blob: a324578ca0ac2ec0be091690dc79bcb82f3cc729 [file] [log] [blame]
/******************************************************************************
*
* Name: skge.c
* Project: GEnesis, PCI Gigabit Ethernet Adapter
* Version: $Revision: 1.74.2.38 $
* Date: $Date: 2007/10/02 09:03:51 $
* Purpose: The main driver source module
*
******************************************************************************/
/******************************************************************************
*
* (C)Copyright 1998-2002 SysKonnect GmbH.
* (C)Copyright 2002-2007 Marvell.
*
* Driver for Marvell Yukon chipset and SysKonnect Gigabit Ethernet
* Server Adapters.
*
* Author: Mirko Lindner (mlindner@syskonnect.de)
* Ralph Roesler (rroesler@syskonnect.de)
*
* Address all question to: linux@syskonnect.de
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* The information in this file is provided "AS IS" without warranty.
*
******************************************************************************/
/******************************************************************************
*
* Description:
*
* All source files in this sk98lin directory except of the sk98lin
* Linux specific files
*
* - skdim.c
* - skethtool.c
* - skge.c
* - skproc.c
* - sky2.c
* - Makefile
* - h/skdrv1st.h
* - h/skdrv2nd.h
* - h/sktypes.h
* - h/skversion.h
*
* are part of SysKonnect's common modules for the SK-9xxx adapters.
*
* Those common module files which are not Linux specific are used to
* build drivers on different OS' (e.g. Windows, MAC OS) so that those
* drivers are based on the same set of files
*
* At a first glance, this seems to complicate things unnescessarily on
* Linux, but please do not try to 'clean up' them without VERY good
* reasons, because this will make it more difficult to keep the sk98lin
* driver for Linux in synchronisation with the other drivers running on
* other operating systems.
*
******************************************************************************/
#include "h/skversion.h"
#include <linux/module.h>
#include <linux/init.h>
#include <linux/ethtool.h>
#ifdef USE_ASF_DASH_FW
#include <linux/netdevice.h>
#include <linux/inetdevice.h>
#include <net/if_inet6.h>
#include <linux/ipv6.h>
#endif
#ifdef CONFIG_PROC_FS
#include <linux/proc_fs.h>
#endif
#include "h/skdrv1st.h"
#include "h/skdrv2nd.h"
#include "h/skpcidevid.h"
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,9)
#include <linux/moduleparam.h>
#endif
#define ENABLE_FUTURE_ETH
/*******************************************************************************
*
* Defines
*
******************************************************************************/
/* for debuging on x86 only */
/* #define BREAKPOINT() asm(" int $3"); */
/* Set blink mode*/
#define OEM_CONFIG_VALUE ( SK_ACT_LED_BLINK | \
SK_DUP_LED_NORMAL | \
SK_LED_LINK100_ON)
#define CLEAR_AND_START_RX(Port) SK_OUT8(pAC->IoBase, RxQueueAddr[(Port)]+Q_CSR, CSR_START | CSR_IRQ_CL_F)
#define START_RX(Port) SK_OUT8(pAC->IoBase, RxQueueAddr[(Port)]+Q_CSR, CSR_START)
#define CLEAR_TX_IRQ(Port,Prio) SK_OUT8(pAC->IoBase, TxQueueAddr[(Port)][(Prio)]+Q_CSR, CSR_IRQ_CL_F)
/*******************************************************************************
*
* Local Function Prototypes
*
******************************************************************************/
static int __devinit sk98lin_init_device(struct pci_dev *pdev, const struct pci_device_id *ent);
static void sk98lin_remove_device(struct pci_dev *pdev);
#ifdef CONFIG_PM
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,10)
static int sk98lin_suspend(struct pci_dev *pdev, pm_message_t state);
#else
static int sk98lin_suspend(struct pci_dev *pdev, SK_U32 state);
#endif
static int sk98lin_resume(struct pci_dev *pdev);
static void SkEnableWOMagicPacket(SK_AC *pAC, SK_IOC IoC, SK_MAC_ADDR MacAddr);
#endif
#ifdef Y2_RECOVERY
static void SkGeHandleKernelTimer(unsigned long ptr);
void SkGeCheckTimer(DEV_NET *pNet);
static SK_BOOL CheckRXCounters(DEV_NET *pNet);
static void CheckRxPath(DEV_NET *pNet);
#endif
static void FreeResources(struct SK_NET_DEVICE *dev);
static int SkGeBoardInit(struct SK_NET_DEVICE *dev, SK_AC *pAC);
static SK_BOOL BoardAllocMem(SK_AC *pAC);
static void BoardFreeMem(SK_AC *pAC);
static void BoardInitMem(SK_AC *pAC);
static void SetupRing(SK_AC*, void*, uintptr_t, RXD**, RXD**, RXD**, int*, int*, SK_BOOL);
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,19)
static SkIsrRetVar SkGeIsr(int irq, void *dev_id);
#else
static SkIsrRetVar SkGeIsr(int irq, void *dev_id, struct pt_regs *ptregs);
#endif
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,19)
static SkIsrRetVar SkGeIsrOnePort(int irq, void *dev_id);
#else
static SkIsrRetVar SkGeIsrOnePort(int irq, void *dev_id, struct pt_regs *ptregs);
#endif
static int SkGeOpen(struct SK_NET_DEVICE *dev);
static int SkGeClose(struct SK_NET_DEVICE *dev);
static int SkGeXmit(struct sk_buff *skb, struct SK_NET_DEVICE *dev);
static int SkGeSetMacAddr(struct SK_NET_DEVICE *dev, void *p);
static void SkGeSetRxMode(struct SK_NET_DEVICE *dev);
static struct net_device_stats *SkGeStats(struct SK_NET_DEVICE *dev);
static int SkGeIoctl(struct SK_NET_DEVICE *dev, struct ifreq *rq, int cmd);
static void GetConfiguration(SK_AC*);
static void ProductStr(SK_AC*);
static int XmitFrame(SK_AC*, TX_PORT*, struct sk_buff*);
static void FreeTxDescriptors(SK_AC*pAC, TX_PORT*);
static void FillRxRing(SK_AC*, RX_PORT*);
static SK_BOOL FillRxDescriptor(SK_AC*, RX_PORT*);
#ifdef CONFIG_SK98LIN_NAPI
static int SkGePoll(struct net_device *dev, int *budget);
static void ReceiveIrq(SK_AC*, RX_PORT*, SK_BOOL, int*, int);
#else
static void ReceiveIrq(SK_AC*, RX_PORT*, SK_BOOL);
#endif
#ifdef SK_POLL_CONTROLLER
static void SkGeNetPoll(struct SK_NET_DEVICE *dev);
#endif
static void ClearRxRing(SK_AC*, RX_PORT*);
static void ClearTxRing(SK_AC*, TX_PORT*);
static int SkGeChangeMtu(struct SK_NET_DEVICE *dev, int new_mtu);
static void PortReInitBmu(SK_AC*, int);
static int SkGeIocMib(DEV_NET*, unsigned int, int);
static int SkGeInitPCI(SK_AC *pAC);
static SK_U32 ParseDeviceNbrFromSlotName(const char *SlotName);
static int SkDrvInitAdapter(SK_AC *pAC, int devNbr);
static int SkDrvDeInitAdapter(SK_AC *pAC, int devNbr);
extern void SkLocalEventQueue( SK_AC *pAC,
SK_U32 Class,
SK_U32 Event,
SK_U32 Param1,
SK_U32 Param2,
SK_BOOL Flag);
extern void SkLocalEventQueue64( SK_AC *pAC,
SK_U32 Class,
SK_U32 Event,
SK_U64 Param,
SK_BOOL Flag);
static int XmitFrameSG(SK_AC*, TX_PORT*, struct sk_buff*);
/*******************************************************************************
*
* Extern Function Prototypes
*
******************************************************************************/
extern SK_BOOL SkY2AllocateResources(SK_AC *pAC);
extern void SkY2FreeResources(SK_AC *pAC);
extern void SkY2AllocateRxBuffers(SK_AC *pAC,SK_IOC IoC,int Port);
extern void SkY2FreeRxBuffers(SK_AC *pAC,SK_IOC IoC,int Port);
extern void SkY2FreeTxBuffers(SK_AC *pAC,SK_IOC IoC,int Port);
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,19)
extern SkIsrRetVar SkY2Isr(int irq,void *dev_id);
#else
extern SkIsrRetVar SkY2Isr(int irq,void *dev_id,struct pt_regs *ptregs);
#endif
extern int SkY2Xmit(struct sk_buff *skb,struct SK_NET_DEVICE *dev);
extern void SkY2PortStop(SK_AC *pAC,SK_IOC IoC,int Port,int Dir,int RstMode);
extern void SkY2PortStart(SK_AC *pAC,SK_IOC IoC,int Port);
extern int SkY2RlmtSend(SK_AC *pAC,int PortNr,struct sk_buff *pMessage);
extern void SkY2RestartStatusUnit(SK_AC *pAC);
extern void FillReceiveTableYukon2(SK_AC *pAC,SK_IOC IoC,int Port);
#ifdef CONFIG_SK98LIN_NAPI
extern int SkY2Poll(struct net_device *dev, int *budget);
#endif
extern void SkDimEnableModerationIfNeeded(SK_AC *pAC);
extern void SkDimStartModerationTimer(SK_AC *pAC);
extern void SkDimModerate(SK_AC *pAC);
#ifndef ENABLE_FUTURE_ETH
extern int SkEthIoctl(struct net_device *netdev, struct ifreq *ifr);
#else
/* Ethtool functions */
extern int SkGeGetSettings(struct net_device *dev, struct ethtool_cmd *ecmd);
extern void SkGeGetDrvInfo(struct net_device *dev, struct ethtool_drvinfo *ecmd);
extern void SkGeGetWolSettings(struct net_device *dev, struct ethtool_wolinfo *ecmd);
extern void SkGeGetPauseParam(struct net_device *dev, struct ethtool_pauseparam *ecmd);
extern int SkGeGetCoalesce(struct net_device *dev, struct ethtool_coalesce *ecmd);
extern SK_U32 SkGeGetRxCsum(struct net_device *dev);
extern void SkGeGetStrings(struct net_device *dev, u32 stringset, u8 *strings);
extern int SkGeGetStatsLen(struct net_device *dev);
extern void SkGeGetEthStats(struct net_device *dev, struct ethtool_stats *stats, u64 *data);
extern int SkGeSetSettings(struct net_device *dev, struct ethtool_cmd *ecmd);
extern int SkGeSetWolSettings(struct net_device *dev, struct ethtool_wolinfo *ewol);
extern int SkGeSetPauseParam(struct net_device *dev, struct ethtool_pauseparam *ecmd);
extern int SkGeSetCoalesce(struct net_device *dev, struct ethtool_coalesce *ecmd);
extern int SkGeSetSG(struct net_device *dev, u32 data);
extern int SkGeSetTxCsum(struct net_device *dev, u32 data);
extern int SkGeSetRxCsum(struct net_device *dev, u32 data);
extern int SkGePhysId(struct net_device *dev, u32 data);
#endif
#ifdef NETIF_F_TSO
extern int SkGeSetTSO(struct net_device *netdev, u32 data);
#endif
#ifdef CONFIG_PROC_FS
static const char SK_Root_Dir_entry[] = "sk98lin";
static struct proc_dir_entry *pSkRootDir;
extern struct file_operations sk_proc_fops;
#endif
#ifdef DEBUG
static void DumpMsg(struct sk_buff*, char*);
static void DumpData(char*, int);
static void DumpLong(char*, int);
#endif
/* global variables *********************************************************/
static const char *BootString = BOOT_STRING;
struct SK_NET_DEVICE *SkGeRootDev = NULL;
static SK_BOOL DoPrintInterfaceChange = SK_TRUE;
/* local variables **********************************************************/
static uintptr_t TxQueueAddr[SK_MAX_MACS][2] = {{0x680, 0x600},{0x780, 0x700}};
static uintptr_t RxQueueAddr[SK_MAX_MACS] = {0x400, 0x480};
static int sk98lin_max_boards_found = 0;
static int is_closed = 0;
#ifdef CONFIG_PROC_FS
static struct proc_dir_entry *pSkRootDir;
#endif
#ifdef ENABLE_FUTURE_ETH
static struct ethtool_ops sk98lin_ethtool_ops = {
.get_sg = ethtool_op_get_sg,
.get_link = ethtool_op_get_link,
.get_tx_csum = ethtool_op_get_tx_csum,
/* .get_perm_addr = ethtool_op_get_perm_addr, */
.get_settings = SkGeGetSettings,
.get_drvinfo = SkGeGetDrvInfo,
.get_wol = SkGeGetWolSettings,
.get_pauseparam = SkGeGetPauseParam,
.get_coalesce = SkGeGetCoalesce,
.get_rx_csum = SkGeGetRxCsum,
.get_strings = SkGeGetStrings,
.get_stats_count = SkGeGetStatsLen,
.get_ethtool_stats = SkGeGetEthStats,
.set_settings = SkGeSetSettings,
.set_wol = SkGeSetWolSettings,
.set_pauseparam = SkGeSetPauseParam,
.set_coalesce = SkGeSetCoalesce,
.set_sg = SkGeSetSG,
.set_tx_csum = SkGeSetTxCsum,
.set_rx_csum = SkGeSetRxCsum,
.phys_id = SkGePhysId,
#ifdef NETIF_F_TSO
.get_tso = ethtool_op_get_tso,
.set_tso = SkGeSetTSO,
#endif
/* .get_regs_len = */
/* .get_regs = */
/* .get_msglevel = */
/* .nway_reset = */
/* .get_ringparam = */
/* .set_msglevel = */
/* .set_ringparam = */
};
#endif
MODULE_DEVICE_TABLE(pci, sk98lin_pci_tbl);
static struct pci_driver sk98lin_driver = {
.name = DRIVER_FILE_NAME,
.id_table = sk98lin_pci_tbl,
.probe = sk98lin_init_device,
.remove = __devexit_p(sk98lin_remove_device),
#ifdef CONFIG_PM
.suspend = sk98lin_suspend,
.resume = sk98lin_resume
#endif
};
static struct net_device_ops sk98lin_netdev_ops = {
.ndo_open = SkGeOpen,
.ndo_stop = SkGeClose,
.ndo_set_multicast_list = SkGeSetRxMode,
.ndo_set_mac_address = SkGeSetMacAddr,
.ndo_change_mtu = SkGeChangeMtu,
.ndo_do_ioctl = SkGeIoctl,
.ndo_get_stats = SkGeStats
};
/*****************************************************************************
*
* sk98lin_init_device - initialize the adapter
*
* Description:
* This function initializes the adapter. Resources for
* the adapter are allocated and the adapter is brought into Init 1
* state.
*
* Returns:
* 0, if everything is ok
* !=0, on error
*/
static int __devinit sk98lin_init_device(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
static SK_BOOL sk98lin_boot_string = SK_FALSE;
static SK_BOOL sk98lin_proc_entry = SK_FALSE;
static int sk98lin_boards_found = 0;
SK_AC *pAC;
DEV_NET *pNet = NULL;
struct SK_NET_DEVICE *dev = NULL;
int retval;
#ifdef CONFIG_PROC_FS
#endif
int pci_using_dac;
retval = pci_enable_device(pdev);
if (retval) {
printk(KERN_ERR "Cannot enable PCI device, "
"aborting.\n");
return retval;
}
dev = NULL;
pNet = NULL;
/* INSERT * We have to find the power-management capabilities */
/* Find power-management capability. */
pci_using_dac = 0; /* Set 32 bit DMA per default */
/* Configure DMA attributes. */
retval = pci_set_dma_mask(pdev, (u64) 0xffffffffffffffffULL);
if (!retval) {
pci_using_dac = 1;
} else {
retval = pci_set_dma_mask(pdev, (u64) 0xffffffff);
if (retval) {
printk(KERN_ERR "No usable DMA configuration, "
"aborting.\n");
return retval;
}
}
if ((dev = alloc_etherdev(sizeof(DEV_NET))) == NULL) {
printk(KERN_ERR "Unable to allocate etherdev "
"structure!\n");
return -ENODEV;
}
pNet = netdev_priv(dev);
pNet->pAC = kmalloc(sizeof(SK_AC), GFP_KERNEL);
if (pNet->pAC == NULL){
free_netdev(dev);
printk(KERN_ERR "Unable to allocate adapter "
"structure!\n");
return -ENODEV;
}
/* Print message */
if (!sk98lin_boot_string) {
/* set display flag to TRUE so that */
/* we only display this string ONCE */
sk98lin_boot_string = SK_TRUE;
printk("%s\n", BootString);
}
memset(pNet->pAC, 0, sizeof(SK_AC));
pAC = pNet->pAC;
pAC->PciDev = pdev;
pAC->PciDevId = pdev->device;
pAC->dev[0] = dev;
pAC->dev[1] = dev;
sprintf(pAC->Name, "SysKonnect SK-98xx");
pAC->CheckQueue = SK_FALSE;
pAC->InterfaceUp[0] = 0;
pAC->InterfaceUp[1] = 0;
dev->irq = pdev->irq;
retval = SkGeInitPCI(pAC);
if (retval) {
printk("SKGE: PCI setup failed: %i\n", retval);
free_netdev(dev);
return -ENODEV;
}
// SET_MODULE_OWNER(dev);
#ifdef ENABLE_FUTURE_ETH
SET_ETHTOOL_OPS(dev, &sk98lin_ethtool_ops);
#endif
dev->netdev_ops = &sk98lin_netdev_ops;
dev->flags &= ~IFF_RUNNING;
#ifdef SK_POLL_CONTROLLER
dev->poll_controller = SkGeNetPoll;
#endif
SET_NETDEV_DEV(dev, &pdev->dev);
pAC->Index = sk98lin_boards_found;
if (SkGeBoardInit(dev, pAC)) {
free_netdev(dev);
return -ENODEV;
} else {
ProductStr(pAC);
}
if (pci_using_dac)
dev->features |= NETIF_F_HIGHDMA;
/* shifter to later moment in time... */
if (CHIP_ID_YUKON_2(pAC)) {
sk98lin_netdev_ops.ndo_start_xmit = SkY2Xmit;
#ifdef CONFIG_SK98LIN_NAPI
dev->poll = &SkY2Poll;
dev->weight = 64;
#endif
} else {
sk98lin_netdev_ops.ndo_start_xmit = SkGeXmit;
#ifdef CONFIG_SK98LIN_NAPI
dev->poll = &SkGePoll;
dev->weight = 64;
#endif
}
#ifdef NETIF_F_TSO
#ifdef USE_SK_TSO_FEATURE
if (CHIP_ID_YUKON_2(pAC)) {
dev->features |= NETIF_F_TSO;
}
#endif
#endif
#ifdef CONFIG_SK98LIN_ZEROCOPY
if (pAC->GIni.GIChipId != CHIP_ID_GENESIS)
dev->features |= NETIF_F_SG;
#endif
#ifdef USE_SK_TX_CHECKSUM
if (pAC->GIni.GIChipId != CHIP_ID_GENESIS)
dev->features |= NETIF_F_IP_CSUM;
#endif
#ifdef USE_SK_RX_CHECKSUM
pAC->RxPort[0].UseRxCsum = SK_TRUE;
if (pAC->GIni.GIMacsFound == 2 ) {
pAC->RxPort[1].UseRxCsum = SK_TRUE;
}
#endif
/* Save the hardware revision */
pAC->HWRevision = (((pAC->GIni.GIPciHwRev >> 4) & 0x0F)*10) +
(pAC->GIni.GIPciHwRev & 0x0F);
/* Set driver globals */
pAC->Pnmi.pDriverFileName = DRIVER_FILE_NAME;
pAC->Pnmi.pDriverReleaseDate = DRIVER_REL_DATE;
SK_MEMSET(&(pAC->PnmiBackup), 0, sizeof(SK_PNMI_STRUCT_DATA));
SK_MEMCPY(&(pAC->PnmiBackup), &(pAC->PnmiStruct),
sizeof(SK_PNMI_STRUCT_DATA));
/* Register net device */
retval = register_netdev(dev);
if (retval) {
printk(KERN_ERR "SKGE: Could not register device.\n");
FreeResources(dev);
free_netdev(dev);
return retval;
}
/* Save initial device name */
strcpy(pNet->InitialDevName, dev->name);
/* Set network to off */
netif_stop_queue(dev);
netif_carrier_off(dev);
/* Print adapter specific string from vpd and config settings */
printk("%s: %s\n", pNet->InitialDevName, pAC->DeviceStr);
printk(" PrefPort:%c RlmtMode:%s\n",
'A' + pAC->Rlmt.Net[0].Port[pAC->Rlmt.Net[0].PrefPort]->PortNumber,
(pAC->RlmtMode==0) ? "Check Link State" :
((pAC->RlmtMode==1) ? "Check Link State" :
((pAC->RlmtMode==3) ? "Check Local Port" :
((pAC->RlmtMode==7) ? "Check Segmentation" :
((pAC->RlmtMode==17) ? "Dual Check Link State" :"Error")))));
SkGeYellowLED(pAC, pAC->IoBase, 1);
memcpy((caddr_t) dev->dev_addr,
(caddr_t) &pAC->Addr.Net[0].CurrentMacAddress, 6);
/* First adapter... Create proc and print message */
#ifdef CONFIG_PROC_FS
if (!sk98lin_proc_entry) {
sk98lin_proc_entry = SK_TRUE;
SK_MEMCPY(&SK_Root_Dir_entry, BootString,
sizeof(SK_Root_Dir_entry) - 1);
/*Create proc (directory)*/
if(!pSkRootDir) {
pSkRootDir = proc_mkdir(SK_Root_Dir_entry, init_net.proc_net);
if (!pSkRootDir) {
printk(KERN_WARNING "%s: Unable to create /proc/net/%s",
dev->name, SK_Root_Dir_entry);
}
/*
else {
pSkRootDir->owner = THIS_MODULE;
}
*/
}
}
/* Create proc file */
/* No further proc file creation here */
#endif
pNet->PortNr = 0;
pNet->NetNr = 0;
sk98lin_boards_found++;
pci_set_drvdata(pdev, dev);
/* More then one port found */
if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
dev = alloc_etherdev(sizeof(DEV_NET));
if (!dev) {
printk(KERN_ERR "Unable to allocate etherdev "
"structure!\n");
return -ENODEV;
}
pAC->dev[1] = dev;
pNet = netdev_priv(dev);
pNet->PortNr = 1;
pNet->NetNr = 1;
pNet->pAC = pAC;
if (CHIP_ID_YUKON_2(pAC)) {
sk98lin_netdev_ops.ndo_start_xmit = SkY2Xmit;
#ifdef CONFIG_SK98LIN_NAPI
dev->poll = &SkY2Poll;
dev->weight = 64;
#endif
} else {
sk98lin_netdev_ops.ndo_start_xmit = SkGeXmit;
#ifdef CONFIG_SK98LIN_NAPI
dev->poll = &SkGePoll;
dev->weight = 64;
#endif
}
#ifdef ENABLE_FUTURE_ETH
SET_ETHTOOL_OPS(dev, &sk98lin_ethtool_ops);
#endif
sk98lin_netdev_ops.ndo_open = SkGeOpen;
sk98lin_netdev_ops.ndo_stop = SkGeClose;
sk98lin_netdev_ops.ndo_get_stats = SkGeStats;
sk98lin_netdev_ops.ndo_set_multicast_list = SkGeSetRxMode;
sk98lin_netdev_ops.ndo_set_mac_address = SkGeSetMacAddr;
sk98lin_netdev_ops.ndo_do_ioctl = SkGeIoctl;
sk98lin_netdev_ops.ndo_change_mtu = SkGeChangeMtu;
dev->flags &= ~IFF_RUNNING;
#ifdef SK_POLL_CONTROLLER
dev->poll_controller = SkGeNetPoll;
#endif
#ifdef NETIF_F_TSO
#ifdef USE_SK_TSO_FEATURE
if (CHIP_ID_YUKON_2(pAC)) {
dev->features |= NETIF_F_TSO;
}
#endif
#endif
#ifdef CONFIG_SK98LIN_ZEROCOPY
/* Don't handle if Genesis chipset */
if (pAC->GIni.GIChipId != CHIP_ID_GENESIS)
dev->features |= NETIF_F_SG;
#endif
#ifdef USE_SK_TX_CHECKSUM
/* Don't handle if Genesis chipset */
if (pAC->GIni.GIChipId != CHIP_ID_GENESIS)
dev->features |= NETIF_F_IP_CSUM;
#endif
if (register_netdev(dev)) {
printk(KERN_ERR "SKGE: Could not register device.\n");
free_netdev(dev);
pAC->dev[1] = pAC->dev[0];
} else {
/* Save initial device name */
strcpy(pNet->InitialDevName, dev->name);
/* Set network to off */
netif_stop_queue(dev);
netif_carrier_off(dev);
#ifdef CONFIG_PROC_FS
/* No further proc file creation here */
#endif
memcpy((caddr_t) &dev->dev_addr,
(caddr_t) &pAC->Addr.Net[1].CurrentMacAddress, 6);
printk("%s: %s\n", pNet->InitialDevName, pAC->DeviceStr);
printk(" PrefPort:B RlmtMode:Dual Check Link State\n");
}
}
pAC->Index = sk98lin_boards_found;
sk98lin_max_boards_found = sk98lin_boards_found;
return 0;
}
/*****************************************************************************
*
* SkGeInitPCI - Init the PCI resources
*
* Description:
* This function initialize the PCI resources and IO
*
* Returns: N/A
*
*/
static int SkGeInitPCI(SK_AC *pAC)
{
struct SK_NET_DEVICE *dev = pAC->dev[0];
struct pci_dev *pdev = pAC->PciDev;
int retval;
if (pci_enable_device(pdev) != 0) {
return 1;
}
dev->mem_start = pci_resource_start (pdev, 0);
pci_set_master(pdev);
if (pci_request_regions(pdev, DRIVER_FILE_NAME) != 0) {
retval = 2;
goto out_disable;
}
#ifdef SK_BIG_ENDIAN
/*
* On big endian machines, we use the adapter's aibility of
* reading the descriptors as big endian.
*/
{
SK_U32 our2;
SkPciReadCfgDWord(pAC, PCI_OUR_REG_2, &our2);
our2 |= PCI_REV_DESC;
SkPciWriteCfgDWord(pAC, PCI_OUR_REG_2, our2);
}
#endif
/*
* Remap the regs into kernel space.
*/
pAC->IoBase = ioremap_nocache(dev->mem_start, 0x4000);
if (!pAC->IoBase){
retval = 3;
goto out_release;
}
return 0;
out_release:
pci_release_regions(pdev);
out_disable:
pci_disable_device(pdev);
return retval;
}
#ifdef CONFIG_PROC_FS
/*****************************************************************************
*
* SkGeHandleProcfsTimer - Handle the procfs timer requests
*
* Description:
* Checks, if the device's name changed. If this is the case
* it deletes the old profs entry and creates a new one with
* the new name.
*
* Returns: N/A
*
*/
static void SkGeHandleProcfsTimer(unsigned long ptr)
{
DEV_NET *pNet = (DEV_NET*) ptr;
struct proc_dir_entry *pProcFile;
/*
* If the current name and the last saved name of the device differ
* we need to update our procfs entry.
*/
if ( (pSkRootDir) &&
(strcmp(pNet->CurrentName, pNet->pAC->dev[pNet->NetNr]->name) != 0) ) {
if (pNet->pAC->InterfaceUp[pNet->NetNr] == 1)
remove_proc_entry(pNet->CurrentName, pSkRootDir);
/*
* InterfaceUp only holds 1 if both the network interface is up and
* the corresponding procfs entry is done. Otherwise it is set to 0.
*/
pNet->pAC->InterfaceUp[pNet->NetNr] = 0;
pProcFile = create_proc_entry(pNet->pAC->dev[pNet->NetNr]->name, S_IRUGO, pSkRootDir);
pProcFile->proc_fops = &sk_proc_fops;
pProcFile->data = pNet->pAC->dev[pNet->NetNr];
/*
* Remember, interface dev nr pNet->NetNr is up and procfs entry is created.
*/
pNet->pAC->InterfaceUp[pNet->NetNr] = 1;
strcpy(pNet->CurrentName, pNet->pAC->dev[pNet->NetNr]->name);
}
/*
* Restart Procfs Timer
*/
pNet->ProcfsTimer.expires = jiffies + HZ*5; /* 5 secs */
add_timer(&pNet->ProcfsTimer);
}
#endif
#ifdef Y2_RECOVERY
/*****************************************************************************
*
* SkGeHandleKernelTimer - Handle the kernel timer requests
*
* Description:
* If the requested time interval for the timer has elapsed,
* this function checks the link state.
