of 1/18 second reached. |
| * This needs to be checked at 1/18 sec only. |
| */ |
| ToutCnt++; |
| |
| if (ToutCnt > 1) { |
| /* |
| * If BMU stop doesn't terminate, we assume that |
| * we have a stable state and can reset the BMU, |
| * the Prefetch Unit, and RAM buffer now. |
| */ |
| break; /* ===> leave do/while loop here */ |
| } |
| /* |
| * Cache incoherency workaround: assume a start command |
| * has been lost while sending the frame. |
| */ |
| ToutStart = SkOsGetTime(pAC); |
| |
| if ((XaCsr & BMU_STOP) != 0) { |
| SK_OUT32(IoC, Q_ADDR(pPrt->PXaQOff, Q_CSR), BMU_START); |
| } |
| |
| /* |
| * After the previous operations the X(s|a)Csr does no |
| * longer contain the proper values |
| */ |
| XaCsr = TestStopBit(pAC, IoC, pPrt->PXaQOff); |
| } |
| } while ((XaCsr & BMU_IDLE) != BMU_IDLE); |
| |
| /* Perform a local reset of the port's Tx path */ |
| /* Reset the PCI FIFO of the async Tx queue */ |
| SK_OUT32(IoC, Q_ADDR(pPrt->PXaQOff, Q_CSR), BMU_RST_SET | BMU_FIFO_RST); |
| |
| /* Reset the Tx prefetch units */ |
| SK_OUT32(IoC, Y2_PREF_Q_ADDR(pPrt->PXaQOff, PREF_UNIT_CTRL_REG), |
| PREF_UNIT_RST_SET); |
| |
| /* Reset the RAM Buffer async Tx queue */ |
| SK_OUT8(IoC, RB_ADDR(pPrt->PXaQOff, RB_CTRL), RB_RST_SET); |
| |
| if (pAC->GIni.GIAsfEnabled) { |
| /* |
| * ASF firmware is checking start and end pointer its ASF queue |
| * periodically. |
| * The idea is to set the transmit queue in non operational mode when |
| * stopping the port and to reset the ASF transmit queue when |
| * re-starting the transmit path. ASF will reinitialize the |
| * transmit queue by its own when trying to send the next packet. |
| */ |
| SK_OUT8(IoC, RB_ADDR((Port ? Q_ASF_T2 : Q_ASF_T1), RB_CTRL), RB_DIS_OP_MD); |
| } |
| |
| SK_OUT8(IoC, MR_ADDR(Port, TX_GMF_CTRL_T), (SK_U8)GMF_RST_SET); |
| } |
| |
| /****************************************************************************** |
| * |
| * SkYuk2StartTx() - Start Tx Path on Yukon-2 device family |
| * |
| * Description: |
| * This function re-starts the transmit path of a Yukon-II device which was |
| * previously stopped with SkYuk2StopTx(). Currently this fuction was only |
| * tested for Yukon-Extreme. |
| * |
| * return: |
| * nothing |
| */ |
| void SkYuk2StartTx( |
| SK_AC *pAC, /* Adapter Context */ |
| SK_IOC IoC, /* I/O Context */ |
| int Port) /* Port Index 0 or 1 */ |
| { |
| SK_GEPORT *pPrt; |
| SK_U16 Word; |
| |
| pPrt = &pAC->GIni.GP[Port]; |
| |
| if (pAC->GIni.GIAsfEnabled) { |
| /* |
| * ASF TX queue is in non-operational state. Reset it now. |
| * ASF firmware is checking start and end pointer its ASF queue |
| * periodically. |
