| #ifndef _ASM_X86_IO_H |
| #define _ASM_X86_IO_H |
| |
| #define ARCH_HAS_IOREMAP_WC |
| |
| #include <linux/compiler.h> |
| #include <asm-generic/int-ll64.h> |
| #include <asm/page.h> |
| |
| #define build_mmio_read(name, size, type, reg, barrier) \ |
| static inline type name(const volatile void __iomem *addr) \ |
| { type ret; asm volatile("mov" size " %1,%0":reg (ret) \ |
| :"m" (*(volatile type __force *)addr) barrier); return ret; } |
| |
| #define build_mmio_write(name, size, type, reg, barrier) \ |
| static inline void name(type val, volatile void __iomem *addr) \ |
| { asm volatile("mov" size " %0,%1": :reg (val), \ |
| "m" (*(volatile type __force *)addr) barrier); } |
| |
| build_mmio_read(readb, "b", unsigned char, "=q", :"memory") |
| build_mmio_read(readw, "w", unsigned short, "=r", :"memory") |
| build_mmio_read(readl, "l", unsigned int, "=r", :"memory") |
| |
| build_mmio_read(__readb, "b", unsigned char, "=q", ) |
| build_mmio_read(__readw, "w", unsigned short, "=r", ) |
| build_mmio_read(__readl, "l", unsigned int, "=r", ) |
| |
| build_mmio_write(writeb, "b", unsigned char, "q", :"memory") |
| build_mmio_write(writew, "w", unsigned short, "r", :"memory") |
| build_mmio_write(writel, "l", unsigned int, "r", :"memory") |
| |
| build_mmio_write(__writeb, "b", unsigned char, "q", ) |
| build_mmio_write(__writew, "w", unsigned short, "r", ) |
| build_mmio_write(__writel, "l", unsigned int, "r", ) |
| |
| #define readb_relaxed(a) __readb(a) |
| #define readw_relaxed(a) __readw(a) |
| #define readl_relaxed(a) __readl(a) |
| #define __raw_readb __readb |
| #define __raw_readw __readw |
| #define __raw_readl __readl |
| |
| #define __raw_writeb __writeb |
| #define __raw_writew __writew |
| #define __raw_writel __writel |
| |
| #define mmiowb() barrier() |
| |
| #ifdef CONFIG_X86_64 |
| |
| build_mmio_read(readq, "q", unsigned long, "=r", :"memory") |
| build_mmio_write(writeq, "q", unsigned long, "r", :"memory") |
| |
| #else |
| |
| static inline __u64 readq(const volatile void __iomem *addr) |
| { |
| const volatile u32 __iomem *p = addr; |
| u32 low, high; |
| |
| low = readl(p); |
| high = readl(p + 1); |
| |
| return low + ((u64)high << 32); |
| } |
| |
| static inline void writeq(__u64 val, volatile void __iomem *addr) |
| { |
| writel(val, addr); |
| writel(val >> 32, addr+4); |
| } |
| |
| #endif |
| |
| #define readq_relaxed(a) readq(a) |
| |
| #define __raw_readq(a) readq(a) |
| #define __raw_writeq(val, addr) writeq(val, addr) |
| |
| /* Let people know that we have them */ |
| #define readq readq |
| #define writeq writeq |
| |
| /** |
| * virt_to_phys - map virtual addresses to physical |
| * @address: address to remap |
| * |
| * The returned physical address is the physical (CPU) mapping for |
| * the memory address given. It is only valid to use this function on |
| * addresses directly mapped or allocated via kmalloc. |
| * |
| * This function does not give bus mappings for DMA transfers. In |
| * almost all conceivable cases a device driver should not be using |
| * this function |
| */ |
| |
| static inline phys_addr_t virt_to_phys(volatile void *address) |
| { |
| return __pa(address); |
| } |
| |
| /** |
| * phys_to_virt - map physical address to virtual |
| * @address: address to remap |
| * |
| * The returned virtual address is a current CPU mapping for |
| * the memory address given. It is only valid to use this function on |
| * addresses that have a kernel mapping |
| * |
| * This function does not handle bus mappings for DMA transfers. In |
| * almost all conceivable cases a device driver should not be using |
| * this function |
| */ |
| |
| static inline void *phys_to_virt(phys_addr_t address) |
| { |
| return __va(address); |
| } |
| |
| /* |
| * Change "struct page" to physical address. |
| */ |
| #define page_to_phys(page) ((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT) |
| |
| /* |
| * ISA I/O bus memory addresses are 1:1 with the physical address. |
| * However, we truncate the address to unsigned int to avoid undesirable |
| * promitions in legacy drivers. |
| */ |
| static inline unsigned int isa_virt_to_bus(volatile void *address) |
| { |
| return (unsigned int)virt_to_phys(address); |
| } |
| #define isa_page_to_bus(page) ((unsigned int)page_to_phys(page)) |
| #define isa_bus_to_virt phys_to_virt |
| |
| /* |
| * However PCI ones are not necessarily 1:1 and therefore these interfaces |
| * are forbidden in portable PCI drivers. |
| * |
| * Allow them on x86 for legacy drivers, though. |
| */ |
| #define virt_to_bus virt_to_phys |
| #define bus_to_virt phys_to_virt |
| |
| /** |
| * ioremap - map bus memory into CPU space |
| * @offset: bus address of the memory |
| * @size: size of the resource to map |
| * |
| * ioremap performs a platform specific sequence of operations to |
| * make bus memory CPU accessible via the readb/readw/readl/writeb/ |
| * writew/writel functions and the other mmio helpers. The returned |
| * address is not guaranteed to be usable directly as a virtual |
| * address. |
| * |
| * If the area you are trying to map is a PCI BAR you should have a |
| * look at pci_iomap(). |
| */ |
| extern void __iomem *ioremap_nocache(resource_size_t offset, unsigned long size); |
| extern void __iomem *ioremap_cache(resource_size_t offset, unsigned long size); |
| extern void __iomem *ioremap_prot(resource_size_t offset, unsigned long size, |
| unsigned long prot_val); |
| |
| /* |
| * The default ioremap() behavior is non-cached: |
| */ |
| static inline void __iomem *ioremap(resource_size_t offset, unsigned long size) |
| { |
| return ioremap_nocache(offset, size); |
| } |
| |
| extern void iounmap(volatile void __iomem *addr); |
| |
| |
| #ifdef CONFIG_X86_32 |
| # include "io_32.h" |
| #else |
| # include "io_64.h" |
| #endif |
| |
| extern void *xlate_dev_mem_ptr(unsigned long phys); |
| extern void unxlate_dev_mem_ptr(unsigned long phys, void *addr); |
| |
| extern int ioremap_change_attr(unsigned long vaddr, unsigned long size, |
| unsigned long prot_val); |
| extern void __iomem *ioremap_wc(resource_size_t offset, unsigned long size); |
| |
| /* |
| * early_ioremap() and early_iounmap() are for temporary early boot-time |
| * mappings, before the real ioremap() is functional. |
| * A boot-time mapping is currently limited to at most 16 pages. |
| */ |
| extern void early_ioremap_init(void); |
| extern void early_ioremap_reset(void); |
| extern void __iomem *early_ioremap(resource_size_t phys_addr, |
| unsigned long size); |
| extern void __iomem *early_memremap(resource_size_t phys_addr, |
| unsigned long size); |
| extern void early_iounmap(void __iomem *addr, unsigned long size); |
| |
| #define IO_SPACE_LIMIT 0xffff |
| |
| #endif /* _ASM_X86_IO_H */ |