*
* Returns: N/A
*
*/
static void SkGeHandleKernelTimer(
unsigned long ptr) /* holds the pointer to adapter control context */
{
DEV_NET *pNet = (DEV_NET*) ptr;
SkGeCheckTimer(pNet);
}
/*****************************************************************************
*
* sk98lin_check_timer - Resume the the card
*
* Description:
* This function checks the kernel timer
*
* Returns: N/A
*
*/
void SkGeCheckTimer(
DEV_NET *pNet) /* holds the pointer to adapter control context */
{
SK_AC *pAC = pNet->pAC;
SK_BOOL StartTimer = SK_TRUE;
SK_U32 StatSpeed, StatDuplex, NewTimerInterval;
#ifdef SK_EXTREME
if (HW_IS_EXT_LE_FORMAT(pAC)) {
/* Disable checks for Yukon Extreme */
return;
}
#endif
StatSpeed = pAC->GIni.GP[pNet->NetNr].PLinkSpeedUsed;
if (StatSpeed == SK_LSPEED_STAT_10MBPS) {
StatDuplex = pAC->GIni.GP[pNet->NetNr].PLinkModeStatus;
if ((StatDuplex == SK_LMODE_STAT_AUTOHALF) ||
(StatDuplex == SK_LMODE_STAT_HALF)) {
NewTimerInterval = (HZ*2);
} else {
NewTimerInterval = (HZ);
}
} else if (StatSpeed == SK_LSPEED_STAT_100MBPS) {
NewTimerInterval = (HZ/2);
} else if (StatSpeed == SK_LSPEED_STAT_1000MBPS) {
NewTimerInterval = (HZ/4);
} else {
NewTimerInterval = (HZ*2);
}
if (pNet->InRecover) {
pNet->KernelTimer.expires = jiffies + NewTimerInterval;
add_timer(&pNet->KernelTimer);
return;
}
if (pNet->TimerExpired)
return;
pNet->TimerExpired = SK_TRUE;
#define TXPORT pAC->TxPort[pNet->PortNr][TX_PRIO_LOW]
#define RXPORT pAC->RxPort[pNet->PortNr]
if ( (CHIP_ID_YUKON_2(pAC)) &&
(netif_running(pAC->dev[pNet->PortNr]))) {
#ifdef Y2_RX_CHECK
if (HW_FEATURE(pAC, HWF_WA_DEV_4167)) {
/* Checks the RX path */
CheckRxPath(pNet);
}
#endif
/* Check the transmitter */
if (!(IS_Q_EMPTY(&TXPORT.TxAQ_working))) {
if (TXPORT.LastDone != TXPORT.TxALET.Done) {
TXPORT.LastDone = TXPORT.TxALET.Done;
pNet->TransmitTimeoutTimer = 0;
} else {
pNet->TransmitTimeoutTimer++;
if (pNet->TransmitTimeoutTimer >= 10) {
pNet->TransmitTimeoutTimer = 0;
#ifdef CHECK_TRANSMIT_TIMEOUT
StartTimer = SK_FALSE;
SkLocalEventQueue(pAC, SKGE_DRV,
SK_DRV_RECOVER,pNet->PortNr,-1,SK_FALSE);
#endif
}
}
}
#ifdef CHECK_TRANSMIT_TIMEOUT
// if (!timer_pending(&pNet->KernelTimer)) {
pNet->KernelTimer.expires = jiffies + NewTimerInterval;
add_timer(&pNet->KernelTimer);
pNet->TimerExpired = SK_FALSE;
// }
#endif
}
}
/*****************************************************************************
*
* CheckRXCounters - Checks the the statistics for RX path hang
*
* Description:
* This function is called periodical by a timer.
*
* Notes:
*
* Function Parameters:
*
* Returns:
* Traffic status
*
*/
static SK_BOOL CheckRXCounters(
DEV_NET *pNet) /* holds the pointer to adapter control context */
{
SK_AC *pAC = pNet->pAC;
SK_BOOL bStatus = SK_FALSE;
/* Variable used to store the MAC RX FIFO RP, RPLev*/
SK_U32 MACFifoRP = 0;
SK_U32 MACFifoRLev = 0;
/* Variable used to store the PCI RX FIFO RP, RPLev*/
SK_U32 RXFifoRP = 0;
SK_U8 RXFifoRLev = 0;
SK_DBG_MSG(pAC, SK_DBGMOD_DRV, SK_DBGCAT_DRV_MSG,
("==> CheckRXCounters()\n"));
/*Check if statistic counters hangs*/
if (pNet->LastJiffies == pAC->dev[pNet->PortNr]->last_rx) {
/* Now read the values of read pointer/level from MAC RX FIFO again */
SK_IN32(pAC->IoBase, MR_ADDR(pNet->PortNr, RX_GMF_RP), &MACFifoRP);
SK_IN32(pAC->IoBase, MR_ADDR(pNet->PortNr, RX_GMF_RLEV), &MACFifoRLev);
/* Now read the values of read pointer/level from RX FIFO again */
SK_IN8(pAC->IoBase, Q_ADDR(pAC->GIni.GP[pNet->PortNr].PRxQOff, Q_RX_RP), &RXFifoRP);
SK_IN8(pAC->IoBase, Q_ADDR(pAC->GIni.GP[pNet->PortNr].PRxQOff, Q_RX_RL), &RXFifoRLev);
/* Check if the MAC RX hang */
if ((MACFifoRP == pNet->PreviousMACFifoRP) &&
(MACFifoRLev != 0) &&
(MACFifoRLev >= pNet->PreviousMACFifoRLev)){
bStatus = SK_TRUE;
}
/* Check if the PCI RX hang */
if ((RXFifoRP == pNet->PreviousRXFifoRP) &&
(RXFifoRLev != 0) &&
(RXFifoRLev >= pNet->PreviousRXFifoRLev)){
/*Set the flag to indicate that the RX FIFO hangs*/
bStatus = SK_TRUE;
}
}
/* Store now the values of counters for next check */
pNet->LastJiffies = pAC->dev[pNet->PortNr]->last_rx;
/* Store the values of read pointer/level from MAC RX FIFO for next test */
pNet->PreviousMACFifoRP = MACFifoRP;
pNet->PreviousMACFifoRLev = MACFifoRLev;
/* Store the values of read pointer/level from RX FIFO for next test */
pNet->PreviousRXFifoRP = RXFifoRP;
pNet->PreviousRXFifoRLev = RXFifoRLev;
SK_DBG_MSG(pAC, SK_DBGMOD_DRV, SK_DBGCAT_DRV_MSG,
("<== CheckRXCounters()\n"));
return bStatus;
}
/*****************************************************************************
*
* CheckRxPath - Checks if the RX path
*
* Description:
* This function is called periodical by a timer.
*
* Notes:
*
* Function Parameters:
*
* Returns:
* None.
*
*/
static void CheckRxPath(
DEV_NET *pNet) /* holds the pointer to adapter control context */
{
unsigned long Flags; /* for the spin locks */
/* Initialize the pAC structure.*/
SK_AC *pAC = pNet->pAC;
SK_DBG_MSG(pAC, SK_DBGMOD_DRV, SK_DBGCAT_DRV_MSG,
("==> CheckRxPath()\n"));
/*If the statistics are not changed then could be an RX problem */
if (CheckRXCounters(pNet)){
/*
* First we try the simple solution by resetting the Level Timer
*/
/* Stop Level Timer of Status BMU */
SK_OUT8(pAC->IoBase, STAT_LEV_TIMER_CTRL, TIM_STOP);
/* Start Level Timer of Status BMU */
SK_OUT8(pAC->IoBase, STAT_LEV_TIMER_CTRL, TIM_START);
if (!CheckRXCounters(pNet)) {
return;
}
spin_lock_irqsave(&pAC->SlowPathLock, Flags);
SkLocalEventQueue(pAC, SKGE_DRV,
SK_DRV_RECOVER,pNet->PortNr,-1,SK_TRUE);
/* Reset the fifo counters */
pNet->PreviousMACFifoRP = 0;
pNet->PreviousMACFifoRLev = 0;
pNet->PreviousRXFifoRP = 0;
pNet->PreviousRXFifoRLev = 0;
spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
}
SK_DBG_MSG(pAC, SK_DBGMOD_DRV, SK_DBGCAT_DRV_MSG,
("<== CheckRxPath()\n"));
}
#endif
#ifdef CONFIG_PM
/*****************************************************************************
*
* sk98lin_resume - Resume the the card
*
* Description:
* This function resumes the card into the D0 state
*
* Returns: N/A
*
*/
static int sk98lin_resume(
struct pci_dev *pdev) /* the device that is to resume */
{
struct net_device *dev = pci_get_drvdata(pdev);
DEV_NET *pNet = (DEV_NET*)netdev_priv(dev);
SK_AC *pAC = pNet->pAC;
SK_U16 PmCtlSts;
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,19)
int rCode;
#endif
#ifdef USE_ASF_DASH_FW
SK_U32 TmpVal32;
#endif
if (pAC->GIni.GIChipId != CHIP_ID_YUKON_EX) {
/* Set the power state to D0 */
pci_set_power_state(pdev, 0);
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,9)
pci_restore_state(pdev);
#else
pci_restore_state(pdev, pAC->PciState);
#endif
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,19)
rCode = pci_enable_device(pdev);
if (rCode)
return rCode;
#else
pci_enable_device(pdev);
#endif
pci_set_master(pdev);
pci_enable_wake(pdev, 3, 0);
pci_enable_wake(pdev, 4, 0);
}
/* Set the adapter power state to D0 */
SkPciReadCfgWord(pAC, PCI_PM_CTL_STS, &PmCtlSts);
PmCtlSts &= ~(PCI_PM_STATE_D3); /* reset all DState bits */
PmCtlSts |= PCI_PM_STATE_D0;
SkPciWriteCfgWord(pAC, PCI_PM_CTL_STS, PmCtlSts);
#ifdef USE_ASF_DASH_FW
pAC->ReturningFromSuspend = 1;
#endif
/* Reinit the adapter and start the port again */
pAC->BoardLevel = SK_INIT_DATA;
SkDrvLeaveDiagMode(pAC);
#ifdef USE_ASF_DASH_FW
SK_IN32(pAC->IoBase, 0xE7C, &TmpVal32);
printk("sk98lin: resume complete (reason: %u)\n", TmpVal32);
#endif
return 0;
}
/*****************************************************************************
*
* sk98lin_suspend - Suspend the card
*
* Description:
* This function suspends the card into a defined state
*
* Returns: N/A
*
*/
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,10)
static int sk98lin_suspend(
struct pci_dev *pdev, /* pointer to the device that is to suspend */
pm_message_t state) /* what power state is desired by Linux? */
#else
static int sk98lin_suspend(
struct pci_dev *pdev, /* pointer to the device that is to suspend */
SK_U32 state) /* what power state is desired by Linux? */
#endif
{
struct net_device *dev = pci_get_drvdata(pdev);
DEV_NET *pNet = (DEV_NET*)netdev_priv(dev);
SK_AC *pAC = pNet->pAC;
SK_U16 PciPMControlStatus;
SK_U16 PciPMCapabilities;
SK_MAC_ADDR MacAddr;
int i;
/* GEnesis and first yukon revs do not support power management */
if (pAC->GIni.GIChipId == CHIP_ID_YUKON) {
if (pAC->GIni.GIChipRev == 0) {
return 0; /* power management not supported */
}
}
if (pAC->GIni.GIChipId == CHIP_ID_GENESIS) {
return 0; /* not supported for this chipset */
}
if (pAC->WolInfo.ConfiguredWolOptions == 0) {
return 0; /* WOL possible, but disabled via ethtool */
}
if(netif_running(dev)) {
netif_stop_queue(dev); /* stop device if running */
}
/* read the PM control/status register from the PCI config space */
SK_IN16(pAC->IoBase, PCI_C(pAC, PCI_PM_CTL_STS), &PciPMControlStatus);
/* read the power management capabilities from the config space */
SK_IN16(pAC->IoBase, PCI_C(pAC, PCI_PM_CAP_REG), &PciPMCapabilities);
/* Enable WakeUp with Magic Packet - get MAC address from adapter */
for (i = 0; i < SK_MAC_ADDR_LEN; i++) {
/* virtual address: will be used for data */
SK_IN8(pAC->IoBase, (B2_MAC_1 + i), &MacAddr.a[i]);
}
SkDrvEnterDiagMode(pAC);
SkEnableWOMagicPacket(pAC, pAC->IoBase, MacAddr);
if (pAC->GIni.GIChipId != CHIP_ID_YUKON_EX) {
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,9)
pci_save_state(pdev);
#else
pci_save_state(pdev, pAC->PciState);
#endif
// Eventually we need to evaluate the return values
pci_enable_wake(pdev, 3, 1); /* D3 hot */
pci_enable_wake(pdev, 4, 1); /* D3 cold */
pci_disable_device(pdev);
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,10)
pci_set_power_state(pdev, pci_choose_state(pdev, state)); /* set the state */
#else
pci_set_power_state(pdev, state); /* set the state */
#endif
}
#ifdef USE_ASF_DASH_FW
SkAsfSuspend(pAC, pAC->IoBase);
printk("sk98lin: suspend complete\n");
#endif
return 0;
}
/******************************************************************************
*
* SkEnableWOMagicPacket - Enable Wake on Magic Packet on the adapter
*
* Context:
* init, pageable
* the adapter should be de-initialized before calling this function
*
* Returns:
* nothing
*/
static void SkEnableWOMagicPacket(
SK_AC *pAC, /* Adapter Control Context */
SK_IOC IoC, /* I/O control context */
SK_MAC_ADDR MacAddr) /* MacAddr expected in magic packet */
{
SK_U16 Word;
SK_U32 DWord;
int i;
int HwPortIndex;
int Port = 0;
/* use Port 0 as long as we do not have any dual port cards which support WOL */
HwPortIndex = 0;
DWord = 0;
SK_OUT16(IoC, B0_CTST, 0x0002); /* clear S/W Reset */
SK_OUT16(IoC, GMAC_LINK_CTRL, 0x0002); /* clear Link Reset */
/*
* PHY Configuration:
* Autonegotioation is enabled, advertise 10 HD, 10 FD,
* 100 HD, and 100 FD.
*/
if ((pAC->GIni.GIChipId == CHIP_ID_YUKON_EC) ||
(pAC->GIni.GIChipId == CHIP_ID_YUKON) ||
(pAC->GIni.GIChipId == CHIP_ID_YUKON_LITE) ||
(CHIP_ID_YUKON_2(pAC)) ) {
SK_OUT32(pAC->IoBase, 0x1c84, 0x7000);
SK_OUT32(pAC->IoBase, 0x1c88, 0x0);
SK_OUT8(IoC, B0_POWER_CTRL, 0xa9); /* enable VAUX */
/* WA code for COMA mode */
/* Only for yukon plus based chipsets rev A3 */
if ( (pAC->GIni.GIChipRev >= CHIP_REV_YU_LITE_A3) &&
(pAC->GIni.GIChipId == CHIP_ID_YUKON_LITE) ) {
SK_IN32(IoC, B2_GP_IO, &DWord);
DWord |= GP_DIR_9; /* set to output */
DWord &= ~GP_IO_9; /* clear PHY reset (active high) */
SK_OUT32(IoC, B2_GP_IO, DWord); /* clear PHY reset */
}
if ((pAC->GIni.GIChipId == CHIP_ID_YUKON_LITE) ||
(pAC->GIni.GIChipId == CHIP_ID_YUKON)) {
SK_OUT32(IoC, GPHY_CTRL, 0x01f04001); /* set PHY reset */
SK_OUT32(IoC, GPHY_CTRL, 0x01f04002); /* clear PHY reset */
} else {
SK_OUT8(IoC, GPHY_CTRL, 0x02); /* clear PHY reset */
}
SK_OUT8(IoC, GMAC_CTRL, 0x02); /* clear MAC reset */
SkGmPhyWrite(pAC, IoC, Port, 4, 0x01e1); /* advertise 10/100 HD/FD */
SkGmPhyWrite(pAC, IoC, Port, 9, 0x0000); /* do not advertise 1000 HD/FD */
SkGmPhyWrite(pAC, IoC, Port, 00, 0xB300); /* 100 MBit, disable Autoneg */
} else if ((pAC->GIni.GIChipId == CHIP_ID_YUKON_FE) ||
(pAC->GIni.GIChipId == CHIP_ID_YUKON_FE_P)) {
SK_OUT8(IoC, B0_POWER_CTRL, 0xa9); /* enable VAUX */
SK_OUT8(IoC, GPHY_CTRL, 0x02); /* clear PHY reset */
SK_OUT8(IoC, GMAC_CTRL, 0x02); /* clear MAC reset */
SkGmPhyWrite(pAC, IoC, Port, 16, 0x0130); /* Enable Automatic Crossover */
SkGmPhyWrite(pAC, IoC, Port, 00, 0xB300); /* 100 MBit, disable Autoneg */
}
/*
* MAC Configuration:
* Set the MAC to 100 HD and enable the auto update features
* for Speed, Flow Control and Duplex Mode.
* If autonegotiation completes successfully the
* MAC takes the link parameters from the PHY.
* If the link partner doesn't support autonegotiation
* the MAC can receive magic packets if the link partner
* uses 100 HD.
*/
SK_OUT16(IoC, 0x2804, 0x3832);
/*
* Set Up Magic Packet parameters
*/
#ifndef USE_ASF_DASH_FW
for (i = 0; i < 6; i+=2) { /* set up magic packet MAC address */
SK_IN16(IoC, B2_MAC_1 + i, &Word);
SK_OUT16(IoC, WOL_MAC_ADDR_LO + i, Word);
}
#endif
#ifdef USE_ASF_DASH_FW
for (i = 0; i < 6; i+=2) { /* set up magic packet MAC address */
SK_OUT16(IoC, WOL_MAC_ADDR_LO + i, 0x0);
}
#endif
SK_OUT16(IoC, WOL_CTRL_STAT, 0x0208); /* enable PME on magic packet */
/*
* Set up PME generation
*/
/* set PME legacy mode */
/* Only for PCI express based chipsets */
if ((pAC->GIni.GIChipId == CHIP_ID_YUKON_EC) ||
(pAC->GIni.GIChipId == CHIP_ID_YUKON_FE) ||
(CHIP_ID_YUKON_2(pAC))) {
if (pAC->GIni.GIChipId != CHIP_ID_YUKON_EX) {
SkPciReadCfgDWord(pAC, PCI_OUR_REG_1, &DWord);
DWord |= 0x8000;
SkPciWriteCfgDWord(pAC, PCI_OUR_REG_1, DWord);
}
}
#ifndef USE_ASF_DASH_FW
SK_OUT8(IoC, RX_GMF_CTRL_T, (SK_U8)GMF_RST_SET);
#endif
SK_OUT16(IoC, B0_CTST, Y2_HW_WOL_OFF);
/* clear PME status and switch adapter to DState 3 */
SkPciReadCfgWord(pAC, PCI_PM_CTL_STS, &Word);
Word |= 0x103;
SkPciWriteCfgWord(pAC, PCI_PM_CTL_STS, Word);
} /* SkEnableWOMagicPacket */
#endif
/*****************************************************************************
*
* FreeResources - release resources allocated for adapter
*
* Description:
* This function releases the IRQ, unmaps the IO and
* frees the desriptor ring.
*
* Returns: N/A
*
*/
static void FreeResources(struct SK_NET_DEVICE *dev)
{
SK_U32 AllocFlag;
DEV_NET *pNet;
SK_AC *pAC;
if (netdev_priv(dev)) {
pNet = (DEV_NET*)netdev_priv(dev);
pAC = pNet->pAC;
AllocFlag = pAC->AllocFlag;
if (pAC->PciDev) {
pci_release_regions(pAC->PciDev);
}
if (AllocFlag & SK_ALLOC_IRQ) {
free_irq(dev->irq, dev);
}
if (pAC->IoBase) {
iounmap(pAC->IoBase);
}
if (CHIP_ID_YUKON_2(pAC)) {
SkY2FreeResources(pAC);
} else {
BoardFreeMem(pAC);
}
}
} /* FreeResources */
MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>");
MODULE_DESCRIPTION("SysKonnect SK-NET Gigabit Ethernet SK-98xx driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
#ifdef LINK_SPEED_A
static char *Speed_A[SK_MAX_CARD_PARAM] = LINK_SPEED;
#else
static char *Speed_A[SK_MAX_CARD_PARAM] = {"", };
#endif
#ifdef LINK_SPEED_B
static char *Speed_B[SK_MAX_CARD_PARAM] = LINK_SPEED;
#else
static char *Speed_B[SK_MAX_CARD_PARAM] = {"", };
#endif
#ifdef AUTO_NEG_A
static char *AutoNeg_A[SK_MAX_CARD_PARAM] = AUTO_NEG_A;
#else
static char *AutoNeg_A[SK_MAX_CARD_PARAM] = {"", };
#endif
#ifdef DUP_CAP_A
static char *DupCap_A[SK_MAX_CARD_PARAM] = DUP_CAP_A;
#else
static char *DupCap_A[SK_MAX_CARD_PARAM] = {"", };
#endif
#ifdef FLOW_CTRL_A
static char *FlowCtrl_A[SK_MAX_CARD_PARAM] = FLOW_CTRL_A;
#else
static char *FlowCtrl_A[SK_MAX_CARD_PARAM] = {"", };
#endif
#ifdef ROLE_A
static char *Role_A[SK_MAX_CARD_PARAM] = ROLE_A;
#else
static char *Role_A[SK_MAX_CARD_PARAM] = {"", };
#endif
#ifdef AUTO_NEG_B
static char *AutoNeg_B[SK_MAX_CARD_PARAM] = AUTO_NEG_B;
#else
static char *AutoNeg_B[SK_MAX_CARD_PARAM] = {"", };
#endif
#ifdef DUP_CAP_B
static char *DupCap_B[SK_MAX_CARD_PARAM] = DUP_CAP_B;
#else
static char *DupCap_B[SK_MAX_CARD_PARAM] = {"", };
#endif
#ifdef FLOW_CTRL_B
static char *FlowCtrl_B[SK_MAX_CARD_PARAM] = FLOW_CTRL_B;
#else
static char *FlowCtrl_B[SK_MAX_CARD_PARAM] = {"", };
#endif
#ifdef ROLE_B
static char *Role_B[SK_MAX_CARD_PARAM] = ROLE_B;
#else
static char *Role_B[SK_MAX_CARD_PARAM] = {"", };
#endif
#ifdef CON_TYPE
static char *ConType[SK_MAX_CARD_PARAM] = CON_TYPE;
#else
static char *ConType[SK_MAX_CARD_PARAM] = {"", };
#endif
#ifdef PREF_PORT
static char *PrefPort[SK_MAX_CARD_PARAM] = PREF_PORT;
#else
static char *PrefPort[SK_MAX_CARD_PARAM] = {"", };
#endif
#ifdef RLMT_MODE
static char *RlmtMode[SK_MAX_CARD_PARAM] = RLMT_MODE;
#else
static char *RlmtMode[SK_MAX_CARD_PARAM] = {"", };
#endif
static int IntsPerSec[SK_MAX_CARD_PARAM];
static char *Moderation[SK_MAX_CARD_PARAM];
static char *ModerationMask[SK_MAX_CARD_PARAM];
static int TxModeration[SK_MAX_CARD_PARAM];
static char *LowLatency[SK_MAX_CARD_PARAM];
static char *BroadcastPrio[SK_MAX_CARD_PARAM];
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,9)
module_param_array(Speed_A, charp, NULL, 0);
module_param_array(Speed_B, charp, NULL, 0);
module_param_array(AutoNeg_A, charp, NULL, 0);
module_param_array(AutoNeg_B, charp, NULL, 0);
module_param_array(DupCap_A, charp, NULL, 0);
module_param_array(DupCap_B, charp, NULL, 0);
module_param_array(FlowCtrl_A, charp, NULL, 0);
module_param_array(FlowCtrl_B, charp, NULL, 0);
module_param_array(Role_A, charp, NULL, 0);
module_param_array(Role_B, charp, NULL, 0);
module_param_array(ConType, charp, NULL, 0);
module_param_array(PrefPort, charp, NULL, 0);
module_param_array(RlmtMode, charp, NULL, 0);
/* used for interrupt moderation */
module_param_array(IntsPerSec, int, NULL, 0);
module_param_array(Moderation, charp, NULL, 0);
module_param_array(ModerationMask, charp, NULL, 0);
module_param_array(LowLatency, charp, NULL, 0);
module_param_array(TxModeration, int, NULL, 0);
module_param_array(BroadcastPrio, charp, NULL, 0);
#else
MODULE_PARM(Speed_A, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "s");
MODULE_PARM(Speed_B, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "s");
MODULE_PARM(AutoNeg_A, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "s");
MODULE_PARM(AutoNeg_B, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "s");
MODULE_PARM(DupCap_A, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "s");
MODULE_PARM(DupCap_B, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "s");
MODULE_PARM(FlowCtrl_A, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "s");
MODULE_PARM(FlowCtrl_B, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "s");
MODULE_PARM(Role_A, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "s");
MODULE_PARM(Role_B, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "s");
MODULE_PARM(ConType, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "s");
MODULE_PARM(PrefPort, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "s");
MODULE_PARM(RlmtMode, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "s");
MODULE_PARM(IntsPerSec, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "i");
MODULE_PARM(Moderation, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "s");
MODULE_PARM(ModerationMask, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "s");
MODULE_PARM(LowLatency, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "s");
MODULE_PARM(TxModeration, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "s");
MODULE_PARM(BroadcastPrio, "1-" __MODULE_STRING(SK_MAX_CARD_PARAM) "s");
#endif
/*****************************************************************************
*
* sk98lin_remove_device - device deinit function
*
* Description:
* Disable adapter if it is still running, free resources,
* free device struct.
*
* Returns: N/A
*/
static void sk98lin_remove_device(struct pci_dev *pdev)
{
DEV_NET *pNet;
SK_AC *pAC;
struct SK_NET_DEVICE *next;
unsigned long Flags;
struct net_device *dev = pci_get_drvdata(pdev);
/* Device not available. Return. */
if (!dev)
return;
pNet = (DEV_NET*)netdev_priv(dev);
pAC = pNet->pAC;
next = pAC->Next;
#ifndef SK_ASF
netif_stop_queue(dev);
#endif
SkAddrMcUpdate(pAC,pAC->IoBase, 0); /* Mac update */
SkGeYellowLED(pAC, pAC->IoBase, 0);
if(pAC->BoardLevel == SK_INIT_RUN) {
/* board is still alive */
spin_lock_irqsave(&pAC->SlowPathLock, Flags);
#ifndef SK_ASF
SkLocalEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP,
0, -1, SK_FALSE);
SkLocalEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP,
1, -1, SK_TRUE);
#endif
/* disable interrupts */
SK_OUT32(pAC->IoBase, B0_IMSK, 0);
SkGeDeInit(pAC, pAC->IoBase);
#ifdef SK_ASF
SkAsfDeInit(pAC, pAC->IoBase);
#endif
spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
pAC->BoardLevel = SK_INIT_DATA;
/* We do NOT check here, if IRQ was pending, of course*/
}
if(pAC->BoardLevel == SK_INIT_IO) {
/* board is still alive */
SkGeDeInit(pAC, pAC->IoBase);
#ifdef SK_ASF
SkAsfDeInit(pAC, pAC->IoBase);
#endif
pAC->BoardLevel = SK_INIT_DATA;
}
if ((pAC->GIni.GIMacsFound == 2) && pAC->RlmtNets == 2){
unregister_netdev(pAC->dev[1]);
free_netdev(pAC->dev[1]);
}
FreeResources(dev);
#ifdef CONFIG_PROC_FS
/* Remove the sk98lin procfs device entries */
if ((pAC->GIni.GIMacsFound == 2) && pAC->RlmtNets == 2){
if (pAC->InterfaceUp[1] == 1) {
remove_proc_entry(pAC->dev[1]->name, pSkRootDir);
}
}
if (pAC->InterfaceUp[0] == 1) {
remove_proc_entry(pAC->dev[0]->name, pSkRootDir);
}
#endif
sk98lin_netdev_ops.ndo_get_stats = NULL;
/*
* otherwise unregister_netdev calls get_stats with
* invalid IO ... :-(
*/
unregister_netdev(dev);
free_netdev(dev);
kfree(pAC);
sk98lin_max_boards_found--;
#ifdef CONFIG_PROC_FS
/* Remove all Proc entries if last device */
if (sk98lin_max_boards_found == 0) {
/* clear proc-dir */
remove_proc_entry(pSkRootDir->name, init_net.proc_net);
}
#endif
}
/*****************************************************************************
*
* SkGeBoardInit - do level 0 and 1 initialization
*
* Description:
* This function prepares the board hardware for running. The desriptor
* ring is set up, the IRQ is allocated and the configuration settings
* are examined.
