| /* |
| * Adaptec AAC series RAID controller driver |
| * (c) Copyright 2001 Red Hat Inc. |
| * |
| * based on the old aacraid driver that is.. |
| * Adaptec aacraid device driver for Linux. |
| * |
| * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com) |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2, or (at your option) |
| * any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; see the file COPYING. If not, write to |
| * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. |
| * |
| * Module Name: |
| * dpcsup.c |
| * |
| * Abstract: All DPC processing routines for the cyclone board occur here. |
| * |
| * |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/types.h> |
| #include <linux/spinlock.h> |
| #include <linux/slab.h> |
| #include <linux/completion.h> |
| #include <linux/blkdev.h> |
| #include <linux/semaphore.h> |
| |
| #include "aacraid.h" |
| |
| /** |
| * aac_response_normal - Handle command replies |
| * @q: Queue to read from |
| * |
| * This DPC routine will be run when the adapter interrupts us to let us |
| * know there is a response on our normal priority queue. We will pull off |
| * all QE there are and wake up all the waiters before exiting. We will |
| * take a spinlock out on the queue before operating on it. |
| */ |
| |
| unsigned int aac_response_normal(struct aac_queue * q) |
| { |
| struct aac_dev * dev = q->dev; |
| struct aac_entry *entry; |
| struct hw_fib * hwfib; |
| struct fib * fib; |
| int consumed = 0; |
| unsigned long flags; |
| |
| spin_lock_irqsave(q->lock, flags); |
| /* |
| * Keep pulling response QEs off the response queue and waking |
| * up the waiters until there are no more QEs. We then return |
| * back to the system. If no response was requesed we just |
| * deallocate the Fib here and continue. |
| */ |
| while(aac_consumer_get(dev, q, &entry)) |
| { |
| int fast; |
| u32 index = le32_to_cpu(entry->addr); |
| fast = index & 0x01; |
| fib = &dev->fibs[index >> 2]; |
| hwfib = fib->hw_fib_va; |
| |
| aac_consumer_free(dev, q, HostNormRespQueue); |
| /* |
| * Remove this fib from the Outstanding I/O queue. |
| * But only if it has not already been timed out. |
| * |
| * If the fib has been timed out already, then just |
| * continue. The caller has already been notified that |
| * the fib timed out. |
| */ |
| dev->queues->queue[AdapNormCmdQueue].numpending--; |
| |
| if (unlikely(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) { |
| spin_unlock_irqrestore(q->lock, flags); |
| aac_fib_complete(fib); |
| aac_fib_free(fib); |
| spin_lock_irqsave(q->lock, flags); |
| continue; |
| } |
| spin_unlock_irqrestore(q->lock, flags); |
| |
| if (fast) { |
| /* |
| * Doctor the fib |
| */ |
| *(__le32 *)hwfib->data = cpu_to_le32(ST_OK); |
| hwfib->header.XferState |= cpu_to_le32(AdapterProcessed); |
| } |
| |
| FIB_COUNTER_INCREMENT(aac_config.FibRecved); |
| |
| if (hwfib->header.Command == cpu_to_le16(NuFileSystem)) |
| { |
| __le32 *pstatus = (__le32 *)hwfib->data; |
| if (*pstatus & cpu_to_le32(0xffff0000)) |
| *pstatus = cpu_to_le32(ST_OK); |
| } |
| if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected | Async)) |
| { |
| if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected)) |
| FIB_COUNTER_INCREMENT(aac_config.NoResponseRecved); |
| else |
| FIB_COUNTER_INCREMENT(aac_config.AsyncRecved); |
| /* |
| * NOTE: we cannot touch the fib after this |
| * call, because it may have been deallocated. |
| */ |
| fib->flags = 0; |
| fib->callback(fib->callback_data, fib); |
| } else { |
| unsigned long flagv; |
| spin_lock_irqsave(&fib->event_lock, flagv); |
| if (!fib->done) |
| fib->done = 1; |
| up(&fib->event_wait); |
| spin_unlock_irqrestore(&fib->event_lock, flagv); |
| FIB_COUNTER_INCREMENT(aac_config.NormalRecved); |
| if (fib->done == 2) { |
| aac_fib_complete(fib); |
| aac_fib_free(fib); |
| } |
| } |
| consumed++; |
| spin_lock_irqsave(q->lock, flags); |
| } |
| |
| if (consumed > aac_config.peak_fibs) |
| aac_config.peak_fibs = consumed; |
| if (consumed == 0) |
| aac_config.zero_fibs++; |
| |
| spin_unlock_irqrestore(q->lock, flags); |
| return 0; |
| } |
| |
| |
| /** |
| * aac_command_normal - handle commands |
| * @q: queue to process |
| * |
| * This DPC routine will be queued when the adapter interrupts us to |
| * let us know there is a command on our normal priority queue. We will |
| * pull off all QE there are and wake up all the waiters before exiting. |
| * We will take a spinlock out on the queue before operating on it. |
| */ |
| |
| unsigned int aac_command_normal(struct aac_queue *q) |
| { |
| struct aac_dev * dev = q->dev; |
| struct aac_entry *entry; |
| unsigned long flags; |
| |
| spin_lock_irqsave(q->lock, flags); |
| |
| /* |
| * Keep pulling response QEs off the response queue and waking |
| * up the waiters until there are no more QEs. We then return |