| * The idea is to set the transmit queue in non operational mode when |
| * stopping the port and to reset the ASF transmit queue when |
| * re-starting the transmit path. ASF will reinitialize the |
| * transmit queue by its own when trying to send the next packet. |
| */ |
| SK_OUT8(IoC, RB_ADDR((Port ? Q_ASF_T2 : Q_ASF_T1), RB_CTRL), RB_RST_SET); |
| } |
| |
| /* configure Tx GMAC FIFO */ |
| SK_OUT8(IoC, MR_ADDR(Port, TX_GMF_CTRL_T), (SK_U8)GMF_RST_CLR); |
| SK_OUT16(IoC, MR_ADDR(Port, TX_GMF_CTRL_T), (SK_U16)GMF_TX_CTRL_DEF); |
| |
| if (pAC->GIni.GIChipId == CHIP_ID_YUKON_EC_U || |
| pAC->GIni.GIChipId == CHIP_ID_YUKON_EX) { |
| /* set Rx Pause Threshold */ |
| SK_OUT16(IoC, MR_ADDR(Port, RX_GMF_LP_THR), (SK_U16)SK_ECU_LLPP); |
| SK_OUT16(IoC, MR_ADDR(Port, RX_GMF_UP_THR), (SK_U16)SK_ECU_ULPP); |
| |
| if (pAC->GIni.GIChipId == CHIP_ID_YUKON_EX && |
| pAC->GIni.GIChipRev != CHIP_REV_YU_EX_A0) { |
| /* Yukon-Extreme BO and further Extreme devices */ |
| /* enable Store & Forward mode for TX */ |
| SK_OUT32(IoC, MR_ADDR(Port, TX_GMF_CTRL_T), TX_STFW_ENA); |
| } |
| else { |
| if (pAC->GIni.GP[Port].PPortUsage == SK_JUMBO_LINK) { |
| /* set Tx GMAC FIFO Almost Empty Threshold */ |
| SK_OUT32(IoC, MR_ADDR(Port, TX_GMF_AE_THR), |
| (SK_ECU_JUMBO_WM << 16) | (SK_U16)SK_ECU_AE_THR); |
| /* disable Store & Forward mode for TX */ |
| SK_OUT32(IoC, MR_ADDR(Port, TX_GMF_CTRL_T), TX_STFW_DIS); |
| } |
| } |
| } |
| |
| DoInitRamQueue(pAC, IoC, pPrt->PXaQOff, pPrt->PXaQRamStart, |
| pPrt->PXaQRamEnd, SK_TX_RAM_Q); |
| |
| /* |
| * Tx Queue: Release all local resets if the queue is used ! |
| * set watermark |
| */ |
| |
| if (pPrt->PXAQSize != 0) { |
| |
| SK_OUT32(IoC, Q_ADDR(pPrt->PXaQOff, Q_CSR), BMU_CLR_RESET); |
| SK_OUT32(IoC, Q_ADDR(pPrt->PXaQOff, Q_CSR), BMU_OPER_INIT); |
| SK_OUT32(IoC, Q_ADDR(pPrt->PXaQOff, Q_CSR), BMU_FIFO_OP_ON); |
| |
| if (HW_FEATURE(pAC, HWF_TX_IP_ID_INCR_ON)) { |
| /* Enable Tx IP ID Increment */ |
| SK_OUT32(IoC, Q_ADDR(pPrt->PXaQOff, Q_CSR), BMU_TX_IPIDINCR_ON); |
| } |
| |
| SK_OUT16(IoC, Q_ADDR(pPrt->PXaQOff, Q_WM), SK_BMU_TX_WM); |
| } |
| |
| /* WA for dev. #4.209 */ |
| if (pAC->GIni.GIChipId == CHIP_ID_YUKON_EC_U && |
| pAC->GIni.GIChipRev == CHIP_REV_YU_EC_U_A1) { |
| /* enable/disable Store & Forward mode for TX */ |
| SK_OUT32(IoC, MR_ADDR(Port, TX_GMF_CTRL_T), |
| pPrt->PLinkSpeedUsed != (SK_U8)SK_LSPEED_STAT_1000MBPS ? |
| TX_STFW_ENA : TX_STFW_DIS); |
| } |
| |
| /* Enable MAC Tx */ |
| GM_IN16(IoC, Port, GM_GP_CTRL, &Word); |
| Word |= GM_GPCR_TX_ENA; |
| GM_OUT16(IoC, Port, GM_GP_CTRL, Word); |
| } |
| #endif /* YUK2 && !SK_SLIM */ |
| |
| /* End of File */ |
| |