*
* Returns:
* 0, if everything is ok
* !=0, on error
*/
static int __devinit SkGeBoardInit(struct SK_NET_DEVICE *dev, SK_AC *pAC)
{
short i;
char *DescrString = "sk98lin: Driver for Linux"; /* this is given to PNMI */
char *VerStr = VER_STRING;
int Ret; /* return code of request_irq */
SK_BOOL DualNet;
#ifndef SK_ASF
unsigned long Flags; /* for the spin locks */
#endif
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("IoBase: %08lX\n", (unsigned long)pAC->IoBase));
for (i=0; i<SK_MAX_MACS; i++) {
pAC->TxPort[i][0].HwAddr = pAC->IoBase + TxQueueAddr[i][0];
pAC->TxPort[i][0].PortIndex = i;
pAC->RxPort[i].HwAddr = pAC->IoBase + RxQueueAddr[i];
pAC->RxPort[i].PortIndex = i;
}
/* Initialize the mutexes */
for (i=0; i<SK_MAX_MACS; i++) {
spin_lock_init(&pAC->TxPort[i][0].TxDesRingLock);
spin_lock_init(&pAC->RxPort[i].RxDesRingLock);
}
spin_lock_init(&pAC->InitLock); /* Init lock */
spin_lock_init(&pAC->SlowPathLock);
spin_lock_init(&pAC->TxQueueLock); /* for Yukon2 chipsets */
spin_lock_init(&pAC->SetPutIndexLock); /* for Yukon2 chipsets */
/* level 0 init common modules here */
#ifdef SK_ASF
spin_lock(&pAC->SlowPathLock);
#endif
#ifndef SK_ASF
spin_lock_irqsave(&pAC->SlowPathLock, Flags);
#endif
/* Does a RESET on board ...*/
if (SkGeInit(pAC, pAC->IoBase, SK_INIT_DATA) != 0) {
printk("HWInit (0) failed.\n");
#ifdef SK_ASF
spin_unlock(&pAC->SlowPathLock);
#endif
#ifndef SK_ASF
spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
#endif
return(-EAGAIN);
}
SkI2cInit( pAC, pAC->IoBase, SK_INIT_DATA);
SkEventInit(pAC, pAC->IoBase, SK_INIT_DATA);
SkPnmiInit( pAC, pAC->IoBase, SK_INIT_DATA);
SkAddrInit( pAC, pAC->IoBase, SK_INIT_DATA);
SkRlmtInit( pAC, pAC->IoBase, SK_INIT_DATA);
SkTimerInit(pAC, pAC->IoBase, SK_INIT_DATA);
#ifdef SK_ASF
SkAsfInit(pAC, pAC->IoBase, SK_INIT_DATA);
#endif
pAC->BoardLevel = SK_INIT_DATA;
pAC->RxPort[0].RxBufSize = ETH_BUF_SIZE;
pAC->RxPort[1].RxBufSize = ETH_BUF_SIZE;
SK_PNMI_SET_DRIVER_DESCR(pAC, DescrString);
SK_PNMI_SET_DRIVER_VER(pAC, VerStr);
/* level 1 init common modules here (HW init) */
if (SkGeInit(pAC, pAC->IoBase, SK_INIT_IO) != 0) {
printk("sk98lin: HWInit (1) failed.\n");
#ifdef SK_ASF
spin_unlock(&pAC->SlowPathLock);
#endif
#ifndef SK_ASF
spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
#endif
return(-EAGAIN);
}
SkI2cInit( pAC, pAC->IoBase, SK_INIT_IO);
SkEventInit(pAC, pAC->IoBase, SK_INIT_IO);
SkPnmiInit( pAC, pAC->IoBase, SK_INIT_IO);
SkAddrInit( pAC, pAC->IoBase, SK_INIT_IO);
SkRlmtInit( pAC, pAC->IoBase, SK_INIT_IO);
SkTimerInit(pAC, pAC->IoBase, SK_INIT_IO);
#ifdef SK_ASF
SkAsfInit(pAC, pAC->IoBase, SK_INIT_IO);
#endif
#ifdef Y2_RECOVERY
/* mark entries invalid */
pAC->LastPort = 3;
pAC->LastOpc = 0xFF;
#endif
/* Set chipset type support */
if ((pAC->GIni.GIChipId == CHIP_ID_YUKON) ||
(pAC->GIni.GIChipId == CHIP_ID_YUKON_LITE) ||
(pAC->GIni.GIChipId == CHIP_ID_YUKON_LP)) {
pAC->ChipsetType = 1; /* Yukon chipset (descriptor logic) */
} else if (CHIP_ID_YUKON_2(pAC)) {
pAC->ChipsetType = 2; /* Yukon2 chipset (list logic) */
} else {
pAC->ChipsetType = 0; /* Genesis chipset (descriptor logic) */
}
/* wake on lan support */
pAC->WolInfo.SupportedWolOptions = 0;
#if defined (ETHTOOL_GWOL) && defined (ETHTOOL_SWOL)
if (pAC->GIni.GIChipId != CHIP_ID_GENESIS) {
pAC->WolInfo.SupportedWolOptions = WAKE_MAGIC;
if (pAC->GIni.GIChipId == CHIP_ID_YUKON) {
if (pAC->GIni.GIChipRev == 0) {
pAC->WolInfo.SupportedWolOptions = 0;
}
}
}
#endif
pAC->WolInfo.ConfiguredWolOptions = pAC->WolInfo.SupportedWolOptions;
GetConfiguration(pAC);
if (pAC->RlmtNets == 2) {
pAC->GIni.GP[0].PPortUsage = SK_MUL_LINK;
pAC->GIni.GP[1].PPortUsage = SK_MUL_LINK;
}
/* Set the tx moderation parameter */
if (pAC->TxModeration) {
pAC->GIni.GITxIdxRepThres = pAC->TxModeration;
}
pAC->BoardLevel = SK_INIT_IO;
#ifdef SK_ASF
spin_unlock(&pAC->SlowPathLock);
#endif
#ifndef SK_ASF
spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
#endif
if (!CHIP_ID_YUKON_2(pAC)) {
if (pAC->GIni.GIMacsFound == 2) {
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,21)
Ret = request_irq(dev->irq, SkGeIsr, IRQF_SHARED, dev->name, dev);
#else
Ret = request_irq(dev->irq, SkGeIsr, SA_SHIRQ, dev->name, dev);
#endif
} else if (pAC->GIni.GIMacsFound == 1) {
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,21)
Ret = request_irq(dev->irq, SkGeIsrOnePort, IRQF_SHARED, dev->name, dev);
#else
Ret = request_irq(dev->irq, SkGeIsrOnePort, SA_SHIRQ, dev->name, dev);
#endif
} else {
printk(KERN_WARNING "sk98lin: Illegal number of ports: %d\n",
pAC->GIni.GIMacsFound);
return -EAGAIN;
}
}
else {
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,21)
Ret = request_irq(dev->irq, SkY2Isr, IRQF_SHARED, dev->name, dev);
#else
Ret = request_irq(dev->irq, SkY2Isr, SA_SHIRQ, dev->name, dev);
#endif
}
if (Ret) {
printk(KERN_WARNING "sk98lin: Requested IRQ %d is busy.\n",
dev->irq);
return -EAGAIN;
}
pAC->AllocFlag |= SK_ALLOC_IRQ;
/*
** Alloc descriptor/LETable memory for this board (both RxD/TxD)
*/
if (CHIP_ID_YUKON_2(pAC)) {
if (!SkY2AllocateResources(pAC)) {
printk("No memory for Yukon2 settings\n");
return(-EAGAIN);
}
} else {
if(!BoardAllocMem(pAC)) {
printk("No memory for descriptor rings.\n");
return(-EAGAIN);
}
}
#ifdef SK_USE_CSUM
SkCsSetReceiveFlags(pAC,
SKCS_PROTO_IP | SKCS_PROTO_TCP | SKCS_PROTO_UDP,
&pAC->CsOfs1, &pAC->CsOfs2, 0);
pAC->CsOfs = (pAC->CsOfs2 << 16) | pAC->CsOfs1;
#endif
/*
** Function BoardInitMem() for Yukon dependent settings...
*/
BoardInitMem(pAC);
/* tschilling: New common function with minimum size check. */
DualNet = SK_FALSE;
if (pAC->RlmtNets == 2) {
DualNet = SK_TRUE;
}
/*
* Register the device here
*/
pAC->Next = SkGeRootDev;
SkGeRootDev = dev;
return (0);
} /* SkGeBoardInit */
/*****************************************************************************
*
* BoardAllocMem - allocate the memory for the descriptor rings
*
* Description:
* This function allocates the memory for all descriptor rings.
* Each ring is aligned for the desriptor alignment and no ring
* has a 4 GByte boundary in it (because the upper 32 bit must
* be constant for all descriptiors in one rings).
*
* Returns:
* SK_TRUE, if all memory could be allocated
* SK_FALSE, if not
*/
static SK_BOOL BoardAllocMem(
SK_AC *pAC)
{
caddr_t pDescrMem; /* pointer to descriptor memory area */
size_t AllocLength; /* length of complete descriptor area */
int i; /* loop counter */
unsigned long BusAddr;
/* rings plus one for alignment (do not cross 4 GB boundary) */
/* RX_RING_SIZE is assumed bigger than TX_RING_SIZE */
#if (BITS_PER_LONG == 32)
AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound + 8;
#else
AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound
+ RX_RING_SIZE + 8;
#endif
pDescrMem = pci_alloc_consistent(pAC->PciDev, AllocLength,
&pAC->pDescrMemDMA);
if (pDescrMem == NULL) {
return (SK_FALSE);
}
pAC->pDescrMem = pDescrMem;
BusAddr = (unsigned long) pAC->pDescrMemDMA;
/* Descriptors need 8 byte alignment, and this is ensured
* by pci_alloc_consistent.
*/
for (i=0; i<pAC->GIni.GIMacsFound; i++) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS,
("TX%d/A: pDescrMem: %lX, PhysDescrMem: %lX\n",
i, (unsigned long) pDescrMem,
BusAddr));
pAC->TxPort[i][0].pTxDescrRing = pDescrMem;
pAC->TxPort[i][0].VTxDescrRing = BusAddr;
pDescrMem += TX_RING_SIZE;
BusAddr += TX_RING_SIZE;
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS,
("RX%d: pDescrMem: %lX, PhysDescrMem: %lX\n",
i, (unsigned long) pDescrMem,
(unsigned long)BusAddr));
pAC->RxPort[i].pRxDescrRing = pDescrMem;
pAC->RxPort[i].VRxDescrRing = BusAddr;
pDescrMem += RX_RING_SIZE;
BusAddr += RX_RING_SIZE;
} /* for */
return (SK_TRUE);
} /* BoardAllocMem */
/****************************************************************************
*
* BoardFreeMem - reverse of BoardAllocMem
*
* Description:
* Free all memory allocated in BoardAllocMem: adapter context,
* descriptor rings, locks.
*
* Returns: N/A
*/
static void BoardFreeMem(
SK_AC *pAC)
{
size_t AllocLength; /* length of complete descriptor area */
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("BoardFreeMem\n"));
if (pAC->pDescrMem) {
#if (BITS_PER_LONG == 32)
AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound + 8;
#else
AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound
+ RX_RING_SIZE + 8;
#endif
pci_free_consistent(pAC->PciDev, AllocLength,
pAC->pDescrMem, pAC->pDescrMemDMA);
pAC->pDescrMem = NULL;
}
} /* BoardFreeMem */
/*****************************************************************************
*
* BoardInitMem - initiate the descriptor rings
*
* Description:
* This function sets the descriptor rings or LETables up in memory.
* The adapter is initialized with the descriptor start addresses.
*
* Returns: N/A
*/
static void BoardInitMem(
SK_AC *pAC) /* pointer to adapter context */
{
int i; /* loop counter */
int RxDescrSize; /* the size of a rx descriptor rounded up to alignment*/
int TxDescrSize; /* the size of a tx descriptor rounded up to alignment*/
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("BoardInitMem\n"));
if (!pAC->GIni.GIYukon2) {
RxDescrSize = (((sizeof(RXD) - 1) / DESCR_ALIGN) + 1) * DESCR_ALIGN;
pAC->RxDescrPerRing = RX_RING_SIZE / RxDescrSize;
TxDescrSize = (((sizeof(TXD) - 1) / DESCR_ALIGN) + 1) * DESCR_ALIGN;
pAC->TxDescrPerRing = TX_RING_SIZE / RxDescrSize;
for (i=0; i<pAC->GIni.GIMacsFound; i++) {
SetupRing(
pAC,
pAC->TxPort[i][0].pTxDescrRing,
pAC->TxPort[i][0].VTxDescrRing,
(RXD**)&pAC->TxPort[i][0].pTxdRingHead,
(RXD**)&pAC->TxPort[i][0].pTxdRingTail,
(RXD**)&pAC->TxPort[i][0].pTxdRingPrev,
&pAC->TxPort[i][0].TxdRingFree,
&pAC->TxPort[i][0].TxdRingPrevFree,
SK_TRUE);
SetupRing(
pAC,
pAC->RxPort[i].pRxDescrRing,
pAC->RxPort[i].VRxDescrRing,
&pAC->RxPort[i].pRxdRingHead,
&pAC->RxPort[i].pRxdRingTail,
&pAC->RxPort[i].pRxdRingPrev,
&pAC->RxPort[i].RxdRingFree,
&pAC->RxPort[i].RxdRingFree,
SK_FALSE);
}
}
} /* BoardInitMem */
/*****************************************************************************
*
* SetupRing - create one descriptor ring
*
* Description:
* This function creates one descriptor ring in the given memory area.
* The head, tail and number of free descriptors in the ring are set.
*
* Returns:
* none
*/
static void SetupRing(
SK_AC *pAC,
void *pMemArea, /* a pointer to the memory area for the ring */
uintptr_t VMemArea, /* the virtual bus address of the memory area */
RXD **ppRingHead, /* address where the head should be written */
RXD **ppRingTail, /* address where the tail should be written */
RXD **ppRingPrev, /* address where the tail should be written */
int *pRingFree, /* address where the # of free descr. goes */
int *pRingPrevFree, /* address where the # of free descr. goes */
SK_BOOL IsTx) /* flag: is this a tx ring */
{
int i; /* loop counter */
int DescrSize; /* the size of a descriptor rounded up to alignment*/
int DescrNum; /* number of descriptors per ring */
RXD *pDescr; /* pointer to a descriptor (receive or transmit) */
RXD *pNextDescr; /* pointer to the next descriptor */
RXD *pPrevDescr; /* pointer to the previous descriptor */
uintptr_t VNextDescr; /* the virtual bus address of the next descriptor */
if (IsTx == SK_TRUE) {
DescrSize = (((sizeof(TXD) - 1) / DESCR_ALIGN) + 1) *
DESCR_ALIGN;
DescrNum = TX_RING_SIZE / DescrSize;
} else {
DescrSize = (((sizeof(RXD) - 1) / DESCR_ALIGN) + 1) *
DESCR_ALIGN;
DescrNum = RX_RING_SIZE / DescrSize;
}
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS,
("Descriptor size: %d Descriptor Number: %d\n",
DescrSize,DescrNum));
pDescr = (RXD*) pMemArea;
pPrevDescr = NULL;
pNextDescr = (RXD*) (((char*)pDescr) + DescrSize);
VNextDescr = VMemArea + DescrSize;
for(i=0; i<DescrNum; i++) {
/* set the pointers right */
pDescr->VNextRxd = VNextDescr & 0xffffffffULL;
pDescr->pNextRxd = pNextDescr;
pDescr->TcpSumStarts = pAC->CsOfs;
/* advance one step */
pPrevDescr = pDescr;
pDescr = pNextDescr;
pNextDescr = (RXD*) (((char*)pDescr) + DescrSize);
VNextDescr += DescrSize;
}
pPrevDescr->pNextRxd = (RXD*) pMemArea;
pPrevDescr->VNextRxd = VMemArea;
pDescr = (RXD*) pMemArea;
*ppRingHead = (RXD*) pMemArea;
*ppRingTail = *ppRingHead;
*ppRingPrev = pPrevDescr;
*pRingFree = DescrNum;
*pRingPrevFree = DescrNum;
} /* SetupRing */
/*****************************************************************************
*
* PortReInitBmu - re-initiate the descriptor rings for one port
*
* Description:
* This function reinitializes the descriptor rings of one port
* in memory. The port must be stopped before.
* The HW is initialized with the descriptor start addresses.
*
* Returns:
* none
*/
static void PortReInitBmu(
SK_AC *pAC, /* pointer to adapter context */
int PortIndex) /* index of the port for which to re-init */
{
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("PortReInitBmu "));
/* set address of first descriptor of ring in BMU */
SK_OUT32(pAC->IoBase, TxQueueAddr[PortIndex][TX_PRIO_LOW]+ Q_DA_L,
(uint32_t)(((caddr_t)
(pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxdRingHead) -
pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxDescrRing +
pAC->TxPort[PortIndex][TX_PRIO_LOW].VTxDescrRing) &
0xFFFFFFFF));
SK_OUT32(pAC->IoBase, TxQueueAddr[PortIndex][TX_PRIO_LOW]+ Q_DA_H,
(uint32_t)(((caddr_t)
(pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxdRingHead) -
pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxDescrRing +
pAC->TxPort[PortIndex][TX_PRIO_LOW].VTxDescrRing) >> 32));
SK_OUT32(pAC->IoBase, RxQueueAddr[PortIndex]+Q_DA_L,
(uint32_t)(((caddr_t)(pAC->RxPort[PortIndex].pRxdRingHead) -
pAC->RxPort[PortIndex].pRxDescrRing +
pAC->RxPort[PortIndex].VRxDescrRing) & 0xFFFFFFFF));
SK_OUT32(pAC->IoBase, RxQueueAddr[PortIndex]+Q_DA_H,
(uint32_t)(((caddr_t)(pAC->RxPort[PortIndex].pRxdRingHead) -
pAC->RxPort[PortIndex].pRxDescrRing +
pAC->RxPort[PortIndex].VRxDescrRing) >> 32));
} /* PortReInitBmu */
/****************************************************************************
*
* SkGeIsr - handle adapter interrupts
*
* Description:
* The interrupt routine is called when the network adapter
* generates an interrupt. It may also be called if another device
* shares this interrupt vector with the driver.
*
* Returns: N/A
*
*/
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,19)
static SkIsrRetVar SkGeIsr(int irq, void *dev_id)
#else
static SkIsrRetVar SkGeIsr(int irq, void *dev_id, struct pt_regs *ptregs)
#endif
{
struct SK_NET_DEVICE *dev = (struct SK_NET_DEVICE *)dev_id;
DEV_NET *pNet;
SK_AC *pAC;
SK_U32 IntSrc; /* interrupts source register contents */
pNet = (DEV_NET*)netdev_priv(dev);
pAC = pNet->pAC;
/*
* Check and process if its our interrupt
*/
SK_IN32(pAC->IoBase, B0_SP_ISRC, &IntSrc);
if ((IntSrc == 0) && (!pNet->NetConsoleMode)) {
return SkIsrRetNone;
}
#ifdef CONFIG_SK98LIN_NAPI
if (netif_rx_schedule_prep(dev)) {
pAC->GIni.GIValIrqMask &= ~(NAPI_DRV_IRQS);
SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
__netif_rx_schedule(dev);
}
#ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
if (IntSrc & IS_XA1_F) {
CLEAR_TX_IRQ(0, TX_PRIO_LOW);
}
if (IntSrc & IS_XA2_F) {
CLEAR_TX_IRQ(1, TX_PRIO_LOW);
}
#endif
#else
while (((IntSrc & IRQ_MASK) & ~SPECIAL_IRQS) != 0) {
#if 0 /* software irq currently not used */
if (IntSrc & IS_IRQ_SW) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_INT_SRC,
("Software IRQ\n"));
}
#endif
if (IntSrc & IS_R1_F) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_INT_SRC,
("EOF RX1 IRQ\n"));
ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
CLEAR_AND_START_RX(0);
SK_PNMI_CNT_RX_INTR(pAC, 0);
}
if (IntSrc & IS_R2_F) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_INT_SRC,
("EOF RX2 IRQ\n"));
ReceiveIrq(pAC, &pAC->RxPort[1], SK_TRUE);
CLEAR_AND_START_RX(1);
SK_PNMI_CNT_RX_INTR(pAC, 1);
}
#ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
if (IntSrc & IS_XA1_F) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_INT_SRC,
("EOF AS TX1 IRQ\n"));
CLEAR_TX_IRQ(0, TX_PRIO_LOW);
SK_PNMI_CNT_TX_INTR(pAC, 0);
spin_lock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
FreeTxDescriptors(pAC, &pAC->TxPort[0][TX_PRIO_LOW]);
spin_unlock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
}
if (IntSrc & IS_XA2_F) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_INT_SRC,
("EOF AS TX2 IRQ\n"));
CLEAR_TX_IRQ(1, TX_PRIO_LOW);
SK_PNMI_CNT_TX_INTR(pAC, 1);
spin_lock(&pAC->TxPort[1][TX_PRIO_LOW].TxDesRingLock);
FreeTxDescriptors(pAC, &pAC->TxPort[1][TX_PRIO_LOW]);
spin_unlock(&pAC->TxPort[1][TX_PRIO_LOW].TxDesRingLock);
}
#if 0 /* only if sync. queues used */
if (IntSrc & IS_XS1_F) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_INT_SRC,
("EOF SY TX1 IRQ\n"));
CLEAR_TX_IRQ(0, TX_PRIO_HIGH);
SK_PNMI_CNT_TX_INTR(pAC, 1);
spin_lock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
FreeTxDescriptors(pAC, 0, TX_PRIO_HIGH);
spin_unlock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
}
if (IntSrc & IS_XS2_F) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_INT_SRC,
("EOF SY TX2 IRQ\n"));
CLEAR_TX_IRQ(1, TX_PRIO_HIGH);
SK_PNMI_CNT_TX_INTR(pAC, 1);
spin_lock(&pAC->TxPort[1][TX_PRIO_HIGH].TxDesRingLock);
FreeTxDescriptors(pAC, 1, TX_PRIO_HIGH);
spin_unlock(&pAC->TxPort[1][TX_PRIO_HIGH].TxDesRingLock);
}
#endif
#endif
SK_IN32(pAC->IoBase, B0_ISRC, &IntSrc);
} /* while (IntSrc & IRQ_MASK != 0) */
#endif
#ifndef CONFIG_SK98LIN_NAPI
/* Handle interrupts */
spin_lock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
FreeTxDescriptors(pAC, &pAC->TxPort[0][TX_PRIO_LOW]);
spin_unlock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
START_RX(0);
spin_lock(&pAC->TxPort[1][TX_PRIO_LOW].TxDesRingLock);
FreeTxDescriptors(pAC, &pAC->TxPort[1][TX_PRIO_LOW]);
spin_unlock(&pAC->TxPort[1][TX_PRIO_LOW].TxDesRingLock);
ReceiveIrq(pAC, &pAC->RxPort[1], SK_TRUE);
START_RX(1);
#endif
IntSrc &= pAC->GIni.GIValIrqMask;
if ((IntSrc & SPECIAL_IRQS) || pAC->CheckQueue) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_INT_SRC,
("SPECIAL IRQ DP-Cards => %x\n", IntSrc));
pAC->CheckQueue = SK_FALSE;
spin_lock(&pAC->SlowPathLock);
if (IntSrc & SPECIAL_IRQS)
SkGeSirqIsr(pAC, pAC->IoBase, IntSrc);
SkEventDispatcher(pAC, pAC->IoBase);
spin_unlock(&pAC->SlowPathLock);
START_RX(0);
START_RX(1);
}
if (pAC->CheckQueue) {
pAC->CheckQueue = SK_FALSE;
spin_lock(&pAC->SlowPathLock);
SkEventDispatcher(pAC, pAC->IoBase);
spin_unlock(&pAC->SlowPathLock);
}
/* IRQ is processed - Enable IRQs again*/
SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
return SkIsrRetHandled;
} /* SkGeIsr */
/****************************************************************************
*
* SkGeIsrOnePort - handle adapter interrupts for single port adapter
*
* Description:
* The interrupt routine is called when the network adapter
* generates an interrupt. It may also be called if another device
* shares this interrupt vector with the driver.
* This is the same as above, but handles only one port.
*
* Returns: N/A
*
*/
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,19)
static SkIsrRetVar SkGeIsrOnePort(int irq, void *dev_id)
#else
static SkIsrRetVar SkGeIsrOnePort(int irq, void *dev_id, struct pt_regs *ptregs)
#endif
{
struct SK_NET_DEVICE *dev = (struct SK_NET_DEVICE *)dev_id;
DEV_NET *pNet;
SK_AC *pAC;
SK_U32 IntSrc; /* interrupts source register contents */
pNet = (DEV_NET*)netdev_priv(dev);
pAC = pNet->pAC;
/*
* Check and process if its our interrupt
*/
SK_IN32(pAC->IoBase, B0_SP_ISRC, &IntSrc);
if ((IntSrc == 0) && (!pNet->NetConsoleMode)) {
return SkIsrRetNone;
}
#ifdef CONFIG_SK98LIN_NAPI
if (netif_rx_schedule_prep(dev)) {
CLEAR_AND_START_RX(0);
CLEAR_TX_IRQ(0, TX_PRIO_LOW);
pAC->GIni.GIValIrqMask &= ~(NAPI_DRV_IRQS);
SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
__netif_rx_schedule(dev);
}
#ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
if (IntSrc & IS_XA1_F) {
CLEAR_TX_IRQ(0, TX_PRIO_LOW);
}
#endif
#else
while (((IntSrc & IRQ_MASK) & ~SPECIAL_IRQS) != 0) {
#if 0 /* software irq currently not used */
if (IntSrc & IS_IRQ_SW) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_INT_SRC,
("Software IRQ\n"));
}
#endif
if (IntSrc & IS_R1_F) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_INT_SRC,
("EOF RX1 IRQ\n"));
ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
CLEAR_AND_START_RX(0);
SK_PNMI_CNT_RX_INTR(pAC, 0);
}
#ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
if (IntSrc & IS_XA1_F) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_INT_SRC,
("EOF AS TX1 IRQ\n"));
CLEAR_TX_IRQ(0, TX_PRIO_LOW);
SK_PNMI_CNT_TX_INTR(pAC, 0);
spin_lock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
FreeTxDescriptors(pAC, &pAC->TxPort[0][TX_PRIO_LOW]);
spin_unlock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
}
#if 0 /* only if sync. queues used */
if (IntSrc & IS_XS1_F) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_INT_SRC,
("EOF SY TX1 IRQ\n"));
CLEAR_TX_IRQ(0, TX_PRIO_HIGH);
SK_PNMI_CNT_TX_INTR(pAC, 0);
spin_lock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
FreeTxDescriptors(pAC, 0, TX_PRIO_HIGH);
spin_unlock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
}
#endif
#endif
SK_IN32(pAC->IoBase, B0_ISRC, &IntSrc);
} /* while (IntSrc & IRQ_MASK != 0) */
#endif
#ifndef CONFIG_SK98LIN_NAPI
spin_lock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
FreeTxDescriptors(pAC, &pAC->TxPort[0][TX_PRIO_LOW]);
spin_unlock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
START_RX(0);
#endif
IntSrc &= pAC->GIni.GIValIrqMask;
if ((IntSrc & SPECIAL_IRQS) || pAC->CheckQueue) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_INT_SRC,
("SPECIAL IRQ SP-Cards => %x\n", IntSrc));
pAC->CheckQueue = SK_FALSE;
spin_lock(&pAC->SlowPathLock);
if (IntSrc & SPECIAL_IRQS)
SkGeSirqIsr(pAC, pAC->IoBase, IntSrc);
SkEventDispatcher(pAC, pAC->IoBase);
spin_unlock(&pAC->SlowPathLock);
START_RX(0);
}
/* IRQ is processed - Enable IRQs again*/
SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
return SkIsrRetHandled;
} /* SkGeIsrOnePort */
/****************************************************************************
*
* SkGeOpen - handle start of initialized adapter
*
* Description:
* This function starts the initialized adapter.
* The board level variable is set and the adapter is
* brought to full functionality.
* The device flags are set for operation.
* Do all necessary level 2 initialization, enable interrupts and
* give start command to RLMT.