| * back to the system. |
| */ |
| while(aac_consumer_get(dev, q, &entry)) |
| { |
| struct fib fibctx; |
| struct hw_fib * hw_fib; |
| u32 index; |
| struct fib *fib = &fibctx; |
| |
| index = le32_to_cpu(entry->addr) / sizeof(struct hw_fib); |
| hw_fib = &dev->aif_base_va[index]; |
| |
| /* |
| * Allocate a FIB at all costs. For non queued stuff |
| * we can just use the stack so we are happy. We need |
| * a fib object in order to manage the linked lists |
| */ |
| if (dev->aif_thread) |
| if((fib = kmalloc(sizeof(struct fib), GFP_ATOMIC)) == NULL) |
| fib = &fibctx; |
| |
| memset(fib, 0, sizeof(struct fib)); |
| INIT_LIST_HEAD(&fib->fiblink); |
| fib->type = FSAFS_NTC_FIB_CONTEXT; |
| fib->size = sizeof(struct fib); |
| fib->hw_fib_va = hw_fib; |
| fib->data = hw_fib->data; |
| fib->dev = dev; |
| |
| |
| if (dev->aif_thread && fib != &fibctx) { |
| list_add_tail(&fib->fiblink, &q->cmdq); |
| aac_consumer_free(dev, q, HostNormCmdQueue); |
| wake_up_interruptible(&q->cmdready); |
| } else { |
| aac_consumer_free(dev, q, HostNormCmdQueue); |
| spin_unlock_irqrestore(q->lock, flags); |
| /* |
| * Set the status of this FIB |
| */ |
| *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); |
| aac_fib_adapter_complete(fib, sizeof(u32)); |
| spin_lock_irqsave(q->lock, flags); |
| } |
| } |
| spin_unlock_irqrestore(q->lock, flags); |
| return 0; |
| } |
| |
| |
| /** |
| * aac_intr_normal - Handle command replies |
| * @dev: Device |
| * @index: completion reference |
| * |
| * This DPC routine will be run when the adapter interrupts us to let us |
| * know there is a response on our normal priority queue. We will pull off |
| * all QE there are and wake up all the waiters before exiting. |
| */ |
| |
| unsigned int aac_intr_normal(struct aac_dev * dev, u32 index) |
| { |
| dprintk((KERN_INFO "aac_intr_normal(%p,%x)\n", dev, index)); |
| if ((index & 0x00000002L)) { |
| struct hw_fib * hw_fib; |
| struct fib * fib; |
| struct aac_queue *q = &dev->queues->queue[HostNormCmdQueue]; |
| unsigned long flags; |
| |
| if (index == 0xFFFFFFFEL) /* Special Case */ |
| return 0; /* Do nothing */ |
| /* |
| * Allocate a FIB. For non queued stuff we can just use |
| * the stack so we are happy. We need a fib object in order to |
| * manage the linked lists. |
| */ |
| if ((!dev->aif_thread) |
| || (!(fib = kzalloc(sizeof(struct fib),GFP_ATOMIC)))) |
| return 1; |
| if (!(hw_fib = kzalloc(sizeof(struct hw_fib),GFP_ATOMIC))) { |
| kfree (fib); |
| return 1; |
| } |
| memcpy(hw_fib, (struct hw_fib *)(((uintptr_t)(dev->regs.sa)) + |
| (index & ~0x00000002L)), sizeof(struct hw_fib)); |
| INIT_LIST_HEAD(&fib->fiblink); |
| fib->type = FSAFS_NTC_FIB_CONTEXT; |
| fib->size = sizeof(struct fib); |
| fib->hw_fib_va = hw_fib; |
| fib->data = hw_fib->data; |
| fib->dev = dev; |
| |
| spin_lock_irqsave(q->lock, flags); |
| list_add_tail(&fib->fiblink, &q->cmdq); |
| wake_up_interruptible(&q->cmdready); |
| spin_unlock_irqrestore(q->lock, flags); |
| return 1; |
| } else { |
| int fast = index & 0x01; |
| struct fib * fib = &dev->fibs[index >> 2]; |
| struct hw_fib * hwfib = fib->hw_fib_va; |
| |
| /* |
| * Remove this fib from the Outstanding I/O queue. |
| * But only if it has not already been timed out. |
| * |
| * If the fib has been timed out already, then just |
| * continue. The caller has already been notified that |
| * the fib timed out. |
| */ |
| dev->queues->queue[AdapNormCmdQueue].numpending--; |
| |
| if (unlikely(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) { |
| aac_fib_complete(fib); |
| aac_fib_free(fib); |
| return 0; |
| } |
| |
| if (fast) { |
| /* |
| * Doctor the fib |
| */ |
| *(__le32 *)hwfib->data = cpu_to_le32(ST_OK); |
| hwfib->header.XferState |= cpu_to_le32(AdapterProcessed); |
| } |
| |
| FIB_COUNTER_INCREMENT(aac_config.FibRecved); |
| |
| if (hwfib->header.Command == cpu_to_le16(NuFileSystem)) |
| { |
| __le32 *pstatus = (__le32 *)hwfib->data; |
| if (*pstatus & cpu_to_le32(0xffff0000)) |
| *pstatus = cpu_to_le32(ST_OK); |
| } |
| if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected | Async)) |
| { |
| if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected)) |
| FIB_COUNTER_INCREMENT(aac_config.NoResponseRecved); |
| else |
| FIB_COUNTER_INCREMENT(aac_config.AsyncRecved); |
| /* |
| * NOTE: we cannot touch the fib after this |
| * call, because it may have been deallocated. |
| */ |
| fib->flags = 0; |
| fib->callback(fib->callback_data, fib); |
| } else { |
| unsigned long flagv; |
| dprintk((KERN_INFO "event_wait up\n")); |
| spin_lock_irqsave(&fib->event_lock, flagv); |
| if (!fib->done) |
| fib->done = 1; |
| up(&fib->event_wait); |
| spin_unlock_irqrestore(&fib->event_lock, flagv); |
| FIB_COUNTER_INCREMENT(aac_config.NormalRecved); |
| } |
| return 0; |
| } |
| } |