*
* Returns:
* 0 on success
* != 0 on error
*/
static int SkGeOpen(
struct SK_NET_DEVICE *dev) /* the device that is to be opened */
{
DEV_NET *pNet = (DEV_NET*)netdev_priv(dev);
SK_AC *pAC = pNet->pAC;
unsigned long Flags; /* for the spin locks */
SK_BOOL DualNet;
int CurrMac; /* loop ctr for ports */
#ifndef SK_ASF
unsigned long InitFlags;
#endif
SK_U32 StatSpeed, StatDuplex, NewTimerInterval;
#ifdef SK_ASF
SK_EVPARA Para;
SK_U32 TmpVal32;
#endif
struct proc_dir_entry *pProcFile;
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("SkGeOpen: pAC=0x%lX:\n", (unsigned long)pAC));
#ifdef SK_ASF
spin_lock(&pAC->InitLock);
#endif
#ifndef SK_ASF
spin_lock_irqsave(&pAC->InitLock, InitFlags);
#endif
if (pAC->DiagModeActive == DIAG_ACTIVE) {
if (pAC->Pnmi.DiagAttached == SK_DIAG_RUNNING) {
#ifdef SK_ASF
spin_unlock(&pAC->InitLock);
#endif
#ifndef SK_ASF
spin_unlock_irqrestore(&pAC->InitLock, InitFlags);
#endif
return (-1); /* still in use by diag; deny actions */
}
}
if (!try_module_get(THIS_MODULE)) {
#ifdef SK_ASF
spin_unlock(&pAC->InitLock);
#endif
#ifndef SK_ASF
spin_unlock_irqrestore(&pAC->InitLock, InitFlags);
#endif
return (-1); /* increase of usage count not possible */
}
/* Set blink mode */
if ((pAC->PciDev->vendor == 0x1186) || (pAC->PciDev->vendor == 0x11ab ))
pAC->GIni.GILedBlinkCtrl = OEM_CONFIG_VALUE;
if (pAC->BoardLevel == SK_INIT_DATA) {
/* level 1 init common modules here */
if (SkGeInit(pAC, pAC->IoBase, SK_INIT_IO) != 0) {
module_put(THIS_MODULE); /* decrease usage count */
#ifdef SK_ASF
spin_unlock(&pAC->InitLock);
#endif
#ifndef SK_ASF
spin_unlock_irqrestore(&pAC->InitLock, InitFlags);
#endif
printk("%s: HWInit (1) failed.\n", pAC->dev[pNet->PortNr]->name);
return (-1);
}
SkI2cInit (pAC, pAC->IoBase, SK_INIT_IO);
SkEventInit (pAC, pAC->IoBase, SK_INIT_IO);
SkPnmiInit (pAC, pAC->IoBase, SK_INIT_IO);
SkAddrInit (pAC, pAC->IoBase, SK_INIT_IO);
SkRlmtInit (pAC, pAC->IoBase, SK_INIT_IO);
SkTimerInit (pAC, pAC->IoBase, SK_INIT_IO);
#ifdef SK_ASF
SkAsfInit (pAC, pAC->IoBase, SK_INIT_IO);
#endif
pAC->BoardLevel = SK_INIT_IO;
#ifdef Y2_RECOVERY
/* mark entries invalid */
pAC->LastPort = 3;
pAC->LastOpc = 0xFF;
#endif
}
if (pAC->BoardLevel != SK_INIT_RUN) {
/* tschilling: Level 2 init modules here, check return value. */
if (SkGeInit(pAC, pAC->IoBase, SK_INIT_RUN) != 0) {
module_put(THIS_MODULE); /* decrease usage count */
#ifdef SK_ASF
spin_unlock(&pAC->InitLock);
#endif
#ifndef SK_ASF
spin_unlock_irqrestore(&pAC->InitLock, InitFlags);
#endif
printk("%s: HWInit (2) failed.\n", pAC->dev[pNet->PortNr]->name);
return (-1);
}
SkI2cInit (pAC, pAC->IoBase, SK_INIT_RUN);
SkEventInit (pAC, pAC->IoBase, SK_INIT_RUN);
SkPnmiInit (pAC, pAC->IoBase, SK_INIT_RUN);
SkAddrInit (pAC, pAC->IoBase, SK_INIT_RUN);
SkRlmtInit (pAC, pAC->IoBase, SK_INIT_RUN);
SkTimerInit (pAC, pAC->IoBase, SK_INIT_RUN);
#ifdef SK_ASF
#ifndef USE_ASF_DASH_FW
SkAsfInit (pAC, pAC->IoBase, SK_INIT_RUN);
#endif
#endif
pAC->BoardLevel = SK_INIT_RUN;
}
#ifdef USE_ASF_DASH_FW
SkAsfInit (pAC, pAC->IoBase, SK_INIT_RUN);
#endif
DualNet = SK_FALSE;
if (pAC->RlmtNets == 2) {
DualNet = SK_TRUE;
}
if (SkGeInitAssignRamToQueues(
pAC,
pAC->ActivePort,
DualNet)) {
if (CHIP_ID_YUKON_2(pAC)) {
SkY2FreeResources(pAC);
} else {
BoardFreeMem(pAC);
}
#ifdef SK_ASF
spin_unlock(&pAC->InitLock);
#endif
#ifndef SK_ASF
spin_unlock_irqrestore(&pAC->InitLock, InitFlags);
#endif
printk("sk98lin: SkGeInitAssignRamToQueues failed.\n");
return(-EAGAIN);
}
for (CurrMac=0; CurrMac<pAC->GIni.GIMacsFound; CurrMac++) {
if (!CHIP_ID_YUKON_2(pAC)) {
/* Enable transmit descriptor polling. */
SkGePollTxD(pAC, pAC->IoBase, CurrMac, SK_TRUE);
FillRxRing(pAC, &pAC->RxPort[CurrMac]);
SkMacRxTxEnable(pAC, pAC->IoBase, pNet->PortNr);
}
}
SkGeYellowLED(pAC, pAC->IoBase, 1);
SkDimEnableModerationIfNeeded(pAC);
if (!CHIP_ID_YUKON_2(pAC)) {
/*
** Has been setup already at SkGeInit(SK_INIT_IO),
** but additional masking added for Genesis & Yukon
** chipsets -> modify it...
*/
pAC->GIni.GIValIrqMask &= IRQ_MASK;
#ifndef USE_TX_COMPLETE
pAC->GIni.GIValIrqMask &= ~(TX_COMPL_IRQS);
#endif
}
spin_lock_irqsave(&pAC->SlowPathLock, Flags);
if ((pAC->RlmtMode != 0) && (pAC->MaxPorts == 0)) {
SkLocalEventQueue(pAC, SKGE_RLMT, SK_RLMT_SET_NETS,
pAC->RlmtNets, -1, SK_FALSE);
SkLocalEventQueue(pAC, SKGE_RLMT, SK_RLMT_MODE_CHANGE,
pAC->RlmtMode, 0, SK_FALSE);
}
SkLocalEventQueue(pAC, SKGE_RLMT, SK_RLMT_START,
pNet->NetNr, -1, SK_TRUE);
spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
#ifdef Y2_RECOVERY
pNet->TimerExpired = SK_FALSE;
pNet->InRecover = SK_FALSE;
pNet->NetConsoleMode = SK_FALSE;
StatSpeed = pAC->GIni.GP[pNet->NetNr].PLinkSpeedUsed;
if (StatSpeed == SK_LSPEED_STAT_10MBPS) {
StatDuplex = pAC->GIni.GP[pNet->NetNr].PLinkModeStatus;
if ((StatDuplex == SK_LMODE_STAT_AUTOHALF) ||
(StatDuplex == SK_LMODE_STAT_HALF)) {
NewTimerInterval = (HZ*2);
} else {
NewTimerInterval = (HZ);
}
} else if (StatSpeed == SK_LSPEED_STAT_100MBPS) {
NewTimerInterval = (HZ/2);
} else if (StatSpeed == SK_LSPEED_STAT_1000MBPS) {
NewTimerInterval = (HZ/4);
} else {
NewTimerInterval = (HZ*2);
}
/* Initialize the kernel timer */
init_timer(&pNet->KernelTimer);
pNet->KernelTimer.function = SkGeHandleKernelTimer;
pNet->KernelTimer.data = (unsigned long) pNet;
pNet->KernelTimer.expires = jiffies + NewTimerInterval;
add_timer(&pNet->KernelTimer);
#endif
#ifdef SK_ASF
#ifndef USE_ASF_DASH_FW
/* Set OS Present Flag in ASF Status and Command Register */
SK_IN32( pAC->IoBase, REG_ASF_STATUS_CMD, &TmpVal32 );
TmpVal32 |= BIT_4;
SK_OUT32( pAC->IoBase, REG_ASF_STATUS_CMD, TmpVal32 );
/* Disable ARP pattern, OS is now responsible for ARP handling */
YlciDisablePattern(pAC, pAC->IoBase, 0, 5);
if (pAC->AsfData.DualMode == SK_GEASF_Y2_DUALPORT) {
/* Disable ARP pattern, OS is now responsible for ARP handling */
YlciDisablePattern(pAC, pAC->IoBase, 1, 5);
}
#endif
#ifdef USE_ASF_DASH_FW
SK_IN32( pAC->IoBase, REG_ASF_STATUS_CMD, &TmpVal32 );
TmpVal32 |= BIT_2; // Dash works with Yukon Extreme
SK_OUT32( pAC->IoBase, REG_ASF_STATUS_CMD, TmpVal32 );
#endif
if (is_closed) {
Para.Para32[0] = pAC->ActivePort;
SkEventQueue(pAC, SKGE_DRV, SK_DRV_NET_UP, Para);
}
#endif
/* Enable interrupts */
SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
SK_OUT32(pAC->IoBase, B0_HWE_IMSK, IRQ_HWE_MASK);
pAC->MaxPorts++;
/* Set state to open */
is_closed = 0;
/* Initialize the procfs timer */
init_timer(&pNet->ProcfsTimer);
pNet->ProcfsTimer.function = SkGeHandleProcfsTimer;
pNet->ProcfsTimer.data = (unsigned long) pNet;
pNet->ProcfsTimer.expires = jiffies + HZ*5; /* initially 5 secs */
add_timer(&pNet->ProcfsTimer);
if (pAC->GIni.GIChipId == CHIP_ID_YUKON_LITE) {
SK_OUT8(pAC->IoBase, B0_POWER_CTRL, (SK_U8)(PC_VAUX_ENA | PC_VCC_ENA |
PC_VAUX_OFF | PC_VCC_ON));
}
#ifdef SK_ASF
spin_unlock(&pAC->InitLock);
#endif
#ifndef SK_ASF
spin_unlock_irqrestore(&pAC->InitLock, InitFlags);
#endif
#ifdef CONFIG_PROC_FS
if ((!pAC->InterfaceUp[pNet->NetNr]) && (pSkRootDir)) {
pProcFile = create_proc_entry(pAC->dev[pNet->NetNr]->name, S_IRUGO, pSkRootDir);
pProcFile->proc_fops = &sk_proc_fops;
pProcFile->data = dev;
/*
* Remember, interface dev nr pNet->NetNr is up
*/
pAC->InterfaceUp[pNet->NetNr] = 1;
strcpy(pNet->CurrentName, pNet->pAC->dev[pNet->NetNr]->name);
}
#endif
if ((pAC->GIni.GIChipId == CHIP_ID_YUKON_EC) ||
(CHIP_ID_YUKON_2(pAC)) ) {
pAC->StatusLETable.Done = 0;
pAC->StatusLETable.Put = 0;
pAC->StatusLETable.HwPut = 0;
SkGeY2InitStatBmu(pAC, pAC->IoBase, &pAC->StatusLETable);
}
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("SkGeOpen suceeded\n"));
return (0);
} /* SkGeOpen */
/****************************************************************************
*
* SkGeClose - Stop initialized adapter
*
* Description:
* Close initialized adapter.
*
* Returns:
* 0 - on success
* error code - on error
*/
static int SkGeClose(
struct SK_NET_DEVICE *dev) /* the device that is to be closed */
{
DEV_NET *pNet = (DEV_NET*)netdev_priv(dev);
SK_AC *pAC = pNet->pAC;
DEV_NET *newPtrNet;
unsigned long Flags; /* for the spin locks */
unsigned long InitFlags; /* for the spin locks */
int CurrMac; /* loop ctr for the current MAC */
int PortIdx;
#ifdef CONFIG_SK98LIN_NAPI
int WorkToDo = 1; /* min(*budget, dev->quota); */
int WorkDone = 0;
#endif
#ifdef USE_ASF_DASH_FW
SK_EVPARA Para2;
#endif
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("SkGeClose: pAC=0x%lX ", (unsigned long)pAC));
spin_lock_irqsave(&pAC->InitLock, InitFlags);
#ifdef SK_ASF
SkAsfDeInit(pAC, pAC->IoBase);
#endif
#ifdef CONFIG_PROC_FS
del_timer(&pNet->ProcfsTimer);
#endif
#ifdef Y2_RECOVERY
pNet->InRecover = SK_TRUE;
del_timer(&pNet->KernelTimer);
#endif
if (pAC->DiagModeActive == DIAG_ACTIVE) {
if (pAC->DiagFlowCtrl == SK_FALSE) {
module_put(THIS_MODULE);
/*
** notify that the interface which has been closed
** by operator interaction must not be started up
** again when the DIAG has finished.
*/
newPtrNet = (DEV_NET *)netdev_priv(pAC->dev[0]);
if (newPtrNet == pNet) {
pAC->WasIfUp[0] = SK_FALSE;
} else {
pAC->WasIfUp[1] = SK_FALSE;
}
return 0; /* return to system everything is fine... */
} else {
pAC->DiagFlowCtrl = SK_FALSE;
}
}
#ifdef SK_ASF
netif_stop_queue(dev);
netif_carrier_off(dev);
#else
netif_stop_queue(dev);
#endif
if (pAC->RlmtNets == 1)
PortIdx = pAC->ActivePort;
else
PortIdx = pNet->NetNr;
#ifdef USE_ASF_DASH_FW
SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
SK_PROM_MODE_ALL_MC);
#else
/*
* Clear multicast table, promiscuous mode ....
*/
SkAddrMcClear(pAC, pAC->IoBase, PortIdx, 0);
SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
SK_PROM_MODE_NONE);
#endif
if (pAC->MaxPorts == 1) {
spin_lock_irqsave(&pAC->SlowPathLock, Flags);
/* disable interrupts */
SK_OUT32(pAC->IoBase, B0_IMSK, 0);
#ifdef USE_ASF_DASH_FW
SkTimerStop(pAC, pAC->IoBase, &pAC->Rlmt.Net[pNet->NetNr].LocTimer);
SkTimerStop(pAC, pAC->IoBase, &pAC->Rlmt.Net[pNet->NetNr].SegTimer);
pAC->Rlmt.Net[pNet->NetNr].RlmtState = SK_RLMT_RS_INIT;
pAC->Rlmt.Net[pNet->NetNr].RootIdSet = SK_FALSE;
Para2.Para32[0] = SK_RLMT_NET_DOWN_FINAL;
Para2.Para32[1] = pNet->NetNr;
SkEventQueue(pAC, SKGE_DRV, SK_DRV_NET_DOWN, Para2);
pAC->Rlmt.NetsStarted--;
#endif
#ifndef SK_ASF
SkLocalEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP,
pNet->NetNr, -1, SK_TRUE);
/* stop the hardware */
SK_OUT32(pAC->IoBase, B0_IMSK, 0);
#endif
if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 1)) {
/* RLMT check link state mode */
for (CurrMac=0; CurrMac<pAC->GIni.GIMacsFound; CurrMac++) {
if (CHIP_ID_YUKON_2(pAC)) {
#ifdef SK_ASF
SkY2PortStop( pAC,
pAC->IoBase,
CurrMac,
SK_STOP_RX,
SK_HARD_RST);
SkY2PortStop( pAC,
pAC->IoBase,
CurrMac,
SK_STOP_TX,
SK_HARD_RST);
#else
SkY2PortStop( pAC,
pAC->IoBase,
CurrMac,
SK_STOP_ALL,
SK_HARD_RST);
#endif
} else {
SkGeStopPort( pAC,
pAC->IoBase,
CurrMac,
SK_STOP_ALL,
SK_HARD_RST);
}
} /* for */
} else {
/* Single link or single port */
if (CHIP_ID_YUKON_2(pAC)) {
#ifdef SK_ASF
SkY2PortStop( pAC,
pAC->IoBase,
PortIdx,
SK_STOP_RX,
SK_HARD_RST);
SkY2PortStop( pAC,
pAC->IoBase,
PortIdx,
SK_STOP_TX,
SK_HARD_RST);
#else
SkY2PortStop( pAC,
pAC->IoBase,
PortIdx,
SK_STOP_ALL,
SK_HARD_RST);
#endif
} else {
SkGeStopPort( pAC,
pAC->IoBase,
PortIdx,
SK_STOP_ALL,
SK_HARD_RST);
}
}
spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
} else {
spin_lock_irqsave(&pAC->SlowPathLock, Flags);
#ifndef SK_ASF
SkLocalEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP,
pNet->NetNr, -1, SK_FALSE);
SkLocalEventQueue(pAC, SKGE_PNMI, SK_PNMI_EVT_XMAC_RESET,
pNet->NetNr, -1, SK_TRUE);
#endif
spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
/* Stop port */
spin_lock_irqsave(&pAC->TxPort[pNet->PortNr]
[TX_PRIO_LOW].TxDesRingLock, Flags);
if (CHIP_ID_YUKON_2(pAC)) {
#ifdef SK_ASF
SkY2PortStop(pAC, pAC->IoBase, pNet->PortNr,
SK_STOP_RX, SK_HARD_RST);
SkY2PortStop(pAC, pAC->IoBase, pNet->PortNr,
SK_STOP_TX, SK_HARD_RST);
#else
SkY2PortStop(pAC, pAC->IoBase, pNet->PortNr,
SK_STOP_ALL, SK_HARD_RST);
#endif
}
else {
SkGeStopPort(pAC, pAC->IoBase, pNet->PortNr,
SK_STOP_ALL, SK_HARD_RST);
}
spin_unlock_irqrestore(&pAC->TxPort[pNet->PortNr]
[TX_PRIO_LOW].TxDesRingLock, Flags);
}
if (pAC->RlmtNets == 1) {
/* clear all descriptor rings */
for (CurrMac=0; CurrMac<pAC->GIni.GIMacsFound; CurrMac++) {
if (!CHIP_ID_YUKON_2(pAC)) {
#ifdef CONFIG_SK98LIN_NAPI
WorkToDo = 1;
ReceiveIrq(pAC,&pAC->RxPort[CurrMac],
SK_TRUE,&WorkDone,WorkToDo);
#else
ReceiveIrq(pAC,&pAC->RxPort[CurrMac],SK_TRUE);
#endif
ClearRxRing(pAC, &pAC->RxPort[CurrMac]);
ClearTxRing(pAC, &pAC->TxPort[CurrMac][TX_PRIO_LOW]);
} else {
SkY2FreeRxBuffers(pAC, pAC->IoBase, CurrMac);
SkY2FreeTxBuffers(pAC, pAC->IoBase, CurrMac);
}
}
} else {
/* clear port descriptor rings */
if (!CHIP_ID_YUKON_2(pAC)) {
#ifdef CONFIG_SK98LIN_NAPI
WorkToDo = 1;
ReceiveIrq(pAC, &pAC->RxPort[pNet->PortNr], SK_TRUE, &WorkDone, WorkToDo);
#else
ReceiveIrq(pAC, &pAC->RxPort[pNet->PortNr], SK_TRUE);
#endif
ClearRxRing(pAC, &pAC->RxPort[pNet->PortNr]);
ClearTxRing(pAC, &pAC->TxPort[pNet->PortNr][TX_PRIO_LOW]);
}
else {
SkY2FreeRxBuffers(pAC, pAC->IoBase, pNet->PortNr);
SkY2FreeTxBuffers(pAC, pAC->IoBase, pNet->PortNr);
}
}
if (pAC->GIni.GIChipId == CHIP_ID_YUKON_LITE) {
SK_OUT8(pAC->IoBase, B0_POWER_CTRL, (SK_U8)(PC_VAUX_ENA | PC_VCC_ENA |
PC_VAUX_ON | PC_VCC_OFF));
}
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("SkGeClose: done "));
SK_MEMSET(&(pAC->PnmiBackup), 0, sizeof(SK_PNMI_STRUCT_DATA));
SK_MEMCPY(&(pAC->PnmiBackup), &(pAC->PnmiStruct),
sizeof(SK_PNMI_STRUCT_DATA));
pAC->MaxPorts--;
module_put(THIS_MODULE);
#ifdef Y2_RECOVERY
pNet->InRecover = SK_FALSE;
#endif
is_closed = 1;
spin_unlock_irqrestore(&pAC->InitLock, InitFlags);
return (0);
} /* SkGeClose */
/*****************************************************************************
*
* SkGeXmit - Linux frame transmit function
*
* Description:
* The system calls this function to send frames onto the wire.
* It puts the frame in the tx descriptor ring. If the ring is
* full then, the 'tbusy' flag is set.
*
* Returns:
* 0, if everything is ok
* !=0, on error
* WARNING: returning 1 in 'tbusy' case caused system crashes (double
* allocated skb's) !!!
*/
static int SkGeXmit(struct sk_buff *skb, struct SK_NET_DEVICE *dev)
{
DEV_NET *pNet;
SK_AC *pAC;
int Rc; /* return code of XmitFrame */
pNet = (DEV_NET*)netdev_priv(dev);
pAC = pNet->pAC;
if ((!skb_shinfo(skb)->nr_frags) ||
(pAC->GIni.GIChipId == CHIP_ID_GENESIS)) {
/* Don't activate scatter-gather and hardware checksum */
if (pAC->RlmtNets == 2)
Rc = XmitFrame(
pAC,
&pAC->TxPort[pNet->PortNr][TX_PRIO_LOW],
skb);
else
Rc = XmitFrame(
pAC,
&pAC->TxPort[pAC->ActivePort][TX_PRIO_LOW],
skb);
} else {
/* scatter-gather and hardware TCP checksumming anabled*/
if (pAC->RlmtNets == 2)
Rc = XmitFrameSG(
pAC,
&pAC->TxPort[pNet->PortNr][TX_PRIO_LOW],
skb);
else
Rc = XmitFrameSG(
pAC,
&pAC->TxPort[pAC->ActivePort][TX_PRIO_LOW],
skb);
}
/* Transmitter out of resources? */
if (Rc <= 0) {
netif_stop_queue(dev);
}
/* If not taken, give buffer ownership back to the
* queueing layer.
*/
if (Rc < 0)
return (1);
dev->trans_start = jiffies;
return (0);
} /* SkGeXmit */
#ifdef CONFIG_SK98LIN_NAPI
/*****************************************************************************
*
* SkGePoll - NAPI Rx polling callback for GEnesis and Yukon chipsets
*
* Description:
* Called by the Linux system in case NAPI polling is activated
*
* Returns:
* The number of work data still to be handled
*/
static int SkGePoll(struct net_device *dev, int *budget)
{
SK_AC *pAC = ((DEV_NET*)(netdev_priv(dev)))->pAC; /* pointer to adapter context */
int WorkToDo = min(*budget, dev->quota);
int WorkDone = 0;
unsigned long Flags;
if (pAC->dev[0] != pAC->dev[1]) {
spin_lock(&pAC->TxPort[1][TX_PRIO_LOW].TxDesRingLock);
FreeTxDescriptors(pAC, &pAC->TxPort[1][TX_PRIO_LOW]);
spin_unlock(&pAC->TxPort[1][TX_PRIO_LOW].TxDesRingLock);
ReceiveIrq(pAC, &pAC->RxPort[1], SK_TRUE, &WorkDone, WorkToDo);
CLEAR_AND_START_RX(1);
}
spin_lock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
FreeTxDescriptors(pAC, &pAC->TxPort[0][TX_PRIO_LOW]);
spin_unlock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE, &WorkDone, WorkToDo);
CLEAR_AND_START_RX(0);
*budget -= WorkDone;
dev->quota -= WorkDone;
if(WorkDone < WorkToDo) {
spin_lock_irqsave(&pAC->SlowPathLock, Flags);
netif_rx_complete(dev);
pAC->GIni.GIValIrqMask |= (NAPI_DRV_IRQS);
#ifndef USE_TX_COMPLETE
pAC->GIni.GIValIrqMask &= ~(TX_COMPL_IRQS);
#endif
/* enable interrupts again */
SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
}
return (WorkDone >= WorkToDo);
} /* SkGePoll */
#endif
#ifdef SK_POLL_CONTROLLER
/*****************************************************************************
*
* SkGeNetPoll - Polling "interrupt"
*
* Description:
* Polling 'interrupt' - used by things like netconsole and netdump
* to send skbs without having to re-enable interrupts.
* It's not called while the interrupt routine is executing.
*/
static void SkGeNetPoll(
struct SK_NET_DEVICE *dev)
{
DEV_NET *pNet;
SK_AC *pAC;
pNet = (DEV_NET*) dev->priv;
pAC = pNet->pAC;
pNet->NetConsoleMode = SK_TRUE;
/* Prevent any reconfiguration while handling
the 'interrupt' */
SK_OUT32(pAC->IoBase, B0_IMSK, 0);
if (!CHIP_ID_YUKON_2(pAC)) {
/* Handle the GENESIS Isr */
if (pAC->GIni.GIMacsFound == 2)
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,19)
SkGeIsr(dev->irq, dev);
#else
SkGeIsr(dev->irq, dev, NULL);
#endif
else
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,19)
SkGeIsrOnePort(dev->irq, dev);
#else
SkGeIsrOnePort(dev->irq, dev, NULL);
#endif
} else {
/* Handle the Yukon2 Isr */
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,19)
SkY2Isr(dev->irq, dev);
#else
SkY2Isr(dev->irq, dev, NULL);
#endif
}
}
#endif
/*****************************************************************************
*
* XmitFrame - fill one socket buffer into the transmit ring
*
* Description:
* This function puts a message into the transmit descriptor ring
* if there is a descriptors left.
* Linux skb's consist of only one continuous buffer.
* The first step locks the ring. It is held locked
* all time to avoid problems with SWITCH_../PORT_RESET.
* Then the descriptoris allocated.
* The second part is linking the buffer to the descriptor.
* At the very last, the Control field of the descriptor
* is made valid for the BMU and a start TX command is given
* if necessary.
*
* Returns:
* > 0 - on succes: the number of bytes in the message
* = 0 - on resource shortage: this frame sent or dropped, now
* the ring is full ( -> set tbusy)
* < 0 - on failure: other problems ( -> return failure to upper layers)
*/
static int XmitFrame(
SK_AC *pAC, /* pointer to adapter context */
TX_PORT *pTxPort, /* pointer to struct of port to send to */
struct sk_buff *pMessage) /* pointer to send-message */
{
TXD *pTxd; /* the rxd to fill */
TXD *pOldTxd;
unsigned long Flags;
SK_U64 PhysAddr;
int Protocol;
int IpHeaderLength;
int BytesSend = pMessage->len;
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS, ("X"));
spin_lock_irqsave(&pTxPort->TxDesRingLock, Flags);
#ifndef USE_TX_COMPLETE
if ((pTxPort->TxdRingPrevFree - pTxPort->TxdRingFree) > 6) {
FreeTxDescriptors(pAC, pTxPort);
pTxPort->TxdRingPrevFree = pTxPort->TxdRingFree;
}
#endif
if (pTxPort->TxdRingFree == 0) {
/*
** not enough free descriptors in ring at the moment.
** Maybe free'ing some old one help?
*/
FreeTxDescriptors(pAC, pTxPort);
if (pTxPort->TxdRingFree == 0) {
spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
SK_PNMI_CNT_NO_TX_BUF(pAC, pTxPort->PortIndex);
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_TX_PROGRESS,
("XmitFrame failed\n"));
/*
** the desired message can not be sent
** Because tbusy seems to be set, the message
** should not be freed here. It will be used
** by the scheduler of the ethernet handler
*/
return (-1);
}
}
/*
** If the passed socket buffer is of smaller MTU-size than 60,
** copy everything into new buffer and fill all bytes between
** the original packet end and the new packet end of 60 with 0x00.
** This is to resolve faulty padding by the HW with 0xaa bytes.
*/
if (BytesSend < C_LEN_ETHERNET_MINSIZE) {
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,18)
if ((pMessage = skb_padto(pMessage, C_LEN_ETHERNET_MINSIZE)) == NULL) {
#else
if (skb_padto(pMessage, C_LEN_ETHERNET_MINSIZE)) {
#endif
spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
return 0;
}
pMessage->len = C_LEN_ETHERNET_MINSIZE;
}
/*
** advance head counter behind descriptor needed for this frame,
** so that needed descriptor is reserved from that on. The next
** action will be to add the passed buffer to the TX-descriptor
*/
pTxd = pTxPort->pTxdRingHead;
pTxPort->pTxdRingHead = pTxd->pNextTxd;
pTxPort->TxdRingFree--;
#ifdef SK_DUMP_TX
DumpMsg(pMessage, "XmitFrame");
#endif
/*
** First step is to map the data to be sent via the adapter onto
** the DMA memory. Kernel 2.2 uses virt_to_bus(), but kernels 2.4
** and 2.6 need to use pci_map_page() for that mapping.
*/
PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
virt_to_page(pMessage->data),
((unsigned long) pMessage->data & ~PAGE_MASK),
pMessage->len,
PCI_DMA_TODEVICE);
pTxd->VDataLow = (SK_U32) (PhysAddr & 0xffffffff);
pTxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
pTxd->pMBuf = pMessage;
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,18)
if (pMessage->ip_summed == CHECKSUM_PARTIAL) {
#else
if (pMessage->ip_summed == CHECKSUM_HW) {
#endif
Protocol = ((SK_U8)pMessage->data[C_OFFSET_IPPROTO] & 0xff);
if ((Protocol == C_PROTO_ID_UDP) &&
(pAC->GIni.GIChipRev == 0) &&
(pAC->GIni.GIChipId == CHIP_ID_YUKON)) {
pTxd->TBControl = BMU_TCP_CHECK;
} else {
pTxd->TBControl = BMU_UDP_CHECK;
}
IpHeaderLength = (SK_U8)pMessage->data[C_OFFSET_IPHEADER];
IpHeaderLength = (IpHeaderLength & 0xf) * 4;
pTxd->TcpSumOfs = 0; /* PH-Checksum already calculated */
pTxd->TcpSumSt = C_LEN_ETHERMAC_HEADER + IpHeaderLength +
(Protocol == C_PROTO_ID_UDP ?
C_OFFSET_UDPHEADER_UDPCS :
C_OFFSET_TCPHEADER_TCPCS);
pTxd->TcpSumWr = C_LEN_ETHERMAC_HEADER + IpHeaderLength;
pTxd->TBControl |= BMU_OWN | BMU_STF |
BMU_SW | BMU_EOF |
#ifdef USE_TX_COMPLETE
BMU_IRQ_EOF |
#endif
pMessage->len;
} else {
pTxd->TBControl = BMU_OWN | BMU_STF | BMU_CHECK |
BMU_SW | BMU_EOF |
#ifdef USE_TX_COMPLETE
BMU_IRQ_EOF |
#endif
pMessage->len;
}
/*
** If previous descriptor already done, give TX start cmd
*/
pOldTxd = xchg(&pTxPort->pTxdRingPrev, pTxd);
if ((pOldTxd->TBControl & BMU_OWN) == 0) {
SK_OUT8(pTxPort->HwAddr, Q_CSR, CSR_START);
}
/*
** after releasing the lock, the skb may immediately be free'd
*/
spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
if (pTxPort->TxdRingFree != 0) {
return (BytesSend);
} else {
return (0);
}
} /* XmitFrame */
/*****************************************************************************
*
* XmitFrameSG - fill one socket buffer into the transmit ring
* (use SG and TCP/UDP hardware checksumming)
*
* Description:
* This function puts a message into the transmit descriptor ring
* if there is a descriptors left.
*
* Returns:
* > 0 - on succes: the number of bytes in the message
* = 0 - on resource shortage: this frame sent or dropped, now
* the ring is full ( -> set tbusy)
* < 0 - on failure: other problems ( -> return failure to upper layers)
*/
static int XmitFrameSG(
SK_AC *pAC, /* pointer to adapter context */
TX_PORT *pTxPort, /* pointer to struct of port to send to */
struct sk_buff *pMessage) /* pointer to send-message */
{
TXD *pTxd;
TXD *pTxdFst;
TXD *pTxdLst;
int CurrFrag;
int BytesSend;
int IpHeaderLength;
int Protocol;
skb_frag_t *sk_frag;
SK_U64 PhysAddr;
unsigned long Flags;
spin_lock_irqsave(&pTxPort->TxDesRingLock, Flags);
#ifndef USE_TX_COMPLETE
FreeTxDescriptors(pAC, pTxPort);
#endif
if ((skb_shinfo(pMessage)->nr_frags +1) > pTxPort->TxdRingFree) {
FreeTxDescriptors(pAC, pTxPort);
if ((skb_shinfo(pMessage)->nr_frags + 1) > pTxPort->TxdRingFree) {
spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
SK_PNMI_CNT_NO_TX_BUF(pAC, pTxPort->PortIndex);
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_TX_PROGRESS,
("XmitFrameSG failed - Ring full\n"));
/* this message can not be sent now */
return(-1);
}
}
pTxd = pTxPort->pTxdRingHead;
pTxdFst = pTxd;
pTxdLst = pTxd;
BytesSend = 0;
Protocol = 0;
/*
** Map the first fragment (header) into the DMA-space
*/
PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
virt_to_page(pMessage->data),
((unsigned long) pMessage->data & ~PAGE_MASK),
skb_headlen(pMessage),
PCI_DMA_TODEVICE);
pTxd->VDataLow = (SK_U32) (PhysAddr & 0xffffffff);
pTxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
/*
** Does the HW need to evaluate checksum for TCP or UDP packets?
*/
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,18)
if (pMessage->ip_summed == CHECKSUM_PARTIAL) {
#else
if (pMessage->ip_summed == CHECKSUM_HW) {
#endif
pTxd->TBControl = BMU_STF | BMU_STFWD | skb_headlen(pMessage);
/*
** We have to use the opcode for tcp here, because the
** opcode for udp is not working in the hardware yet
** (Revision 2.0)
*/
Protocol = ((SK_U8)pMessage->data[C_OFFSET_IPPROTO] & 0xff);
if ((Protocol == C_PROTO_ID_UDP) &&
(pAC->GIni.GIChipRev == 0) &&
(pAC->GIni.GIChipId == CHIP_ID_YUKON)) {
pTxd->TBControl |= BMU_TCP_CHECK;
} else {
pTxd->TBControl |= BMU_UDP_CHECK;
}
IpHeaderLength = ((SK_U8)pMessage->data[C_OFFSET_IPHEADER] & 0xf)*4;
pTxd->TcpSumOfs = 0; /* PH-Checksum already claculated */
pTxd->TcpSumSt = C_LEN_ETHERMAC_HEADER + IpHeaderLength +
(Protocol == C_PROTO_ID_UDP ?
C_OFFSET_UDPHEADER_UDPCS :
C_OFFSET_TCPHEADER_TCPCS);
pTxd->TcpSumWr = C_LEN_ETHERMAC_HEADER + IpHeaderLength;
} else {
pTxd->TBControl = BMU_CHECK | BMU_SW | BMU_STF |
skb_headlen(pMessage);
}
pTxd = pTxd->pNextTxd;
pTxPort->TxdRingFree--;
BytesSend += skb_headlen(pMessage);
/*
** Browse over all SG fragments and map each of them into the DMA space
*/
for (CurrFrag = 0; CurrFrag < skb_shinfo(pMessage)->nr_frags; CurrFrag++) {
sk_frag = &skb_shinfo(pMessage)->frags[CurrFrag];
/*
** we already have the proper value in entry
*/
PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
sk_frag->page,
sk_frag->page_offset,
sk_frag->size,
PCI_DMA_TODEVICE);
pTxd->VDataLow = (SK_U32) (PhysAddr & 0xffffffff);
pTxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
pTxd->pMBuf = pMessage;
/*
** Does the HW need to evaluate checksum for TCP or UDP packets?
*/
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,18)
if (pMessage->ip_summed == CHECKSUM_PARTIAL) {
#else
if (pMessage->ip_summed == CHECKSUM_HW) {
#endif
pTxd->TBControl = BMU_OWN | BMU_SW | BMU_STFWD;
/*
** We have to use the opcode for tcp here because the
** opcode for udp is not working in the hardware yet
** (revision 2.0)
*/
if ((Protocol == C_PROTO_ID_UDP) &&
(pAC->GIni.GIChipRev == 0) &&
(pAC->GIni.GIChipId == CHIP_ID_YUKON)) {
pTxd->TBControl |= BMU_TCP_CHECK;
} else {
pTxd->TBControl |= BMU_UDP_CHECK;
}
} else {
pTxd->TBControl = BMU_CHECK | BMU_SW | BMU_OWN;
}
/*
** Do we have the last fragment?
*/
if( (CurrFrag+1) == skb_shinfo(pMessage)->nr_frags ) {
#ifdef USE_TX_COMPLETE
pTxd->TBControl |= BMU_EOF | BMU_IRQ_EOF | sk_frag->size;
#else
pTxd->TBControl |= BMU_EOF | sk_frag->size;
#endif
pTxdFst->TBControl |= BMU_OWN | BMU_SW;
} else {
pTxd->TBControl |= sk_frag->size;
}
pTxdLst = pTxd;
pTxd = pTxd->pNextTxd;
pTxPort->TxdRingFree--;
BytesSend += sk_frag->size;
}
/*
** If previous descriptor already done, give TX start cmd
*/
if ((pTxPort->pTxdRingPrev->TBControl & BMU_OWN) == 0) {
SK_OUT8(pTxPort->HwAddr, Q_CSR, CSR_START);
}
pTxPort->pTxdRingPrev = pTxdLst;
pTxPort->pTxdRingHead = pTxd;
spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
if (pTxPort->TxdRingFree > 0) {
return (BytesSend);
} else {
return (0);
}
}
/*****************************************************************************
*
* FreeTxDescriptors - release descriptors from the descriptor ring
*
* Description:
* This function releases descriptors from a transmit ring if they
* have been sent by the BMU.
* If a descriptors is sent, it can be freed and the message can
* be freed, too.
* The SOFTWARE controllable bit is used to prevent running around a
* completely free ring for ever. If this bit is no set in the
* frame (by XmitFrame), this frame has never been sent or is
* already freed.
* The Tx descriptor ring lock must be held while calling this function !!!
*
* Returns:
* none
*/
static void FreeTxDescriptors(
SK_AC *pAC, /* pointer to the adapter context */
TX_PORT *pTxPort) /* pointer to destination port structure */
{
TXD *pTxd; /* pointer to the checked descriptor */
TXD *pNewTail; /* pointer to 'end' of the ring */
SK_U32 Control; /* TBControl field of descriptor */
SK_U64 PhysAddr; /* address of DMA mapping */
pNewTail = pTxPort->pTxdRingTail;
pTxd = pNewTail;
/*
** loop forever; exits if BMU_SW bit not set in start frame
** or BMU_OWN bit set in any frame
*/
while (1) {
Control = pTxd->TBControl;
if ((Control & BMU_SW) == 0) {
/*
** software controllable bit is set in first
** fragment when given to BMU. Not set means that
** this fragment was never sent or is already
** freed ( -> ring completely free now).
*/
pTxPort->pTxdRingTail = pTxd;
netif_wake_queue(pAC->dev[pTxPort->PortIndex]);
return;
}
if (Control & BMU_OWN) {
pTxPort->pTxdRingTail = pTxd;
if (pTxPort->TxdRingFree > 0) {
netif_wake_queue(pAC->dev[pTxPort->PortIndex]);
}
return;
}
/*
** release the DMA mapping, because until not unmapped
** this buffer is considered being under control of the
** adapter card!
*/
PhysAddr = ((SK_U64) pTxd->VDataHigh) << (SK_U64) 32;
PhysAddr |= (SK_U64) pTxd->VDataLow;
pci_unmap_page(pAC->PciDev, PhysAddr,
pTxd->pMBuf->len,
PCI_DMA_TODEVICE);
if (Control & BMU_EOF)
DEV_KFREE_SKB_ANY(pTxd->pMBuf); /* free message */
pTxPort->TxdRingFree++;
pTxd->TBControl &= ~BMU_SW;
pTxd = pTxd->pNextTxd; /* point behind fragment with EOF */
} /* while(forever) */
} /* FreeTxDescriptors */
/*****************************************************************************
*
* FillRxRing - fill the receive ring with valid descriptors
*
* Description:
* This function fills the receive ring descriptors with data
* segments and makes them valid for the BMU.
* The active ring is filled completely, if possible.
* The non-active ring is filled only partial to save memory.
*
* Description of rx ring structure:
* head - points to the descriptor which will be used next by the BMU
* tail - points to the next descriptor to give to the BMU
*
* Returns: N/A
*/
static void FillRxRing(
SK_AC *pAC, /* pointer to the adapter context */
RX_PORT *pRxPort) /* ptr to port struct for which the ring
should be filled */
{
unsigned long Flags;
spin_lock_irqsave(&pRxPort->RxDesRingLock, Flags);
while (pRxPort->RxdRingFree > pRxPort->RxFillLimit) {
if(!FillRxDescriptor(pAC, pRxPort))
break;
}
spin_unlock_irqrestore(&pRxPort->RxDesRingLock, Flags);
} /* FillRxRing */
/*****************************************************************************
*
* FillRxDescriptor - fill one buffer into the receive ring
*
* Description:
* The function allocates a new receive buffer and
* puts it into the next descriptor.
*
* Returns:
* SK_TRUE - a buffer was added to the ring
* SK_FALSE - a buffer could not be added
*/
static SK_BOOL FillRxDescriptor(
SK_AC *pAC, /* pointer to the adapter context struct */
RX_PORT *pRxPort) /* ptr to port struct of ring to fill */
{
struct sk_buff *pMsgBlock; /* pointer to a new message block */
RXD *pRxd; /* the rxd to fill */
SK_U16 Length; /* data fragment length */
SK_U64 PhysAddr; /* physical address of a rx buffer */
pMsgBlock = alloc_skb(pRxPort->RxBufSize, GFP_ATOMIC);
if (pMsgBlock == NULL) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_ENTRY,
("%s: Allocation of rx buffer failed !\n",
pAC->dev[pRxPort->PortIndex]->name));
SK_PNMI_CNT_NO_RX_BUF(pAC, pRxPort->PortIndex);
return(SK_FALSE);
}
skb_reserve(pMsgBlock, 2); /* to align IP frames */
/* skb allocated ok, so add buffer */
pRxd = pRxPort->pRxdRingTail;
pRxPort->pRxdRingTail = pRxd->pNextRxd;
pRxPort->RxdRingFree--;
Length = pRxPort->RxBufSize;
PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
virt_to_page(pMsgBlock->data),
((unsigned long) pMsgBlock->data &
~PAGE_MASK),
pRxPort->RxBufSize - 2,
PCI_DMA_FROMDEVICE);
pRxd->VDataLow = (SK_U32) (PhysAddr & 0xffffffff);
pRxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
pRxd->pMBuf = pMsgBlock;
pRxd->RBControl = BMU_OWN |
BMU_STF |
BMU_IRQ_EOF |
BMU_TCP_CHECK |
Length;
return (SK_TRUE);
} /* FillRxDescriptor */
/*****************************************************************************
*
* ReQueueRxBuffer - fill one buffer back into the receive ring
*
* Description:
* Fill a given buffer back into the rx ring. The buffer
* has been previously allocated and aligned, and its phys.
* address calculated, so this is no more necessary.
*
* Returns: N/A
*/
static void ReQueueRxBuffer(
SK_AC *pAC, /* pointer to the adapter context struct */
RX_PORT *pRxPort, /* ptr to port struct of ring to fill */
struct sk_buff *pMsg, /* pointer to the buffer */
SK_U32 PhysHigh, /* phys address high dword */
SK_U32 PhysLow) /* phys address low dword */
{
RXD *pRxd; /* the rxd to fill */
SK_U16 Length; /* data fragment length */
pRxd = pRxPort->pRxdRingTail;
pRxPort->pRxdRingTail = pRxd->pNextRxd;
pRxPort->RxdRingFree--;
Length = pRxPort->RxBufSize;
pRxd->VDataLow = PhysLow;
pRxd->VDataHigh = PhysHigh;
pRxd->pMBuf = pMsg;
pRxd->RBControl = BMU_OWN |
BMU_STF |
BMU_IRQ_EOF |
BMU_TCP_CHECK |
Length;
return;
} /* ReQueueRxBuffer */
/*****************************************************************************
*
* ReceiveIrq - handle a receive IRQ
*
* Description:
* This function is called when a receive IRQ is set.
* It walks the receive descriptor ring and sends up all
* frames that are complete.
*
* Returns: N/A
*/
static void ReceiveIrq(
#ifdef CONFIG_SK98LIN_NAPI
SK_AC *pAC, /* pointer to adapter context */
RX_PORT *pRxPort, /* pointer to receive port struct */
SK_BOOL SlowPathLock, /* indicates if SlowPathLock is needed */
int *WorkDone,
int WorkToDo)
#else
SK_AC *pAC, /* pointer to adapter context */
RX_PORT *pRxPort, /* pointer to receive port struct */
SK_BOOL SlowPathLock) /* indicates if SlowPathLock is needed */
#endif
{
RXD *pRxd; /* pointer to receive descriptors */
struct sk_buff *pMsg; /* pointer to message holding frame */
struct sk_buff *pNewMsg; /* pointer to new message for frame copy */
SK_MBUF *pRlmtMbuf; /* ptr to buffer for giving frame to RLMT */
SK_EVPARA EvPara; /* an event parameter union */
SK_U32 Control; /* control field of descriptor */
unsigned long Flags; /* for spin lock handling */
int PortIndex = pRxPort->PortIndex;
int FrameLength; /* total length of received frame */
int IpFrameLength; /* IP length of the received frame */
unsigned int Offset;
unsigned int NumBytes;
unsigned int RlmtNotifier;
SK_BOOL IsBc; /* we received a broadcast packet */
SK_BOOL IsMc; /* we received a multicast packet */
SK_BOOL IsBadFrame; /* the frame received is bad! */
SK_U32 FrameStat;
unsigned short Csum1;
unsigned short Csum2;
unsigned short Type;
int Result;
SK_U64 PhysAddr;
rx_start:
/* do forever; exit if BMU_OWN found */
for ( pRxd = pRxPort->pRxdRingHead ;
pRxPort->RxdRingFree < pAC->RxDescrPerRing ;
pRxd = pRxd->pNextRxd,
pRxPort->pRxdRingHead = pRxd,
pRxPort->RxdRingFree ++) {
/*
* For a better understanding of this loop
* Go through every descriptor beginning at the head
* Please note: the ring might be completely received so the OWN bit
* set is not a good crirteria to leave that loop.
* Therefore the RingFree counter is used.
* On entry of this loop pRxd is a pointer to the Rxd that needs
* to be checked next.
*/
Control = pRxd->RBControl;
#ifdef CONFIG_SK98LIN_NAPI
if (*WorkDone >= WorkToDo) {
break;
}
(*WorkDone)++;
#endif
/* check if this descriptor is ready */
if ((Control & BMU_OWN) != 0) {
/* this descriptor is not yet ready */
/* This is the usual end of the loop */
/* We don't need to start the ring again */
FillRxRing(pAC, pRxPort);
return;
}
/* get length of frame and check it */
FrameLength = Control & BMU_BBC;
if (FrameLength > pRxPort->RxBufSize) {
goto rx_failed;
}
/* check for STF and EOF */
if ((Control & (BMU_STF | BMU_EOF)) != (BMU_STF | BMU_EOF)) {
goto rx_failed;
}
/* here we have a complete frame in the ring */
pMsg = pRxd->pMBuf;
FrameStat = pRxd->FrameStat;
/* check for frame length mismatch */
#define XMR_FS_LEN_SHIFT 18
#define GMR_FS_LEN_SHIFT 16
if (pAC->GIni.GIChipId == CHIP_ID_GENESIS) {
if (FrameLength != (SK_U32) (FrameStat >> XMR_FS_LEN_SHIFT)) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_RX_PROGRESS,
("skge: Frame length mismatch (%u/%u).\n",
FrameLength,
(SK_U32) (FrameStat >> XMR_FS_LEN_SHIFT)));
goto rx_failed;
}
} else {
if (FrameLength != (SK_U32) (FrameStat >> GMR_FS_LEN_SHIFT)) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_RX_PROGRESS,
("skge: Frame length mismatch (%u/%u).\n",
FrameLength,
(SK_U32) (FrameStat >> XMR_FS_LEN_SHIFT)));
goto rx_failed;
}
}
/* Set Rx Status */
if (pAC->GIni.GIChipId == CHIP_ID_GENESIS) {
IsBc = (FrameStat & XMR_FS_BC) != 0;
IsMc = (FrameStat & XMR_FS_MC) != 0;
IsBadFrame = (FrameStat &
(XMR_FS_ANY_ERR | XMR_FS_2L_VLAN)) != 0;
} else {
IsBc = (FrameStat & GMR_FS_BC) != 0;
IsMc = (FrameStat & GMR_FS_MC) != 0;
IsBadFrame = (((FrameStat & GMR_FS_ANY_ERR) != 0) ||
((FrameStat & GMR_FS_RX_OK) == 0));
}
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 0,
("Received frame of length %d on port %d\n",
FrameLength, PortIndex));
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 0,
("Number of free rx descriptors: %d\n",
pRxPort->RxdRingFree));
/* DumpMsg(pMsg, "Rx"); */
if ((Control & BMU_STAT_VAL) != BMU_STAT_VAL || (IsBadFrame)) {
/* there is a receive error in this frame */
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_RX_PROGRESS,
("skge: Error in received frame, dropped!\n"
"Control: %x\nRxStat: %x\n",
Control, FrameStat));
PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
PhysAddr |= (SK_U64) pRxd->VDataLow;
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,5)
pci_dma_sync_single(pAC->PciDev,
(dma_addr_t) PhysAddr,
FrameLength,
PCI_DMA_FROMDEVICE);
#else
pci_dma_sync_single_for_cpu(pAC->PciDev,
(dma_addr_t) PhysAddr,
FrameLength,
PCI_DMA_FROMDEVICE);
#endif
ReQueueRxBuffer(pAC, pRxPort, pMsg,
pRxd->VDataHigh, pRxd->VDataLow);
continue;
}
/*
* if short frame then copy data to reduce memory waste
*/
if ((FrameLength < SK_COPY_THRESHOLD) &&
((pNewMsg = alloc_skb(FrameLength+2, GFP_ATOMIC)) != NULL)) {
/*
* Short frame detected and allocation successfull
*/
/* use new skb and copy data */
skb_reserve(pNewMsg, 2);
skb_put(pNewMsg, FrameLength);
PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
PhysAddr |= (SK_U64) pRxd->VDataLow;
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,5)
pci_dma_sync_single(pAC->PciDev,
(dma_addr_t) PhysAddr,
FrameLength,
PCI_DMA_FROMDEVICE);
#else
pci_dma_sync_single_for_device(pAC->PciDev,
(dma_addr_t) PhysAddr,
FrameLength,
PCI_DMA_FROMDEVICE);
#endif
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,22)
skb_copy_to_linear_data(pNewMsg, pMsg->data,
FrameLength);
#else
eth_copy_and_sum(pNewMsg, pMsg->data,
FrameLength, 0);
#endif
ReQueueRxBuffer(pAC, pRxPort, pMsg,
pRxd->VDataHigh, pRxd->VDataLow);
pMsg = pNewMsg;
} else {
/*
* if large frame, or SKB allocation failed, pass
* the SKB directly to the networking
*/
PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
PhysAddr |= (SK_U64) pRxd->VDataLow;
/* release the DMA mapping */
pci_unmap_single(pAC->PciDev,
PhysAddr,
pRxPort->RxBufSize - 2,
PCI_DMA_FROMDEVICE);
skb_put(pMsg, FrameLength); /* set message len */
pMsg->ip_summed = CHECKSUM_NONE; /* initial default */
if (pRxPort->UseRxCsum) {
Type = ntohs(*((short*)&pMsg->data[12]));
if (Type == 0x800) {
IpFrameLength = (int) ntohs((unsigned short)
((unsigned short *) pMsg->data)[8]);
if ((FrameLength - IpFrameLength) == 0xe) {
Csum1=le16_to_cpu(pRxd->TcpSums & 0xffff);
Csum2=le16_to_cpu((pRxd->TcpSums >> 16) & 0xffff);
if ((((Csum1 & 0xfffe) && (Csum2 & 0xfffe)) &&
(pAC->GIni.GIChipId == CHIP_ID_GENESIS)) ||
(pAC->ChipsetType)) {
Result = SkCsGetReceiveInfo(pAC, &pMsg->data[14],
Csum1, Csum2, PortIndex, IpFrameLength);
if ((Result == SKCS_STATUS_IP_FRAGMENT) ||
(Result == SKCS_STATUS_IP_CSUM_OK) ||
(Result == SKCS_STATUS_TCP_CSUM_OK) ||
(Result == SKCS_STATUS_UDP_CSUM_OK)) {
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,18)
pMsg->ip_summed = CHECKSUM_COMPLETE;
pMsg->csum = Csum1 & 0xffff;
#else
pMsg->ip_summed = CHECKSUM_UNNECESSARY;
#endif
} else if ((Result == SKCS_STATUS_TCP_CSUM_ERROR) ||
(Result == SKCS_STATUS_UDP_CSUM_ERROR) ||
(Result == SKCS_STATUS_IP_CSUM_ERROR_UDP) ||
(Result == SKCS_STATUS_IP_CSUM_ERROR_TCP) ||
(Result == SKCS_STATUS_IP_CSUM_ERROR)) {
/* HW Checksum error */
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_RX_PROGRESS,
("skge: CRC error. Frame dropped!\n"));
goto rx_failed;
} else {
pMsg->ip_summed = CHECKSUM_NONE;
}
}/* checksumControl calculation valid */
} /* Frame length check */
} /* IP frame */
} /* pRxPort->UseRxCsum */
} /* frame > SK_COPY_TRESHOLD */
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 1,("V"));
RlmtNotifier = SK_RLMT_RX_PROTOCOL;
SK_RLMT_PRE_LOOKAHEAD(pAC, PortIndex, FrameLength,
IsBc, &Offset, &NumBytes);
if (NumBytes != 0) {
SK_RLMT_LOOKAHEAD(pAC,PortIndex,&pMsg->data[Offset],
IsBc,IsMc,&RlmtNotifier);
}
if (RlmtNotifier == SK_RLMT_RX_PROTOCOL) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 1,("W"));
/* send up only frames from active port */
if ((PortIndex == pAC->ActivePort)||(pAC->RlmtNets == 2)) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 1,("U"));
#ifdef xDEBUG
DumpMsg(pMsg, "Rx");
#endif
SK_PNMI_CNT_RX_OCTETS_DELIVERED(pAC,FrameLength,PortIndex);
pMsg->dev = pAC->dev[PortIndex];
pMsg->protocol = eth_type_trans(pMsg,pAC->dev[PortIndex]);
netif_rx(pMsg); /* frame for upper layer */
pAC->dev[PortIndex]->last_rx = jiffies;
} else {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_RX_PROGRESS,("D"));
DEV_KFREE_SKB(pMsg); /* drop frame */
}
} else { /* packet for RLMT stack */
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_RX_PROGRESS,("R"));
pRlmtMbuf = SkDrvAllocRlmtMbuf(pAC,
pAC->IoBase, FrameLength);
if (pRlmtMbuf != NULL) {
pRlmtMbuf->pNext = NULL;
pRlmtMbuf->Length = FrameLength;
pRlmtMbuf->PortIdx = PortIndex;
EvPara.pParaPtr = pRlmtMbuf;
memcpy((char*)(pRlmtMbuf->pData),
(char*)(pMsg->data),
FrameLength);
/* SlowPathLock needed? */
if (SlowPathLock == SK_TRUE) {
spin_lock_irqsave(&pAC->SlowPathLock, Flags);
SkEventQueue(pAC, SKGE_RLMT,
SK_RLMT_PACKET_RECEIVED,
EvPara);
pAC->CheckQueue = SK_TRUE;
spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
} else {
SkEventQueue(pAC, SKGE_RLMT,
SK_RLMT_PACKET_RECEIVED,
EvPara);
pAC->CheckQueue = SK_TRUE;
}
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_RX_PROGRESS,("Q"));
}
if ((pAC->dev[PortIndex]->flags & (IFF_PROMISC | IFF_ALLMULTI)) ||
(RlmtNotifier & SK_RLMT_RX_PROTOCOL)) {
pMsg->dev = pAC->dev[PortIndex];
pMsg->protocol = eth_type_trans(pMsg,pAC->dev[PortIndex]);
#ifdef CONFIG_SK98LIN_NAPI
netif_receive_skb(pMsg);
#else
netif_rx(pMsg);
#endif
pAC->dev[PortIndex]->last_rx = jiffies;
} else {
DEV_KFREE_SKB(pMsg);
}
} /* if packet for RLMT stack */
} /* for ... scanning the RXD ring */
/* RXD ring is empty -> fill and restart */
FillRxRing(pAC, pRxPort);
return;
rx_failed:
/* remove error frame */
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ERROR,
("Schrottdescriptor, length: 0x%x\n", FrameLength));
/* release the DMA mapping */
PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
PhysAddr |= (SK_U64) pRxd->VDataLow;
pci_unmap_page(pAC->PciDev,
PhysAddr,
pRxPort->RxBufSize - 2,
PCI_DMA_FROMDEVICE);
DEV_KFREE_SKB_IRQ(pRxd->pMBuf);
pRxd->pMBuf = NULL;
pRxPort->RxdRingFree++;
pRxPort->pRxdRingHead = pRxd->pNextRxd;
goto rx_start;
} /* ReceiveIrq */
/*****************************************************************************
*
* ClearRxRing - remove all buffers from the receive ring
*
* Description:
* This function removes all receive buffers from the ring.
* The receive BMU must be stopped before calling this function.
*
* Returns: N/A
*/
static void ClearRxRing(
SK_AC *pAC, /* pointer to adapter context */
RX_PORT *pRxPort) /* pointer to rx port struct */
{
RXD *pRxd; /* pointer to the current descriptor */
unsigned long Flags;
SK_U64 PhysAddr;
if (pRxPort->RxdRingFree == pAC->RxDescrPerRing) {
return;
}
spin_lock_irqsave(&pRxPort->RxDesRingLock, Flags);
pRxd = pRxPort->pRxdRingHead;
do {
if (pRxd->pMBuf != NULL) {
PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
PhysAddr |= (SK_U64) pRxd->VDataLow;
pci_unmap_page(pAC->PciDev,
PhysAddr,
pRxPort->RxBufSize - 2,
PCI_DMA_FROMDEVICE);
DEV_KFREE_SKB(pRxd->pMBuf);
pRxd->pMBuf = NULL;
}
pRxd->RBControl &= BMU_OWN;
pRxd = pRxd->pNextRxd;
pRxPort->RxdRingFree++;
} while (pRxd != pRxPort->pRxdRingTail);
pRxPort->pRxdRingTail = pRxPort->pRxdRingHead;
spin_unlock_irqrestore(&pRxPort->RxDesRingLock, Flags);
} /* ClearRxRing */
/*****************************************************************************
*
* ClearTxRing - remove all buffers from the transmit ring
*
* Description:
* This function removes all transmit buffers from the ring.
* The transmit BMU must be stopped before calling this function
* and transmitting at the upper level must be disabled.
* The BMU own bit of all descriptors is cleared, the rest is
* done by calling FreeTxDescriptors.
*
* Returns: N/A
*/
static void ClearTxRing(
SK_AC *pAC, /* pointer to adapter context */
TX_PORT *pTxPort) /* pointer to tx prt struct */
{
TXD *pTxd; /* pointer to the current descriptor */
int i;
unsigned long Flags;
spin_lock_irqsave(&pTxPort->TxDesRingLock, Flags);
pTxd = pTxPort->pTxdRingHead;
for (i=0; i<pAC->TxDescrPerRing; i++) {
pTxd->TBControl &= ~BMU_OWN;
pTxd = pTxd->pNextTxd;
}
FreeTxDescriptors(pAC, pTxPort);
spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
} /* ClearTxRing */
/*****************************************************************************
*
* SkGeSetMacAddr - Set the hardware MAC address
*
* Description:
* This function sets the MAC address used by the adapter.
*
* Returns:
* 0, if everything is ok
* !=0, on error
*/
static int SkGeSetMacAddr(struct SK_NET_DEVICE *dev, void *p)
{
DEV_NET *pNet = (DEV_NET*)netdev_priv(dev);
SK_AC *pAC = pNet->pAC;
int Ret;
struct sockaddr *addr = p;
unsigned long Flags;
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("SkGeSetMacAddr starts now...\n"));
memcpy(dev->dev_addr, addr->sa_data,dev->addr_len);
spin_lock_irqsave(&pAC->SlowPathLock, Flags);
if (pAC->RlmtNets == 2)
Ret = SkAddrOverride(pAC, pAC->IoBase, pNet->NetNr,
(SK_MAC_ADDR*)dev->dev_addr, SK_ADDR_VIRTUAL_ADDRESS);
else
Ret = SkAddrOverride(pAC, pAC->IoBase, pAC->ActivePort,
(SK_MAC_ADDR*)dev->dev_addr, SK_ADDR_VIRTUAL_ADDRESS);
spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
if (Ret != SK_ADDR_OVERRIDE_SUCCESS)
return -EBUSY;
return 0;
} /* SkGeSetMacAddr */
/*****************************************************************************
*
* SkGeSetRxMode - set receive mode
*
* Description:
* This function sets the receive mode of an adapter. The adapter
* supports promiscuous mode, allmulticast mode and a number of
* multicast addresses. If more multicast addresses the available
* are selected, a hash function in the hardware is used.
*
* Returns:
* 0, if everything is ok
* !=0, on error
*/
static void SkGeSetRxMode(struct SK_NET_DEVICE *dev)
{
DEV_NET *pNet;
SK_AC *pAC;
struct dev_mc_list *pMcList;
int i;
int PortIdx;
unsigned long Flags;
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("SkGeSetRxMode starts now... "));
pNet = (DEV_NET*)netdev_priv(dev);
pAC = pNet->pAC;
if (pAC->RlmtNets == 1)
PortIdx = pAC->ActivePort;
else
PortIdx = pNet->NetNr;
spin_lock_irqsave(&pAC->SlowPathLock, Flags);
if (dev->flags & IFF_PROMISC) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("PROMISCUOUS mode\n"));
SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
SK_PROM_MODE_LLC);
} else if (dev->flags & IFF_ALLMULTI) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("ALLMULTI mode\n"));
SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
SK_PROM_MODE_ALL_MC);
} else {
SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
SK_PROM_MODE_NONE);
SkAddrMcClear(pAC, pAC->IoBase, PortIdx, 0);
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("Number of MC entries: %d ", dev->mc_count));
pMcList = dev->mc_list;
for (i=0; i<dev->mc_count; i++, pMcList = pMcList->next) {
SkAddrMcAdd(pAC, pAC->IoBase, PortIdx,
(SK_MAC_ADDR*)pMcList->dmi_addr, 0);
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_MCA,
("%02x:%02x:%02x:%02x:%02x:%02x\n",
pMcList->dmi_addr[0],
pMcList->dmi_addr[1],
pMcList->dmi_addr[2],
pMcList->dmi_addr[3],
pMcList->dmi_addr[4],
pMcList->dmi_addr[5]));
}
SkAddrMcUpdate(pAC, pAC->IoBase, PortIdx);
}
spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
return;
} /* SkGeSetRxMode */
/*****************************************************************************
*
* SkSetMtuBufferSize - set the MTU buffer to another value
*
* Description:
* This function sets the new buffers and is called whenever the MTU
* size is changed
*
* Returns:
* N/A
*/
static void SkSetMtuBufferSize(
SK_AC *pAC, /* pointer to adapter context */
int PortNr, /* Port number */
int Mtu) /* pointer to tx prt struct */
{
pAC->RxPort[PortNr].RxBufSize = Mtu + 32;
/* RxBufSize must be a multiple of 8 */
while (pAC->RxPort[PortNr].RxBufSize % 8) {
pAC->RxPort[PortNr].RxBufSize =
pAC->RxPort[PortNr].RxBufSize + 1;
}
if (Mtu > ETH_MAX_MTU) {
pAC->GIni.GP[PortNr].PPortUsage = SK_JUMBO_LINK;
} else {
if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
pAC->GIni.GP[PortNr].PPortUsage = SK_MUL_LINK;
} else {
pAC->GIni.GP[PortNr].PPortUsage = SK_RED_LINK;
}
}
return;
}
/*****************************************************************************
*
* SkGeChangeMtu - set the MTU to another value
*
* Description:
* This function sets is called whenever the MTU size is changed
* (ifconfig mtu xxx dev ethX). If the MTU is bigger than standard
* ethernet MTU size, long frame support is activated.
*
* Returns:
* 0, if everything is ok
* !=0, on error
*/
static int SkGeChangeMtu(struct SK_NET_DEVICE *dev, int NewMtu)
{
DEV_NET *pNet;
SK_AC *pAC;
unsigned long Flags;
#ifdef CONFIG_SK98LIN_NAPI
int WorkToDo = 1; // min(*budget, dev->quota);
int WorkDone = 0;
#endif
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("SkGeChangeMtu starts now...\n"));
pNet = (DEV_NET*) netdev_priv(dev);
pAC = pNet->pAC;
/* MTU size outside the spec */
if ((NewMtu < 68) || (NewMtu > SK_JUMBO_MTU)) {
return -EINVAL;
}
/* MTU > 1500 on yukon FE and FE+ not allowed */
if (((pAC->GIni.GIChipId == CHIP_ID_YUKON_FE) ||
(pAC->GIni.GIChipId == CHIP_ID_YUKON_FE_P))
&& (NewMtu > ETH_MAX_MTU)) {
return -EINVAL;
}
/* Diag access active */
if (pAC->DiagModeActive == DIAG_ACTIVE) {
if (pAC->DiagFlowCtrl == SK_FALSE) {
return -1; /* still in use, deny any actions of MTU */
} else {
pAC->DiagFlowCtrl = SK_FALSE;
}
}
/* TSO on Yukon Ultra and MTU > 1500 not supported */
#ifdef NETIF_F_TSO
#ifdef USE_SK_TSO_FEATURE
if (CHIP_ID_YUKON_2(pAC)) {
if ((pAC->GIni.GIChipId == CHIP_ID_YUKON_EC_U) && (NewMtu > ETH_MAX_MTU)) {
dev->features &= ~NETIF_F_TSO;
} else {
dev->features |= NETIF_F_TSO;
}
}
#endif
#endif
dev->mtu = NewMtu;
if (NewMtu < 1500) {
return 0;
}
SkSetMtuBufferSize(pAC, pNet->PortNr, NewMtu);
if(!netif_running(dev)) {
/* Preset MTU size if device not ready/running */
return 0;
}
/* Prevent any reconfiguration while changing the MTU
by disabling any interrupts */
SK_OUT32(pAC->IoBase, B0_IMSK, 0);
spin_lock_irqsave(&pAC->SlowPathLock, Flags);
/* Notify RLMT that the port has to be stopped */
netif_stop_queue(dev);
SkLocalEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP,
pNet->PortNr, -1, SK_TRUE);
spin_lock(&pAC->TxPort[pNet->PortNr][TX_PRIO_LOW].TxDesRingLock);
/* Change RxFillLimit to 1 */
if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
pAC->RxPort[pNet->PortNr].RxFillLimit = 1;
} else {
pAC->RxPort[1 - pNet->PortNr].RxFillLimit = 1;
pAC->RxPort[pNet->PortNr].RxFillLimit = pAC->RxDescrPerRing -
(pAC->RxDescrPerRing / 4);
}
/* clear and reinit the rx rings here, because of new MTU size */
if (CHIP_ID_YUKON_2(pAC)) {
SkY2PortStop(pAC, pAC->IoBase, pNet->PortNr, SK_STOP_ALL, SK_SOFT_RST);
SkY2AllocateRxBuffers(pAC, pAC->IoBase, pNet->PortNr);
SkY2PortStart(pAC, pAC->IoBase, pNet->PortNr);
} else {
// SkGeStopPort(pAC, pAC->IoBase, pNet->PortNr, SK_STOP_ALL, SK_SOFT_RST);
#ifdef CONFIG_SK98LIN_NAPI
WorkToDo = 1;
ReceiveIrq(pAC, &pAC->RxPort[pNet->PortNr], SK_TRUE, &WorkDone, WorkToDo);
#else
ReceiveIrq(pAC, &pAC->RxPort[pNet->PortNr], SK_TRUE);
#endif
ClearRxRing(pAC, &pAC->RxPort[pNet->PortNr]);
FillRxRing(pAC, &pAC->RxPort[pNet->PortNr]);
/* Enable transmit descriptor polling */
SkGePollTxD(pAC, pAC->IoBase, pNet->PortNr, SK_TRUE);
FillRxRing(pAC, &pAC->RxPort[pNet->PortNr]);
}
netif_start_queue(pAC->dev[pNet->PortNr]);
spin_unlock(&pAC->TxPort[pNet->PortNr][TX_PRIO_LOW].TxDesRingLock);
/* Notify RLMT about the changing and restarting one (or more) ports */
SkLocalEventQueue(pAC, SKGE_RLMT, SK_RLMT_START,
pNet->PortNr, -1, SK_TRUE);
/* Enable Interrupts again */
SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
SK_OUT32(pAC->IoBase, B0_HWE_IMSK, IRQ_HWE_MASK);
spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
return 0;
}
/*****************************************************************************
*
* SkGeStats - return ethernet device statistics
*
* Description:
* This function return statistic data about the ethernet device
* to the operating system.
*
* Returns:
* pointer to the statistic structure.
*/
static struct net_device_stats *SkGeStats(struct SK_NET_DEVICE *dev)
{
DEV_NET *pNet = (DEV_NET*)netdev_priv(dev);
SK_AC *pAC = pNet->pAC;
unsigned long LateCollisions, ExcessiveCollisions, RxTooLong;
unsigned long Flags; /* for spin lock */
SK_U32 MaxNumOidEntries, Oid, Len;
char Buf[8];
struct {
SK_U32 Oid;
unsigned long *pVar;
} Vars[] = {
{ OID_SKGE_STAT_TX_LATE_COL, &LateCollisions },
{ OID_SKGE_STAT_TX_EXCESS_COL, &ExcessiveCollisions },
{ OID_SKGE_STAT_RX_TOO_LONG, &RxTooLong },
{ OID_SKGE_STAT_RX, &pAC->stats.rx_packets },
{ OID_SKGE_STAT_TX, &pAC->stats.tx_packets },
{ OID_SKGE_STAT_RX_OCTETS, &pAC->stats.rx_bytes },
{ OID_SKGE_STAT_TX_OCTETS, &pAC->stats.tx_bytes },
{ OID_SKGE_RX_NO_BUF_CTS, &pAC->stats.rx_dropped },
{ OID_SKGE_TX_NO_BUF_CTS, &pAC->stats.tx_dropped },
{ OID_SKGE_STAT_RX_MULTICAST, &pAC->stats.multicast },
{ OID_SKGE_STAT_RX_RUNT, &pAC->stats.rx_length_errors },
{ OID_SKGE_STAT_RX_FCS, &pAC->stats.rx_crc_errors },
{ OID_SKGE_STAT_RX_FRAMING, &pAC->stats.rx_frame_errors },
{ OID_SKGE_STAT_RX_OVERFLOW, &pAC->stats.rx_over_errors },
{ OID_SKGE_STAT_RX_MISSED, &pAC->stats.rx_missed_errors },
{ OID_SKGE_STAT_TX_CARRIER, &pAC->stats.tx_carrier_errors },
{ OID_SKGE_STAT_TX_UNDERRUN, &pAC->stats.tx_fifo_errors },
};
if ((pAC->DiagModeActive == DIAG_NOTACTIVE) &&
(pAC->BoardLevel == SK_INIT_RUN)) {
memset(&pAC->stats, 0x00, sizeof(pAC->stats)); /* clean first */
spin_lock_irqsave(&pAC->SlowPathLock, Flags);
MaxNumOidEntries = sizeof(Vars) / sizeof(Vars[0]);
for (Oid = 0; Oid < MaxNumOidEntries; Oid++) {
if (SkPnmiGetVar(pAC,pAC->IoBase, Vars[Oid].Oid,
&Buf, &Len, 1, pNet->NetNr) != SK_PNMI_ERR_OK) {
memset(Buf, 0x00, sizeof(Buf));
}
*Vars[Oid].pVar = (unsigned long) (*((SK_U64 *) Buf));
}
spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
pAC->stats.collisions = LateCollisions + ExcessiveCollisions;
pAC->stats.tx_errors = pAC->stats.tx_carrier_errors +
pAC->stats.tx_fifo_errors;
pAC->stats.rx_errors = pAC->stats.rx_length_errors +
pAC->stats.rx_crc_errors +
pAC->stats.rx_frame_errors +
pAC->stats.rx_over_errors +
pAC->stats.rx_missed_errors;
if (dev->mtu > ETH_MAX_MTU) {
pAC->stats.rx_errors = pAC->stats.rx_errors - RxTooLong;
}
}
return(&pAC->stats);
} /* SkGeStats */
/*****************************************************************************
*
* SkGeIoctl - IO-control function
*
* Description:
* This function is called if an ioctl is issued on the device.
* There are three subfunction for reading, writing and test-writing
* the private MIB data structure (usefull for SysKonnect-internal tools).
*
* Returns:
* 0, if everything is ok
* !=0, on error
*/
static int SkGeIoctl(
struct SK_NET_DEVICE *dev, /* the device the IOCTL is to be performed on */
struct ifreq *rq, /* additional request structure containing data */
int cmd) /* requested IOCTL command number */
{
DEV_NET *pNet = (DEV_NET*)netdev_priv(dev);
SK_AC *pAC = pNet->pAC;
struct pci_dev *pdev = NULL;
void *pMemBuf;
SK_GE_IOCTL Ioctl;
unsigned long Flags; /* for spin lock */
unsigned int Err = 0;
unsigned int Length = 0;
int HeaderLength = sizeof(SK_U32) + sizeof(SK_U32);
int Size = 0;
int Ret = 0;
#ifdef USE_ASF_DASH_FW
DRIVER_INTERFACE DInterfaceFW;
struct in_device *pindev;
struct inet6_dev *iface;
struct inet6_ifaddr *address_list;
struct in6_addr *address;
SK_U32 i;
#if 0
SK_U8 *charPtr;
#endif
SK_U32 savedaddr;
#endif
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("SkGeIoctl starts now...\n"));
if(copy_from_user(&Ioctl, rq->ifr_data, sizeof(SK_GE_IOCTL))) {
return -EFAULT;
}
#ifdef USE_ASF_DASH_FW
if(copy_from_user(&DInterfaceFW, rq->ifr_data, sizeof(DRIVER_INTERFACE))) {
return -EFAULT;
}
#endif
switch(cmd) {
#ifndef ENABLE_FUTURE_ETH
case SIOCETHTOOL:
return SkEthIoctl(dev, rq );
#endif
case SK_IOCTL_SETMIB: /* FALL THRU */
case SK_IOCTL_PRESETMIB: /* FALL THRU (if capable!) */
if (!capable(CAP_NET_ADMIN)) return -EPERM;
case SK_IOCTL_GETMIB:
if(copy_from_user(&pAC->PnmiStruct, Ioctl.pData,
Ioctl.Len<sizeof(pAC->PnmiStruct)?
Ioctl.Len : sizeof(pAC->PnmiStruct))) {
return -EFAULT;
}
Size = SkGeIocMib(pNet, Ioctl.Len, cmd);
if(copy_to_user(Ioctl.pData, &pAC->PnmiStruct,
Ioctl.Len<Size? Ioctl.Len : Size)) {
return -EFAULT;
}
Ioctl.Len = Size;
if(copy_to_user(rq->ifr_data, &Ioctl, sizeof(SK_GE_IOCTL))) {
return -EFAULT;
}
break;
case SK_IOCTL_GEN:
if (Ioctl.Len < (sizeof(pAC->PnmiStruct) + HeaderLength)) {
Length = Ioctl.Len;
} else {
Length = sizeof(pAC->PnmiStruct) + HeaderLength;
}
if (NULL == (pMemBuf = kmalloc(Length, GFP_KERNEL))) {
return -ENOMEM;
}
spin_lock_irqsave(&pAC->SlowPathLock, Flags);
if(copy_from_user(pMemBuf, Ioctl.pData, Length)) {
Err = -EFAULT;
goto fault_gen;
}
if ((Ret = SkPnmiGenIoctl(pAC, pAC->IoBase, pMemBuf, &Length, 0)) < 0) {
Err = -EFAULT;
goto fault_gen;
}
if(copy_to_user(Ioctl.pData, pMemBuf, Length) ) {
Err = -EFAULT;
goto fault_gen;
}
Ioctl.Len = Length;
if(copy_to_user(rq->ifr_data, &Ioctl, sizeof(SK_GE_IOCTL))) {
Err = -EFAULT;
goto fault_gen;
}
fault_gen:
spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
kfree(pMemBuf); /* cleanup everything */
break;
case SK_IOCTL_DIAG:
if (!capable(CAP_NET_ADMIN)) return -EPERM;
if (Ioctl.Len < (sizeof(pAC->PnmiStruct) + HeaderLength)) {
Length = Ioctl.Len;
} else {
Length = sizeof(pAC->PnmiStruct) + HeaderLength;
}
if (NULL == (pMemBuf = kmalloc(Length, GFP_KERNEL))) {
return -ENOMEM;
}
if(copy_from_user(pMemBuf, Ioctl.pData, Length)) {
Err = -EFAULT;
goto fault_diag;
}
pdev = pAC->PciDev;
Length = 3 * sizeof(SK_U32); /* Error, Bus and Device */
/*
** While coding this new IOCTL interface, only a few lines of code
** are to to be added. Therefore no dedicated function has been
** added. If more functionality is added, a separate function
** should be used...
*/
* ((SK_U32 *)pMemBuf) = 0;
* ((SK_U32 *)pMemBuf + 1) = pdev->bus->number;
* ((SK_U32 *)pMemBuf + 2) = ParseDeviceNbrFromSlotName(pci_name(pdev));
if(copy_to_user(Ioctl.pData, pMemBuf, Length) ) {
Err = -EFAULT;
goto fault_diag;
}
Ioctl.Len = Length;
if(copy_to_user(rq->ifr_data, &Ioctl, sizeof(SK_GE_IOCTL))) {
Err = -EFAULT;
goto fault_diag;
}
fault_diag:
kfree(pMemBuf); /* cleanup everything */
break;
#ifdef USE_ASF_DASH_FW
case SK_IOCTL_IPTOFW:
pindev = (struct in_device*) dev->ip_ptr;
if(netif_running(dev)) {
if (dev->ip_ptr != NULL) {
/* Now we extract the device IP address */
u32 ip_address = htonl((pindev->ifa_list)->ifa_address);
unsigned char *pip_address = (char*)&ip_address;
pAC->IpAddr[3] = (unsigned char)pip_address[0];
pAC->IpAddr[2] = (unsigned char)pip_address[1];
pAC->IpAddr[1] = (unsigned char)pip_address[2];
pAC->IpAddr[0] = (unsigned char)pip_address[3];
pAC->ForceFWIPUpdate = 1;
} else {
/* This should never happen... But if it happens it is only bad in case we are running DASH */
pAC->IpAddr[3] = 0;
pAC->IpAddr[2] = 0;
pAC->IpAddr[1] = 0;
pAC->IpAddr[0] = 0;
}
savedaddr = 0;
/* Next we extract the IPv6 address */
iface = (struct inet6_dev*)dev->ip6_ptr;
if (iface != NULL) {
address_list = iface->addr_list;
while (address_list != NULL) {
address = &address_list->addr;
for (i=0; i<16; i++)
pAC->IpV6Addr[i+savedaddr*16] = (unsigned char) address->s6_addr[i];
savedaddr++;
address_list = address_list->if_next;
}
pAC->ForceFWIPUpdate = 1;
} else {
// So eventually there is no IpV6 support in this kernel.
for (i=0; i<16; i++)
pAC->IpV6Addr[i] = 0;
}
rq->ifr_name[0] = 'A';
rq->ifr_name[1] = 'C';
rq->ifr_name[2] = 'K';
} else {
rq->ifr_name[0] = 'D';
rq->ifr_name[1] = 'E';
rq->ifr_name[2] = 'C';
}
break;
case SK_IOCTL_PATTERNTOFW:
memcpy(&pAC->NewPatternDef, &DInterfaceFW, sizeof(DInterfaceFW));
#if 0
charPtr = (SK_U8*) &pAC->NewPatternDef.New_Pattern;
for (i=0; i<= sizeof(STR_YASF_CANON);i++) {
printk("%02x ", charPtr[i]);
if ((i+1)%16==0)
printk("\n");
}
printk("\n");
#endif
#if 0
printk("sk98lin: Patterns to be downloaded: ");
for (i=0; i<26; i++)
if (pAC->NewPatternDef.ElementArrayDl[i] != 0x00)
printk("%c ", pAC->NewPatternDef.ElementArrayDl[i]);
printk("\n");
printk("sk98lin: Patterns to be enabled: ");
for (i=0; i<26; i++)
if (pAC->NewPatternDef.ElementArrayEn[i] != 0x00)
printk("%c ", pAC->NewPatternDef.ElementArrayEn[i]);
printk("\n");
#endif
pAC->RecvNewPattern = 1;
break;
#endif
default:
Err = -EOPNOTSUPP;
}
return(Err);
} /* SkGeIoctl */
/*****************************************************************************
*
* SkGeIocMib - handle a GetMib, SetMib- or PresetMib-ioctl message
*
* Description:
* This function reads/writes the MIB data using PNMI (Private Network
* Management Interface).
* The destination for the data must be provided with the
* ioctl call and is given to the driver in the form of
* a user space address.
* Copying from the user-provided data area into kernel messages
* and back is done by copy_from_user and copy_to_user calls in
* SkGeIoctl.
*
* Returns:
* returned size from PNMI call
*/
static int SkGeIocMib(
DEV_NET *pNet, /* pointer to the adapter context */
unsigned int Size, /* length of ioctl data */
int mode) /* flag for set/preset */
{
SK_AC *pAC = pNet->pAC;
unsigned long Flags; /* for spin lock */
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("SkGeIocMib starts now...\n"));
/* access MIB */
spin_lock_irqsave(&pAC->SlowPathLock, Flags);
switch(mode) {
case SK_IOCTL_GETMIB:
SkPnmiGetStruct(pAC, pAC->IoBase, &pAC->PnmiStruct, &Size,
pNet->NetNr);
break;
case SK_IOCTL_PRESETMIB:
SkPnmiPreSetStruct(pAC, pAC->IoBase, &pAC->PnmiStruct, &Size,
pNet->NetNr);
break;
case SK_IOCTL_SETMIB:
SkPnmiSetStruct(pAC, pAC->IoBase, &pAC->PnmiStruct, &Size,
pNet->NetNr);
break;
default:
break;
}
spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("MIB data access succeeded\n"));
return (Size);
} /* SkGeIocMib */
/*****************************************************************************
*
* GetConfiguration - read configuration information
*
* Description:
* This function reads per-adapter configuration information from
* the options provided on the command line.
*
* Returns:
* none
*/
static void GetConfiguration(
SK_AC *pAC) /* pointer to the adapter context structure */
{
SK_I32 Port; /* preferred port */
SK_BOOL AutoSet;
SK_BOOL DupSet;
int LinkSpeed = SK_LSPEED_AUTO; /* Link speed */
int AutoNeg = 1; /* autoneg off (0) or on (1) */
int DuplexCap = 0; /* 0=both,1=full,2=half */
int FlowCtrl = SK_FLOW_MODE_SYM_OR_REM; /* FlowControl */
int MSMode = SK_MS_MODE_AUTO; /* master/slave mode */
int IrqModMaskOffset = 6; /* all ints moderated=default */
SK_BOOL IsConTypeDefined = SK_TRUE;
SK_BOOL IsLinkSpeedDefined = SK_TRUE;
SK_BOOL IsFlowCtrlDefined = SK_TRUE;
SK_BOOL IsRoleDefined = SK_TRUE;
SK_BOOL IsModeDefined = SK_TRUE;
/*
* The two parameters AutoNeg. and DuplexCap. map to one configuration
* parameter. The mapping is described by this table:
* DuplexCap -> | both | full | half |
* AutoNeg | | | |
* -----------------------------------------------------------------
* Off | illegal | Full | Half |
* -----------------------------------------------------------------
* On | AutoBoth | AutoFull | AutoHalf |
* -----------------------------------------------------------------
* Sense | AutoSense | AutoSense | AutoSense |
*/
int Capabilities[3][3] =
{ { -1, SK_LMODE_FULL , SK_LMODE_HALF },
{SK_LMODE_AUTOBOTH , SK_LMODE_AUTOFULL , SK_LMODE_AUTOHALF },
{SK_LMODE_AUTOSENSE, SK_LMODE_AUTOSENSE, SK_LMODE_AUTOSENSE} };
SK_U32 IrqModMask[7][2] =
{ { IRQ_MASK_RX_ONLY , Y2_DRIVER_IRQS },
{ IRQ_MASK_TX_ONLY , Y2_DRIVER_IRQS },
{ IRQ_MASK_SP_ONLY , Y2_SPECIAL_IRQS },
{ IRQ_MASK_SP_RX , Y2_IRQ_MASK },
{ IRQ_MASK_TX_RX , Y2_DRIVER_IRQS },
{ IRQ_MASK_SP_TX , Y2_IRQ_MASK },
{ IRQ_MASK_RX_TX_SP, Y2_IRQ_MASK } };
#define DC_BOTH 0
#define DC_FULL 1
#define DC_HALF 2
#define AN_OFF 0
#define AN_ON 1
#define AN_SENS 2
#define M_CurrPort pAC->GIni.GP[Port]
/*
** Set the default values first for both ports!
*/
for (Port = 0; Port < SK_MAX_MACS; Port++) {
M_CurrPort.PLinkModeConf = Capabilities[AN_ON][DC_BOTH];
M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_SYM_OR_REM;
M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
M_CurrPort.PLinkSpeed = SK_LSPEED_AUTO;
}
/*
** Check merged parameter ConType. If it has not been used,
** verify any other parameter (e.g. AutoNeg) and use default values.
**
** Stating both ConType and other lowlevel link parameters is also
** possible. If this is the case, the passed ConType-parameter is
** overwritten by the lowlevel link parameter.
**
** The following settings are used for a merged ConType-parameter:
**
** ConType DupCap AutoNeg FlowCtrl Role Speed
** ------- ------ ------- -------- ---------- -----
** Auto Both On SymOrRem Auto Auto
** 1000FD Full Off None <ignored> 1000
** 100FD Full Off None <ignored> 100
** 100HD Half Off None <ignored> 100
** 10FD Full Off None <ignored> 10
** 10HD Half Off None <ignored> 10
**
** This ConType parameter is used for all ports of the adapter!
*/
if ( (ConType != NULL) &&
(pAC->Index < SK_MAX_CARD_PARAM) &&
(ConType[pAC->Index] != NULL) ) {
/* Check chipset family */
if ((!pAC->ChipsetType) &&
(strcmp(ConType[pAC->Index],"Auto")!=0) &&
(strcmp(ConType[pAC->Index],"")!=0)) {
/* Set the speed parameter back */
printk("sk98lin: Illegal value \"%s\" "
"for ConType."
" Using Auto.\n",
ConType[pAC->Index]);
ConType[pAC->Index] = "Auto";
}
if ((pAC->ChipsetType) &&
(pAC->GIni.GICopperType != SK_TRUE) &&
(strcmp(ConType[pAC->Index],"") != 0) &&
(strcmp(ConType[pAC->Index],"1000FD") != 0)) {
/* Set the speed parameter back */
printk("sk98lin: Illegal value \"%s\" "
"for ConType."
" Using Auto.\n",
ConType[pAC->Index]);
IsConTypeDefined = SK_FALSE;
ConType[pAC->Index] = "Auto";
}
if (strcmp(ConType[pAC->Index],"")==0) {
IsConTypeDefined = SK_FALSE; /* No ConType defined */
} else if (strcmp(ConType[pAC->Index],"Auto")==0) {
for (Port = 0; Port < SK_MAX_MACS; Port++) {
M_CurrPort.PLinkModeConf = Capabilities[AN_ON][DC_BOTH];
M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_SYM_OR_REM;
M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
M_CurrPort.PLinkSpeed = SK_LSPEED_AUTO;
}
} else if (strcmp(ConType[pAC->Index],"1000FD")==0) {
for (Port = 0; Port < SK_MAX_MACS; Port++) {
M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_FULL];
M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
M_CurrPort.PLinkSpeed = SK_LSPEED_1000MBPS;
}
} else if (strcmp(ConType[pAC->Index],"100FD")==0) {
for (Port = 0; Port < SK_MAX_MACS; Port++) {
M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_FULL];
M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
M_CurrPort.PLinkSpeed = SK_LSPEED_100MBPS;
}
} else if (strcmp(ConType[pAC->Index],"100HD")==0) {
for (Port = 0; Port < SK_MAX_MACS; Port++) {
M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_HALF];
M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
M_CurrPort.PLinkSpeed = SK_LSPEED_100MBPS;
}
} else if (strcmp(ConType[pAC->Index],"10FD")==0) {
for (Port = 0; Port < SK_MAX_MACS; Port++) {
M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_FULL];
M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
M_CurrPort.PLinkSpeed = SK_LSPEED_10MBPS;
}
} else if (strcmp(ConType[pAC->Index],"10HD")==0) {
for (Port = 0; Port < SK_MAX_MACS; Port++) {
M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_HALF];
M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
M_CurrPort.PLinkSpeed = SK_LSPEED_10MBPS;
}
} else {
printk("sk98lin: Illegal value \"%s\" for ConType\n",
ConType[pAC->Index]);
IsConTypeDefined = SK_FALSE; /* Wrong ConType defined */
}
} else {
IsConTypeDefined = SK_FALSE; /* No ConType defined */
}
/*
** Parse any parameter settings for port A:
** a) any LinkSpeed stated?
*/
if (Speed_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
Speed_A[pAC->Index] != NULL) {
if (strcmp(Speed_A[pAC->Index],"")==0) {
IsLinkSpeedDefined = SK_FALSE;
} else if (strcmp(Speed_A[pAC->Index],"Auto")==0) {
LinkSpeed = SK_LSPEED_AUTO;
} else if (strcmp(Speed_A[pAC->Index],"10")==0) {
LinkSpeed = SK_LSPEED_10MBPS;
} else if (strcmp(Speed_A[pAC->Index],"100")==0) {
LinkSpeed = SK_LSPEED_100MBPS;
} else if (strcmp(Speed_A[pAC->Index],"1000")==0) {
if ((pAC->PciDev->vendor == 0x11ab ) &&
((pAC->PciDev->device == 0x4350) ||
(pAC->PciDev->device == 0x4354))) {
LinkSpeed = SK_LSPEED_100MBPS;
printk("sk98lin: Illegal value \"%s\" for Speed_A.\n"
"Gigabit speed not possible with this chip revision!",
Speed_A[pAC->Index]);
} else {
LinkSpeed = SK_LSPEED_1000MBPS;
}
} else {
printk("sk98lin: Illegal value \"%s\" for Speed_A\n",
Speed_A[pAC->Index]);
IsLinkSpeedDefined = SK_FALSE;
}
} else {
if ((pAC->PciDev->vendor == 0x11ab ) &&
((pAC->PciDev->device == 0x4350) ||
(pAC->PciDev->device == 0x4354))) {
/* Gigabit speed not supported
* Swith to speed 100
*/
LinkSpeed = SK_LSPEED_100MBPS;
} else {
IsLinkSpeedDefined = SK_FALSE;
}
}
/*
** Check speed parameter:
** Only copper type adapter and GE V2 cards
*/
if (((!pAC->ChipsetType) || (pAC->GIni.GICopperType != SK_TRUE)) &&
((LinkSpeed != SK_LSPEED_AUTO) &&
(LinkSpeed != SK_LSPEED_1000MBPS))) {
printk("sk98lin: Illegal value for Speed_A. "
"Not a copper card or GE V2 card\n Using "
"speed 1000\n");
LinkSpeed = SK_LSPEED_1000MBPS;
}
/*
** Decide whether to set new config value if somethig valid has
** been received.
*/
if (IsLinkSpeedDefined) {
pAC->GIni.GP[0].PLinkSpeed = LinkSpeed;
}
/*
** b) Any Autonegotiation and DuplexCapabilities set?
** Please note that both belong together...
*/
AutoNeg = AN_ON; /* tschilling: Default: Autonegotiation on! */
AutoSet = SK_FALSE;
if (AutoNeg_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
AutoNeg_A[pAC->Index] != NULL) {
AutoSet = SK_TRUE;
if (strcmp(AutoNeg_A[pAC->Index],"")==0) {
AutoSet = SK_FALSE;
} else if (strcmp(AutoNeg_A[pAC->Index],"On")==0) {
AutoNeg = AN_ON;
} else if (strcmp(AutoNeg_A[pAC->Index],"Off")==0) {
AutoNeg = AN_OFF;
} else if (strcmp(AutoNeg_A[pAC->Index],"Sense")==0) {
AutoNeg = AN_SENS;
} else {
printk("sk98lin: Illegal value \"%s\" for AutoNeg_A\n",
AutoNeg_A[pAC->Index]);
}
}
DuplexCap = DC_BOTH;
DupSet = SK_FALSE;
if (DupCap_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
DupCap_A[pAC->Index] != NULL) {
DupSet = SK_TRUE;
if (strcmp(DupCap_A[pAC->Index],"")==0) {
DupSet = SK_FALSE;
} else if (strcmp(DupCap_A[pAC->Index],"Both")==0) {
DuplexCap = DC_BOTH;
} else if (strcmp(DupCap_A[pAC->Index],"Full")==0) {
DuplexCap = DC_FULL;
} else if (strcmp(DupCap_A[pAC->Index],"Half")==0) {
DuplexCap = DC_HALF;
} else {
printk("sk98lin: Illegal value \"%s\" for DupCap_A\n",
DupCap_A[pAC->Index]);
}
}
/*
** Check for illegal combinations
*/
if ((LinkSpeed == SK_LSPEED_1000MBPS) &&
((DuplexCap == SK_LMODE_STAT_AUTOHALF) ||
(DuplexCap == SK_LMODE_STAT_HALF)) &&
(pAC->ChipsetType)) {
printk("sk98lin: Half Duplex not possible with Gigabit speed!\n"
" Using Full Duplex.\n");
DuplexCap = DC_FULL;
}
if ( AutoSet && AutoNeg==AN_SENS && DupSet) {
printk("sk98lin, Port A: DuplexCapabilities"
" ignored using Sense mode\n");
}
if (AutoSet && AutoNeg==AN_OFF && DupSet && DuplexCap==DC_BOTH){
printk("sk98lin: Port A: Illegal combination"
" of values AutoNeg. and DuplexCap.\n Using "
"Full Duplex\n");
DuplexCap = DC_FULL;
}
if (AutoSet && AutoNeg==AN_OFF && !DupSet) {
DuplexCap = DC_FULL;
}
if (!AutoSet && DupSet) {
AutoNeg = AN_ON;
}
/*
** set the desired mode
*/
if (AutoSet || DupSet) {
pAC->GIni.GP[0].PLinkModeConf = Capabilities[AutoNeg][DuplexCap];
}
/*
** c) Any Flowcontrol-parameter set?
*/
if (FlowCtrl_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
FlowCtrl_A[pAC->Index] != NULL) {
if (strcmp(FlowCtrl_A[pAC->Index],"") == 0) {
IsFlowCtrlDefined = SK_FALSE;
} else if (strcmp(FlowCtrl_A[pAC->Index],"SymOrRem") == 0) {
FlowCtrl = SK_FLOW_MODE_SYM_OR_REM;
} else if (strcmp(FlowCtrl_A[pAC->Index],"Sym")==0) {
FlowCtrl = SK_FLOW_MODE_SYMMETRIC;
} else if (strcmp(FlowCtrl_A[pAC->Index],"LocSend")==0) {
FlowCtrl = SK_FLOW_MODE_LOC_SEND;
} else if (strcmp(FlowCtrl_A[pAC->Index],"None")==0) {
FlowCtrl = SK_FLOW_MODE_NONE;
} else {
printk("sk98lin: Illegal value \"%s\" for FlowCtrl_A\n",
FlowCtrl_A[pAC->Index]);
IsFlowCtrlDefined = SK_FALSE;
}
} else {
IsFlowCtrlDefined = SK_FALSE;
}
if (IsFlowCtrlDefined) {
if ((AutoNeg == AN_OFF) && (FlowCtrl != SK_FLOW_MODE_NONE)) {
printk("sk98lin: Port A: FlowControl"
" impossible without AutoNegotiation,"
" disabled\n");
FlowCtrl = SK_FLOW_MODE_NONE;
}
pAC->GIni.GP[0].PFlowCtrlMode = FlowCtrl;
}
/*
** d) What is with the RoleParameter?
*/
if (Role_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
Role_A[pAC->Index] != NULL) {
if (strcmp(Role_A[pAC->Index],"")==0) {
IsRoleDefined = SK_FALSE;
} else if (strcmp(Role_A[pAC->Index],"Auto")==0) {
MSMode = SK_MS_MODE_AUTO;
} else if (strcmp(Role_A[pAC->Index],"Master")==0) {
MSMode = SK_MS_MODE_MASTER;
} else if (strcmp(Role_A[pAC->Index],"Slave")==0) {
MSMode = SK_MS_MODE_SLAVE;
} else {
printk("sk98lin: Illegal value \"%s\" for Role_A\n",
Role_A[pAC->Index]);
IsRoleDefined = SK_FALSE;
}
} else {
IsRoleDefined = SK_FALSE;
}
if (IsRoleDefined == SK_TRUE) {
pAC->GIni.GP[0].PMSMode = MSMode;
}
/*
** Parse any parameter settings for port B:
** a) any LinkSpeed stated?
*/
IsConTypeDefined = SK_TRUE;
IsLinkSpeedDefined = SK_TRUE;
IsFlowCtrlDefined = SK_TRUE;
IsModeDefined = SK_TRUE;
if (Speed_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
Speed_B[pAC->Index] != NULL) {
if (strcmp(Speed_B[pAC->Index],"")==0) {
IsLinkSpeedDefined = SK_FALSE;
} else if (strcmp(Speed_B[pAC->Index],"Auto")==0) {
LinkSpeed = SK_LSPEED_AUTO;
} else if (strcmp(Speed_B[pAC->Index],"10")==0) {
LinkSpeed = SK_LSPEED_10MBPS;
} else if (strcmp(Speed_B[pAC->Index],"100")==0) {
LinkSpeed = SK_LSPEED_100MBPS;
} else if (strcmp(Speed_B[pAC->Index],"1000")==0) {
LinkSpeed = SK_LSPEED_1000MBPS;
} else {
printk("sk98lin: Illegal value \"%s\" for Speed_B\n",
Speed_B[pAC->Index]);
IsLinkSpeedDefined = SK_FALSE;
}
} else {
IsLinkSpeedDefined = SK_FALSE;
}
/*
** Check speed parameter:
** Only copper type adapter and GE V2 cards
*/
if (((!pAC->ChipsetType) || (pAC->GIni.GICopperType != SK_TRUE)) &&
((LinkSpeed != SK_LSPEED_AUTO) &&
(LinkSpeed != SK_LSPEED_1000MBPS))) {
printk("sk98lin: Illegal value for Speed_B. "
"Not a copper card or GE V2 card\n Using "
"speed 1000\n");
LinkSpeed = SK_LSPEED_1000MBPS;
}
/*
** Decide whether to set new config value if somethig valid has
** been received.
*/
if (IsLinkSpeedDefined) {
pAC->GIni.GP[1].PLinkSpeed = LinkSpeed;
}
/*
** b) Any Autonegotiation and DuplexCapabilities set?
** Please note that both belong together...
*/
AutoNeg = AN_SENS; /* default: do auto Sense */
AutoSet = SK_FALSE;
if (AutoNeg_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
AutoNeg_B[pAC->Index] != NULL) {
AutoSet = SK_TRUE;
if (strcmp(AutoNeg_B[pAC->Index],"")==0) {
AutoSet = SK_FALSE;
} else if (strcmp(AutoNeg_B[pAC->Index],"On")==0) {
AutoNeg = AN_ON;
} else if (strcmp(AutoNeg_B[pAC->Index],"Off")==0) {
AutoNeg = AN_OFF;
} else if (strcmp(AutoNeg_B[pAC->Index],"Sense")==0) {
AutoNeg = AN_SENS;
} else {
printk("sk98lin: Illegal value \"%s\" for AutoNeg_B\n",
AutoNeg_B[pAC->Index]);
}
}
DuplexCap = DC_BOTH;
DupSet = SK_FALSE;
if (DupCap_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
DupCap_B[pAC->Index] != NULL) {
DupSet = SK_TRUE;
if (strcmp(DupCap_B[pAC->Index],"")==0) {
DupSet = SK_FALSE;
} else if (strcmp(DupCap_B[pAC->Index],"Both")==0) {
DuplexCap = DC_BOTH;
} else if (strcmp(DupCap_B[pAC->Index],"Full")==0) {
DuplexCap = DC_FULL;
} else if (strcmp(DupCap_B[pAC->Index],"Half")==0) {
DuplexCap = DC_HALF;
} else {
printk("sk98lin: Illegal value \"%s\" for DupCap_B\n",
DupCap_B[pAC->Index]);
}
}
/*
** Check for illegal combinations
*/
if ((LinkSpeed == SK_LSPEED_1000MBPS) &&
((DuplexCap == SK_LMODE_STAT_AUTOHALF) ||
(DuplexCap == SK_LMODE_STAT_HALF)) &&
(pAC->ChipsetType)) {
printk("sk98lin: Half Duplex not possible with Gigabit speed!\n"
" Using Full Duplex.\n");
DuplexCap = DC_FULL;
}
if (AutoSet && AutoNeg==AN_SENS && DupSet) {
printk("sk98lin, Port B: DuplexCapabilities"
" ignored using Sense mode\n");
}
if (AutoSet && AutoNeg==AN_OFF && DupSet && DuplexCap==DC_BOTH){
printk("sk98lin: Port B: Illegal combination"
" of values AutoNeg. and DuplexCap.\n Using "
"Full Duplex\n");
DuplexCap = DC_FULL;
}
if (AutoSet && AutoNeg==AN_OFF && !DupSet) {
DuplexCap = DC_FULL;
}
if (!AutoSet && DupSet) {
AutoNeg = AN_ON;
}
/*
** set the desired mode
*/
if (AutoSet || DupSet) {
pAC->GIni.GP[1].PLinkModeConf = Capabilities[AutoNeg][DuplexCap];
}
/*
** c) Any FlowCtrl parameter set?
*/
if (FlowCtrl_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
FlowCtrl_B[pAC->Index] != NULL) {
if (strcmp(FlowCtrl_B[pAC->Index],"") == 0) {
IsFlowCtrlDefined = SK_FALSE;
} else if (strcmp(FlowCtrl_B[pAC->Index],"SymOrRem") == 0) {
FlowCtrl = SK_FLOW_MODE_SYM_OR_REM;
} else if (strcmp(FlowCtrl_B[pAC->Index],"Sym")==0) {
FlowCtrl = SK_FLOW_MODE_SYMMETRIC;
} else if (strcmp(FlowCtrl_B[pAC->Index],"LocSend")==0) {
FlowCtrl = SK_FLOW_MODE_LOC_SEND;
} else if (strcmp(FlowCtrl_B[pAC->Index],"None")==0) {
FlowCtrl = SK_FLOW_MODE_NONE;
} else {
printk("sk98lin: Illegal value \"%s\" for FlowCtrl_B\n",
FlowCtrl_B[pAC->Index]);
IsFlowCtrlDefined = SK_FALSE;
}
} else {
IsFlowCtrlDefined = SK_FALSE;
}
if (IsFlowCtrlDefined) {
if ((AutoNeg == AN_OFF) && (FlowCtrl != SK_FLOW_MODE_NONE)) {
printk("sk98lin: Port B: FlowControl"
" impossible without AutoNegotiation,"
" disabled\n");
FlowCtrl = SK_FLOW_MODE_NONE;
}
pAC->GIni.GP[1].PFlowCtrlMode = FlowCtrl;
}
/*
** d) What is the RoleParameter?
*/
if (Role_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
Role_B[pAC->Index] != NULL) {
if (strcmp(Role_B[pAC->Index],"")==0) {
IsRoleDefined = SK_FALSE;
} else if (strcmp(Role_B[pAC->Index],"Auto")==0) {
MSMode = SK_MS_MODE_AUTO;
} else if (strcmp(Role_B[pAC->Index],"Master")==0) {
MSMode = SK_MS_MODE_MASTER;
} else if (strcmp(Role_B[pAC->Index],"Slave")==0) {
MSMode = SK_MS_MODE_SLAVE;
} else {
printk("sk98lin: Illegal value \"%s\" for Role_B\n",
Role_B[pAC->Index]);
IsRoleDefined = SK_FALSE;
}
} else {
IsRoleDefined = SK_FALSE;
}
if (IsRoleDefined) {
pAC->GIni.GP[1].PMSMode = MSMode;
}
/*
** Evaluate settings for both ports
*/
pAC->ActivePort = 0;
if (PrefPort != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
PrefPort[pAC->Index] != NULL) {
if (strcmp(PrefPort[pAC->Index],"") == 0) { /* Auto */
pAC->ActivePort = 0;
pAC->Rlmt.Net[0].Preference = -1; /* auto */
pAC->Rlmt.Net[0].PrefPort = 0;
} else if (strcmp(PrefPort[pAC->Index],"A") == 0) {
/*
** do not set ActivePort here, thus a port
** switch is issued after net up.
*/
Port = 0;
pAC->Rlmt.Net[0].Preference = Port;
pAC->Rlmt.Net[0].PrefPort = Port;
} else if (strcmp(PrefPort[pAC->Index],"B") == 0) {
/*
** do not set ActivePort here, thus a port
** switch is issued after net up.
*/
if (pAC->GIni.GIMacsFound == 1) {
printk("sk98lin: Illegal value \"B\" for PrefPort.\n"
" Port B not available on single port adapters.\n");
pAC->ActivePort = 0;
pAC->Rlmt.Net[0].Preference = -1; /* auto */
pAC->Rlmt.Net[0].PrefPort = 0;
} else {
Port = 1;
pAC->Rlmt.Net[0].Preference = Port;
pAC->Rlmt.Net[0].PrefPort = Port;
}
} else {
printk("sk98lin: Illegal value \"%s\" for PrefPort\n",
PrefPort[pAC->Index]);
}
}
pAC->RlmtNets = 1;
pAC->RlmtMode = 0;
if (RlmtMode != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
RlmtMode[pAC->Index] != NULL) {
if (strcmp(RlmtMode[pAC->Index], "") == 0) {
if (pAC->GIni.GIMacsFound == 2) {
pAC->RlmtMode = SK_RLMT_CHECK_LINK;
pAC->RlmtNets = 2;
}
} else if (strcmp(RlmtMode[pAC->Index], "CheckLinkState") == 0) {
pAC->RlmtMode = SK_RLMT_CHECK_LINK;
} else if (strcmp(RlmtMode[pAC->Index], "CheckLocalPort") == 0) {
pAC->RlmtMode = SK_RLMT_CHECK_LINK |
SK_RLMT_CHECK_LOC_LINK;
} else if (strcmp(RlmtMode[pAC->Index], "CheckSeg") == 0) {
pAC->RlmtMode = SK_RLMT_CHECK_LINK |
SK_RLMT_CHECK_LOC_LINK |
SK_RLMT_CHECK_SEG;
} else if ((strcmp(RlmtMode[pAC->Index], "DualNet") == 0) &&
(pAC->GIni.GIMacsFound == 2)) {
pAC->RlmtMode = SK_RLMT_CHECK_LINK;
pAC->RlmtNets = 2;
} else {
printk("sk98lin: Illegal value \"%s\" for"
" RlmtMode, using default\n",
RlmtMode[pAC->Index]);
pAC->RlmtMode = 0;
}
} else {
if (pAC->GIni.GIMacsFound == 2) {
pAC->RlmtMode = SK_RLMT_CHECK_LINK;
pAC->RlmtNets = 2;
}
}
#ifdef SK_YUKON2
/*
** use dualnet config per default
*
pAC->RlmtMode = SK_RLMT_CHECK_LINK;
pAC->RlmtNets = 2;
*/
#endif
/*
** Check the TxModeration parameters
*/
pAC->TxModeration = 0;
if (TxModeration[pAC->Index] != 0) {
if (!HW_IS_EXT_LE_FORMAT(pAC)) {
printk("sk98lin: Illegal value for TxModeration. "
"Not a Yukon 2 card\n Disable tx moderation.\n");
} else if ((TxModeration[pAC->Index] < 1) ||
(TxModeration[pAC->Index] > C_TX_INT_MOD_UPPER_RANGE)) {
printk("sk98lin: Illegal value \"%d\" for TxModeration. (Range: 1 - %d)\n"
" Disable tx moderation.\n",
TxModeration[pAC->Index],
C_TX_INT_MOD_UPPER_RANGE);
} else {
pAC->TxModeration = TxModeration[pAC->Index];
}
}
/*
** Check the LowLatance parameters
*/
pAC->LowLatency = SK_FALSE;
if (LowLatency[pAC->Index] != NULL) {
if (strcmp(LowLatency[pAC->Index], "On") == 0) {
pAC->LowLatency = SK_TRUE;
}
}
/*
** Check the BroadcastPrio parameters
*/
pAC->Rlmt.Net[0].ChgBcPrio = SK_FALSE;
if (BroadcastPrio[pAC->Index] != NULL) {
if (strcmp(BroadcastPrio[pAC->Index], "On") == 0) {
pAC->Rlmt.Net[0].ChgBcPrio = SK_TRUE;
}
}
/*
** Check the interrupt moderation parameters
*/
pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_NONE;
if (Moderation[pAC->Index] != NULL) {
if (strcmp(Moderation[pAC->Index], "") == 0) {
pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_NONE;
} else if (strcmp(Moderation[pAC->Index], "Static") == 0) {
pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_STATIC;
} else if (strcmp(Moderation[pAC->Index], "Dynamic") == 0) {
pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_DYNAMIC;
} else if (strcmp(Moderation[pAC->Index], "None") == 0) {
pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_NONE;
} else {
printk("sk98lin: Illegal value \"%s\" for Moderation.\n"
" Disable interrupt moderation.\n",
Moderation[pAC->Index]);
}
} else {
/* Set interrupt moderation if wished */
#ifdef CONFIG_SK98LIN_STATINT
pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_STATIC;
#endif
}
if (ModerationMask[pAC->Index] != NULL) {
if (strcmp(ModerationMask[pAC->Index], "Rx") == 0) {
IrqModMaskOffset = 0;
} else if (strcmp(ModerationMask[pAC->Index], "Tx") == 0) {
IrqModMaskOffset = 1;
} else if (strcmp(ModerationMask[pAC->Index], "Sp") == 0) {
IrqModMaskOffset = 2;
} else if (strcmp(ModerationMask[pAC->Index], "RxSp") == 0) {
IrqModMaskOffset = 3;
} else if (strcmp(ModerationMask[pAC->Index], "SpRx") == 0) {
IrqModMaskOffset = 3;
} else if (strcmp(ModerationMask[pAC->Index], "RxTx") == 0) {
IrqModMaskOffset = 4;
} else if (strcmp(ModerationMask[pAC->Index], "TxRx") == 0) {
IrqModMaskOffset = 4;
} else if (strcmp(ModerationMask[pAC->Index], "TxSp") == 0) {
IrqModMaskOffset = 5;
} else if (strcmp(ModerationMask[pAC->Index], "SpTx") == 0) {
IrqModMaskOffset = 5;
} else { /* some rubbish stated */
// IrqModMaskOffset = 6; ->has been initialized
// already at the begin of this function...
}
}
if (!CHIP_ID_YUKON_2(pAC)) {
pAC->DynIrqModInfo.MaskIrqModeration = IrqModMask[IrqModMaskOffset][0];
} else {
pAC->DynIrqModInfo.MaskIrqModeration = IrqModMask[IrqModMaskOffset][1];
}
if (!CHIP_ID_YUKON_2(pAC)) {
pAC->DynIrqModInfo.MaxModIntsPerSec = C_INTS_PER_SEC_DEFAULT;
} else {
pAC->DynIrqModInfo.MaxModIntsPerSec = C_Y2_INTS_PER_SEC_DEFAULT;
}
if (IntsPerSec[pAC->Index] != 0) {
if ((IntsPerSec[pAC->Index]< C_INT_MOD_IPS_LOWER_RANGE) ||
(IntsPerSec[pAC->Index] > C_INT_MOD_IPS_UPPER_RANGE)) {
printk("sk98lin: Illegal value \"%d\" for IntsPerSec. (Range: %d - %d)\n"
" Using default value of %i.\n",
IntsPerSec[pAC->Index],
C_INT_MOD_IPS_LOWER_RANGE,
C_INT_MOD_IPS_UPPER_RANGE,
pAC->DynIrqModInfo.MaxModIntsPerSec);
} else {
pAC->DynIrqModInfo.MaxModIntsPerSec = IntsPerSec[pAC->Index];
}
}
/*
** Evaluate upper and lower moderation threshold
*/
pAC->DynIrqModInfo.MaxModIntsPerSecUpperLimit =
pAC->DynIrqModInfo.MaxModIntsPerSec +
(pAC->DynIrqModInfo.MaxModIntsPerSec / 5);
pAC->DynIrqModInfo.MaxModIntsPerSecLowerLimit =
pAC->DynIrqModInfo.MaxModIntsPerSec -
(pAC->DynIrqModInfo.MaxModIntsPerSec / 5);
pAC->DynIrqModInfo.DynIrqModSampleInterval =
SK_DRV_MODERATION_TIMER_LENGTH;
} /* GetConfiguration */
/*****************************************************************************
*
* ProductStr - return a adapter identification string from vpd
*
* Description:
* This function reads the product name string from the vpd area
* and puts it the field pAC->DeviceString.
*
* Returns: N/A
*/
static void ProductStr(SK_AC *pAC)
{
char Default[] = "Generic Marvell Yukon chipset Ethernet device";
char Key[] = VPD_NAME; /* VPD productname key */
int StrLen = 80; /* stringlen */
unsigned long Flags;
int ReturnCode = 0;
spin_lock_irqsave(&pAC->SlowPathLock, Flags);
if ((ReturnCode = VpdRead(pAC, pAC->IoBase, Key, pAC->DeviceStr, &StrLen)) != 0) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ERROR,
("Error reading VPD data: %d\n", ReturnCode));
strcpy(pAC->DeviceStr, Default);
}
spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
} /* ProductStr */
/****************************************************************************/
/* functions for common modules *********************************************/
/****************************************************************************/
/*****************************************************************************
*
* SkDrvAllocRlmtMbuf - allocate an RLMT mbuf
*
* Description:
* This routine returns an RLMT mbuf or NULL. The RLMT Mbuf structure
* is embedded into a socket buff data area.
*
* Context:
* runtime
*
* Returns:
* NULL or pointer to Mbuf.
*/
SK_MBUF *SkDrvAllocRlmtMbuf(
SK_AC *pAC, /* pointer to adapter context */
SK_IOC IoC, /* the IO-context */
unsigned BufferSize) /* size of the requested buffer */
{
SK_MBUF *pRlmtMbuf; /* pointer to a new rlmt-mbuf structure */
struct sk_buff *pMsgBlock; /* pointer to a new message block */
pMsgBlock = alloc_skb(BufferSize + sizeof(SK_MBUF), GFP_ATOMIC);
if (pMsgBlock == NULL) {
return (NULL);
}
pRlmtMbuf = (SK_MBUF*) pMsgBlock->data;
skb_reserve(pMsgBlock, sizeof(SK_MBUF));
pRlmtMbuf->pNext = NULL;
pRlmtMbuf->pOs = pMsgBlock;
pRlmtMbuf->pData = pMsgBlock->data; /* Data buffer. */
pRlmtMbuf->Size = BufferSize; /* Data buffer size. */
pRlmtMbuf->Length = 0; /* Length of packet (<= Size). */
return (pRlmtMbuf);
} /* SkDrvAllocRlmtMbuf */
/*****************************************************************************
*
* SkDrvFreeRlmtMbuf - free an RLMT mbuf
*
* Description:
* This routine frees one or more RLMT mbuf(s).
*
* Context:
* runtime
*
* Returns:
* Nothing
*/
void SkDrvFreeRlmtMbuf(
SK_AC *pAC, /* pointer to adapter context */
SK_IOC IoC, /* the IO-context */
SK_MBUF *pMbuf) /* size of the requested buffer */
{
SK_MBUF *pFreeMbuf;
SK_MBUF *pNextMbuf;
pFreeMbuf = pMbuf;
do {
pNextMbuf = pFreeMbuf->pNext;
DEV_KFREE_SKB_ANY(pFreeMbuf->pOs);
pFreeMbuf = pNextMbuf;
} while ( pFreeMbuf != NULL );
} /* SkDrvFreeRlmtMbuf */
/*****************************************************************************
*
* SkOsGetTime - provide a time value
*
* Description:
* This routine provides a time value. The unit is 1/HZ (defined by Linux).
* It is not used for absolute time, but only for time differences.
*
*
* Returns:
* Time value
*/
SK_U64 SkOsGetTime(SK_AC *pAC)
{
SK_U64 PrivateJiffies;
SkOsGetTimeCurrent(pAC, &PrivateJiffies);
return PrivateJiffies;
} /* SkOsGetTime */
/*****************************************************************************
*
* SkPciReadCfgDWord - read a 32 bit value from pci config space
*
* Description:
* This routine reads a 32 bit value from the pci configuration
* space.
*
* Returns:
* 0 - indicate everything worked ok.
* != 0 - error indication
*/
int SkPciReadCfgDWord(
SK_AC *pAC, /* Adapter Control structure pointer */
int PciAddr, /* PCI register address */
SK_U32 *pVal) /* pointer to store the read value */
{
pci_read_config_dword(pAC->PciDev, PciAddr, pVal);
return(0);
} /* SkPciReadCfgDWord */
/*****************************************************************************
*
* SkPciReadCfgWord - read a 16 bit value from pci config space
*
* Description:
* This routine reads a 16 bit value from the pci configuration
* space.
*
* Returns:
* 0 - indicate everything worked ok.
* != 0 - error indication
*/
int SkPciReadCfgWord(
SK_AC *pAC, /* Adapter Control structure pointer */
int PciAddr, /* PCI register address */
SK_U16 *pVal) /* pointer to store the read value */
{
pci_read_config_word(pAC->PciDev, PciAddr, pVal);
return(0);
} /* SkPciReadCfgWord */
/*****************************************************************************
*
* SkPciReadCfgByte - read a 8 bit value from pci config space
*
* Description:
* This routine reads a 8 bit value from the pci configuration
* space.
*
* Returns:
* 0 - indicate everything worked ok.
* != 0 - error indication
*/
int SkPciReadCfgByte(
SK_AC *pAC, /* Adapter Control structure pointer */
int PciAddr, /* PCI register address */
SK_U8 *pVal) /* pointer to store the read value */
{
pci_read_config_byte(pAC->PciDev, PciAddr, pVal);
return(0);
} /* SkPciReadCfgByte */
/*****************************************************************************
*
* SkPciWriteCfgDWord - write a 32 bit value to pci config space
*
* Description:
* This routine writes a 32 bit value to the pci configuration
* space.
*
* Returns:
* 0 - indicate everything worked ok.
* != 0 - error indication
*/
int SkPciWriteCfgDWord(
SK_AC *pAC, /* Adapter Control structure pointer */
int PciAddr, /* PCI register address */
SK_U32 Val) /* pointer to store the read value */
{
pci_write_config_dword(pAC->PciDev, PciAddr, Val);
return(0);
} /* SkPciWriteCfgDWord */
/*****************************************************************************
*
* SkPciWriteCfgWord - write a 16 bit value to pci config space
*
* Description:
* This routine writes a 16 bit value to the pci configuration
* space. The flag PciConfigUp indicates whether the config space
* is accesible or must be set up first.
*
* Returns:
* 0 - indicate everything worked ok.
* != 0 - error indication
*/
int SkPciWriteCfgWord(
SK_AC *pAC, /* Adapter Control structure pointer */
int PciAddr, /* PCI register address */
SK_U16 Val) /* pointer to store the read value */
{
pci_write_config_word(pAC->PciDev, PciAddr, Val);
return(0);
} /* SkPciWriteCfgWord */
/*****************************************************************************
*
* SkPciWriteCfgWord - write a 8 bit value to pci config space
*
* Description:
* This routine writes a 8 bit value to the pci configuration
* space. The flag PciConfigUp indicates whether the config space
* is accesible or must be set up first.
*
* Returns:
* 0 - indicate everything worked ok.
* != 0 - error indication
*/
int SkPciWriteCfgByte(
SK_AC *pAC, /* Adapter Control structure pointer */
int PciAddr, /* PCI register address */
SK_U8 Val) /* pointer to store the read value */
{
pci_write_config_byte(pAC->PciDev, PciAddr, Val);
return(0);
} /* SkPciWriteCfgByte */
/*****************************************************************************
*
* SkDrvEvent - handle driver events
*
* Description:
* This function handles events from all modules directed to the driver
*
* Context:
* Is called under protection of slow path lock.
*
* Returns:
* 0 if everything ok
* < 0 on error
*
*/
int SkDrvEvent(
SK_AC *pAC, /* pointer to adapter context */
SK_IOC IoC, /* IO control context */
SK_U32 Event, /* event-id */
SK_EVPARA Param) /* event-parameter */
{
SK_MBUF *pRlmtMbuf; /* pointer to a rlmt-mbuf structure */
struct sk_buff *pMsg; /* pointer to a message block */
SK_BOOL DualNet;
SK_U32 Reason;
unsigned long Flags;
unsigned long InitFlags;
int FromPort; /* the port from which we switch away */
int ToPort; /* the port we switch to */
int Stat;
DEV_NET *pNet = NULL;
#ifdef CONFIG_SK98LIN_NAPI
int WorkToDo = 1; /* min(*budget, dev->quota); */
int WorkDone = 0;
#endif
switch (Event) {
case SK_DRV_PORT_FAIL:
FromPort = Param.Para32[0];
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
("PORT FAIL EVENT, Port: %d\n", FromPort));
if (FromPort == 0) {
printk("%s: Port A failed.\n", pAC->dev[0]->name);
} else {
printk("%s: Port B failed.\n", pAC->dev[1]->name);
}
break;
case SK_DRV_PORT_RESET:
FromPort = Param.Para32[0];
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
("PORT RESET EVENT, Port: %d ", FromPort));
SkLocalEventQueue64(pAC, SKGE_PNMI, SK_PNMI_EVT_XMAC_RESET,
FromPort, SK_FALSE);
spin_lock_irqsave(
&pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
Flags);
if (CHIP_ID_YUKON_2(pAC)) {
SkY2PortStop(pAC, IoC, FromPort, SK_STOP_ALL, SK_HARD_RST);
} else {
SkGeStopPort(pAC, IoC, FromPort, SK_STOP_ALL, SK_HARD_RST);
}
pAC->dev[Param.Para32[0]]->flags &= ~IFF_RUNNING;
spin_unlock_irqrestore(
&pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
Flags);
if (!CHIP_ID_YUKON_2(pAC)) {
#ifdef CONFIG_SK98LIN_NAPI
WorkToDo = 1;
ReceiveIrq(pAC, &pAC->RxPort[FromPort], SK_FALSE, &WorkDone, WorkToDo);
#else
ReceiveIrq(pAC, &pAC->RxPort[FromPort], SK_FALSE);
#endif
ClearTxRing(pAC, &pAC->TxPort[FromPort][TX_PRIO_LOW]);
}
spin_lock_irqsave(
&pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
Flags);
#ifdef USE_TIST_FOR_RESET
if (!HW_IS_EXT_LE_FORMAT(pAC) && pAC->GIni.GIYukon2) {
#ifdef Y2_RECOVERY
/* for Yukon II we want to have tist enabled all the time */
if (!SK_ADAPTER_WAITING_FOR_TIST(pAC)) {
Y2_ENABLE_TIST(pAC->IoBase);
}
#else
/* make sure that we do not accept any status LEs from now on */
if (SK_ADAPTER_WAITING_FOR_TIST(pAC)) {
#endif
/* port already waiting for tist */
SK_DBG_MSG(pAC, SK_DBGMOD_DRV, SK_DBGCAT_DUMP,
("Port %c is now waiting for specific Tist\n",
'A' + FromPort));
SK_SET_WAIT_BIT_FOR_PORT(
pAC,
SK_PSTATE_WAITING_FOR_SPECIFIC_TIST,
FromPort);
/* get current timestamp */
Y2_GET_TIST_LOW_VAL(pAC->IoBase, &pAC->MinTistLo);
pAC->MinTistHi = pAC->GIni.GITimeStampCnt;
#ifndef Y2_RECOVERY
} else {
/* nobody is waiting yet */
SK_SET_WAIT_BIT_FOR_PORT(
pAC,
SK_PSTATE_WAITING_FOR_ANY_TIST,
FromPort);
SK_DBG_MSG(pAC, SK_DBGMOD_DRV, SK_DBGCAT_DUMP,
("Port %c is now waiting for any Tist (0x%X)\n",
'A' + FromPort, pAC->AdapterResetState));
/* start tist */
Y2_ENABLE_TIST(pAC-IoBase);
}
#endif
}
#endif
#ifdef Y2_LE_CHECK
/* mark entries invalid */
pAC->LastPort = 3;
pAC->LastOpc = 0xFF;
#endif
if (CHIP_ID_YUKON_2(pAC)) {
SkY2PortStart(pAC, IoC, FromPort);
} else {
/* tschilling: Handling of return value inserted. */
if (SkGeInitPort(pAC, IoC, FromPort)) {
if (FromPort == 0) {
printk("%s: SkGeInitPort A failed.\n", pAC->dev[0]->name);
} else {
printk("%s: SkGeInitPort B failed.\n", pAC->dev[1]->name);
}
}
SkAddrMcUpdate(pAC,IoC, FromPort);
PortReInitBmu(pAC, FromPort);
SkGePollTxD(pAC, IoC, FromPort, SK_TRUE);
CLEAR_AND_START_RX(FromPort);
}
spin_unlock_irqrestore(
&pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
Flags);
break;
case SK_DRV_NET_UP:
spin_lock_irqsave(&pAC->InitLock, InitFlags);
FromPort = Param.Para32[0];
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
("NET UP EVENT, Port: %d ", FromPort));
SkAddrMcUpdate(pAC,IoC, FromPort); /* Mac update */
if (DoPrintInterfaceChange) {
printk("%s: network connection up using port %c\n",
pAC->dev[FromPort]->name, 'A'+FromPort);
/* tschilling: Values changed according to LinkSpeedUsed. */
Stat = pAC->GIni.GP[FromPort].PLinkSpeedUsed;
if (Stat == SK_LSPEED_STAT_10MBPS) {
printk(" speed: 10\n");
} else if (Stat == SK_LSPEED_STAT_100MBPS) {
printk(" speed: 100\n");
} else if (Stat == SK_LSPEED_STAT_1000MBPS) {
printk(" speed: 1000\n");
} else {
printk(" speed: unknown\n");
}
Stat = pAC->GIni.GP[FromPort].PLinkModeStatus;
if ((Stat == SK_LMODE_STAT_AUTOHALF) ||
(Stat == SK_LMODE_STAT_AUTOFULL)) {
printk(" autonegotiation: yes\n");
} else {
printk(" autonegotiation: no\n");
}
if ((Stat == SK_LMODE_STAT_AUTOHALF) ||
(Stat == SK_LMODE_STAT_HALF)) {
printk(" duplex mode: half\n");
} else {
printk(" duplex mode: full\n");
}
Stat = pAC->GIni.GP[FromPort].PFlowCtrlStatus;
if (Stat == SK_FLOW_STAT_REM_SEND ) {
printk(" flowctrl: remote send\n");
} else if (Stat == SK_FLOW_STAT_LOC_SEND ) {
printk(" flowctrl: local send\n");
} else if (Stat == SK_FLOW_STAT_SYMMETRIC ) {
printk(" flowctrl: symmetric\n");
} else {
printk(" flowctrl: none\n");
}
/* tschilling: Check against CopperType now. */
if ((pAC->GIni.GICopperType == SK_TRUE) &&
(pAC->GIni.GP[FromPort].PLinkSpeedUsed ==
SK_LSPEED_STAT_1000MBPS)) {
Stat = pAC->GIni.GP[FromPort].PMSStatus;
if (Stat == SK_MS_STAT_MASTER ) {
printk(" role: master\n");
} else if (Stat == SK_MS_STAT_SLAVE ) {
printk(" role: slave\n");
} else {
printk(" role: ???\n");
}
}
/* Display interrupt moderation informations */
if (pAC->DynIrqModInfo.IntModTypeSelect == C_INT_MOD_STATIC) {
printk(" irq moderation: static (%d ints/sec)\n",
pAC->DynIrqModInfo.MaxModIntsPerSec);
} else if (pAC->DynIrqModInfo.IntModTypeSelect == C_INT_MOD_DYNAMIC) {
printk(" irq moderation: dynamic (%d ints/sec)\n",
pAC->DynIrqModInfo.MaxModIntsPerSec);
} else {
printk(" irq moderation: disabled\n");
}
#ifdef NETIF_F_TSO
if (CHIP_ID_YUKON_2(pAC)) {
if (pAC->dev[FromPort]->features & NETIF_F_TSO) {
printk(" tcp offload: enabled\n");
} else {
printk(" tcp offload: disabled\n");
}
}
#endif
if (pAC->dev[FromPort]->features & NETIF_F_SG) {
printk(" scatter-gather: enabled\n");
} else {
printk(" scatter-gather: disabled\n");
}
if (pAC->dev[FromPort]->features & NETIF_F_IP_CSUM) {
printk(" tx-checksum: enabled\n");
} else {
printk(" tx-checksum: disabled\n");
}
if (pAC->RxPort[FromPort].UseRxCsum) {
printk(" rx-checksum: enabled\n");
} else {
printk(" rx-checksum: disabled\n");
}
#ifdef CONFIG_SK98LIN_NAPI
printk(" rx-polling: enabled\n");
#endif
if (pAC->TxModeration) {
printk(" tx moderation: %d\n",
pAC->TxModeration);
}
if (pAC->LowLatency) {
printk(" low latency: enabled\n");
}
if (pAC->Rlmt.Net[0].ChgBcPrio) {
printk(" broadcast prio: enabled\n");
}
#ifdef SK_ASF
#ifdef USE_ASF_DASH_FW
printk(" Firmware: enabled\n");
#endif
#ifndef USE_ASF_DASH_FW
printk(" IPMI: enabled\n");
#endif
#endif
} else {
DoPrintInterfaceChange = SK_TRUE;
}
if ((FromPort != pAC->ActivePort)&&(pAC->RlmtNets == 1)) {
SkLocalEventQueue(pAC, SKGE_DRV, SK_DRV_SWITCH_INTERN,
pAC->ActivePort, FromPort, SK_FALSE);
}
/* Inform the world that link protocol is up. */
netif_wake_queue(pAC->dev[FromPort]);
netif_carrier_on(pAC->dev[FromPort]);
pAC->dev[FromPort]->flags |= IFF_RUNNING;
spin_unlock_irqrestore(&pAC->InitLock, InitFlags);
break;
case SK_DRV_NET_DOWN:
Reason = Param.Para32[0];
FromPort = Param.Para32[1];
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
("NET DOWN EVENT "));
/* Stop queue and carrier */
netif_stop_queue(pAC->dev[FromPort]);
netif_carrier_off(pAC->dev[FromPort]);
/* Print link change */
if (DoPrintInterfaceChange) {
if (pAC->dev[FromPort]->flags & IFF_RUNNING) {
printk("%s: network connection down\n",
pAC->dev[FromPort]->name);
}
} else {
DoPrintInterfaceChange = SK_TRUE;
}
pAC->dev[FromPort]->flags &= ~IFF_RUNNING;
break;
case SK_DRV_SWITCH_HARD: /* FALL THRU */
case SK_DRV_SWITCH_SOFT: /* FALL THRU */
case SK_DRV_SWITCH_INTERN:
FromPort = Param.Para32[0];
ToPort = Param.Para32[1];
printk("%s: switching from port %c to port %c\n",
pAC->dev[0]->name, 'A'+FromPort, 'A'+ToPort);
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
("PORT SWITCH EVENT, From: %d To: %d (Pref %d) ",
FromPort, ToPort, pAC->Rlmt.Net[0].PrefPort));
SkLocalEventQueue64(pAC, SKGE_PNMI, SK_PNMI_EVT_XMAC_RESET,
FromPort, SK_FALSE);
SkLocalEventQueue64(pAC, SKGE_PNMI, SK_PNMI_EVT_XMAC_RESET,
ToPort, SK_FALSE);
spin_lock_irqsave(
&pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
Flags);
spin_lock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
if (CHIP_ID_YUKON_2(pAC)) {
SkY2PortStop(pAC, IoC, FromPort, SK_STOP_ALL, SK_SOFT_RST);
SkY2PortStop(pAC, IoC, ToPort, SK_STOP_ALL, SK_SOFT_RST);
}
else {
SkGeStopPort(pAC, IoC, FromPort, SK_STOP_ALL, SK_SOFT_RST);
SkGeStopPort(pAC, IoC, ToPort, SK_STOP_ALL, SK_SOFT_RST);
}
spin_unlock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
spin_unlock_irqrestore(
&pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
Flags);
if (!CHIP_ID_YUKON_2(pAC)) {
#ifdef CONFIG_SK98LIN_NAPI
WorkToDo = 1;
ReceiveIrq(pAC, &pAC->RxPort[FromPort], SK_FALSE, &WorkDone, WorkToDo);
ReceiveIrq(pAC, &pAC->RxPort[ToPort], SK_FALSE, &WorkDone, WorkToDo);
#else
ReceiveIrq(pAC, &pAC->RxPort[FromPort], SK_FALSE); /* clears rx ring */
ReceiveIrq(pAC, &pAC->RxPort[ToPort], SK_FALSE); /* clears rx ring */
#endif
ClearTxRing(pAC, &pAC->TxPort[FromPort][TX_PRIO_LOW]);
ClearTxRing(pAC, &pAC->TxPort[ToPort][TX_PRIO_LOW]);
}
spin_lock_irqsave(
&pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
Flags);
spin_lock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
pAC->ActivePort = ToPort;
/* tschilling: New common function with minimum size check. */
DualNet = SK_FALSE;
if (pAC->RlmtNets == 2) {
DualNet = SK_TRUE;
}
if (SkGeInitAssignRamToQueues(
pAC,
pAC->ActivePort,
DualNet)) {
spin_unlock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
spin_unlock_irqrestore(
&pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
Flags);
printk("SkGeInitAssignRamToQueues failed.\n");
break;
}
if (!CHIP_ID_YUKON_2(pAC)) {
/* tschilling: Handling of return values inserted. */
if (SkGeInitPort(pAC, IoC, FromPort) ||
SkGeInitPort(pAC, IoC, ToPort)) {
printk("%s: SkGeInitPort failed.\n", pAC->dev[0]->name);
}
}
if (!CHIP_ID_YUKON_2(pAC)) {
if (Event == SK_DRV_SWITCH_SOFT) {
SkMacRxTxEnable(pAC, IoC, FromPort);
}
SkMacRxTxEnable(pAC, IoC, ToPort);
}
SkAddrSwap(pAC, IoC, FromPort, ToPort);
SkAddrMcUpdate(pAC, IoC, FromPort);
SkAddrMcUpdate(pAC, IoC, ToPort);
#ifdef USE_TIST_FOR_RESET
if (!HW_IS_EXT_LE_FORMAT(pAC) && pAC->GIni.GIYukon2) {
/* make sure that we do not accept any status LEs from now on */
SK_DBG_MSG(pAC, SK_DBGMOD_DRV, SK_DBGCAT_DUMP,
("both Ports now waiting for specific Tist\n"));
SK_SET_WAIT_BIT_FOR_PORT(
pAC,
SK_PSTATE_WAITING_FOR_ANY_TIST,
0);
SK_SET_WAIT_BIT_FOR_PORT(
pAC,
SK_PSTATE_WAITING_FOR_ANY_TIST,
1);
/* start tist */
Y2_ENABLE_TIST(pAC->IoBase);
}
#endif
if (!CHIP_ID_YUKON_2(pAC)) {
PortReInitBmu(pAC, FromPort);
PortReInitBmu(pAC, ToPort);
SkGePollTxD(pAC, IoC, FromPort, SK_TRUE);
SkGePollTxD(pAC, IoC, ToPort, SK_TRUE);
CLEAR_AND_START_RX(FromPort);
CLEAR_AND_START_RX(ToPort);
} else {
SkY2PortStart(pAC, IoC, FromPort);
SkY2PortStart(pAC, IoC, ToPort);
#ifdef SK_YUKON2
/* in yukon-II always port 0 has to be started first */
// SkY2PortStart(pAC, IoC, 0);
// SkY2PortStart(pAC, IoC, 1);
#endif
}
spin_unlock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
spin_unlock_irqrestore(
&pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
Flags);
break;
case SK_DRV_RLMT_SEND: /* SK_MBUF *pMb */
SK_DBG_MSG(NULL,SK_DBGMOD_DRV,SK_DBGCAT_DRV_EVENT,("RLS "));
pRlmtMbuf = (SK_MBUF*) Param.pParaPtr;
pMsg = (struct sk_buff*) pRlmtMbuf->pOs;
skb_put(pMsg, pRlmtMbuf->Length);
if (!CHIP_ID_YUKON_2(pAC)) {
if (XmitFrame(pAC, &pAC->TxPort[pRlmtMbuf->PortIdx][TX_PRIO_LOW],
pMsg) < 0) {
DEV_KFREE_SKB_ANY(pMsg);
}
} else {
if (SkY2RlmtSend(pAC, pRlmtMbuf->PortIdx, pMsg) < 0) {
DEV_KFREE_SKB_ANY(pMsg);
}
}
break;
case SK_DRV_TIMER:
if (Param.Para32[0] == SK_DRV_MODERATION_TIMER) {
/* check what IRQs are to be moderated */
SkDimStartModerationTimer(pAC);
SkDimModerate(pAC);
} else {
printk("Expiration of unknown timer\n");
}
break;
case SK_DRV_ADAP_FAIL:
#if (!defined (Y2_RECOVERY) && !defined (Y2_LE_CHECK))
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
("ADAPTER FAIL EVENT\n"));
printk("%s: Adapter failed.\n", pAC->dev[0]->name);
SK_OUT32(pAC->IoBase, B0_IMSK, 0); /* disable interrupts */
break;
#endif
#if (defined (Y2_RECOVERY) || defined (Y2_LE_CHECK))
case SK_DRV_RECOVER:
spin_lock_irqsave(&pAC->InitLock, InitFlags);
pNet = (DEV_NET *)netdev_priv(pAC->dev[Param.Para32[0]]);
/* Recover already in progress */
if (pNet->InRecover) {
break;
}
netif_stop_queue(pAC->dev[Param.Para32[0]]); /* stop device if running */
pNet->InRecover = SK_TRUE;
FromPort = Param.Para32[0];
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
("PORT RESET EVENT, Port: %d ", FromPort));
/* Disable interrupts */
SK_OUT32(pAC->IoBase, B0_IMSK, 0);
SK_OUT32(pAC->IoBase, B0_HWE_IMSK, 0);
SkLocalEventQueue64(pAC, SKGE_PNMI, SK_PNMI_EVT_XMAC_RESET,
FromPort, SK_FALSE);
spin_lock_irqsave(
&pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
Flags);
if (CHIP_ID_YUKON_2(pAC)) {
SkY2PortStop(pAC, IoC, FromPort, SK_STOP_ALL, SK_SOFT_RST);
} else {
SkGeStopPort(pAC, IoC, FromPort, SK_STOP_ALL, SK_SOFT_RST);
}
pAC->dev[Param.Para32[0]]->flags &= ~IFF_RUNNING;
spin_unlock_irqrestore(
&pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
Flags);
if (!CHIP_ID_YUKON_2(pAC)) {
#ifdef CONFIG_SK98LIN_NAPI
WorkToDo = 1;
ReceiveIrq(pAC, &pAC->RxPort[FromPort], SK_FALSE, &WorkDone, WorkToDo);
#else
ReceiveIrq(pAC, &pAC->RxPort[FromPort], SK_FALSE);
#endif
ClearTxRing(pAC, &pAC->TxPort[FromPort][TX_PRIO_LOW]);
}
spin_lock_irqsave(
&pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
Flags);
#ifdef USE_TIST_FOR_RESET
if (!HW_IS_EXT_LE_FORMAT(pAC) && pAC->GIni.GIYukon2) {
#if 0
/* make sure that we do not accept any status LEs from now on */
Y2_ENABLE_TIST(pAC->IoBase);
/* get current timestamp */
Y2_GET_TIST_LOW_VAL(pAC->IoBase, &pAC->MinTistLo);
pAC->MinTistHi = pAC->GIni.GITimeStampCnt;
SK_SET_WAIT_BIT_FOR_PORT(
pAC,
SK_PSTATE_WAITING_FOR_SPECIFIC_TIST,
FromPort);
#endif
SK_SET_WAIT_BIT_FOR_PORT(
pAC,
SK_PSTATE_WAITING_FOR_ANY_TIST,
FromPort);
/* start tist */
Y2_ENABLE_TIST(pAC->IoBase);
}
#endif
/* Restart Receive BMU on Yukon-2 */
if (HW_FEATURE(pAC, HWF_WA_DEV_4167)) {
SkYuk2RestartRxBmu(pAC, IoC, FromPort);
}
#ifdef Y2_LE_CHECK
/* mark entries invalid */
pAC->LastPort = 3;
pAC->LastOpc = 0xFF;
#endif
#endif
/* Restart ports but do not initialize PHY. */
if (CHIP_ID_YUKON_2(pAC)) {
SkY2PortStart(pAC, IoC, FromPort);
} else {
/* tschilling: Handling of return value inserted. */
if (SkGeInitPort(pAC, IoC, FromPort)) {
if (FromPort == 0) {
printk("%s: SkGeInitPort A failed.\n", pAC->dev[0]->name);
} else {
printk("%s: SkGeInitPort B failed.\n", pAC->dev[1]->name);
}
}
SkAddrMcUpdate(pAC,IoC, FromPort);
PortReInitBmu(pAC, FromPort);
SkGePollTxD(pAC, IoC, FromPort, SK_TRUE);
CLEAR_AND_START_RX(FromPort);
}
spin_unlock_irqrestore(
&pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
Flags);
/* Map any waiting RX buffers to HW */
FillReceiveTableYukon2(pAC, pAC->IoBase, FromPort);
pNet->InRecover = SK_FALSE;
/* enable Interrupts */
SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
SK_OUT32(pAC->IoBase, B0_HWE_IMSK, IRQ_HWE_MASK);
netif_wake_queue(pAC->dev[FromPort]);
spin_unlock_irqrestore(&pAC->InitLock, InitFlags);
break;
default:
break;
}
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
("END EVENT "));
return (0);
} /* SkDrvEvent */
/******************************************************************************
*
* SkLocalEventQueue() - add event to queue
*
* Description:
* This function adds an event to the event queue and run the
* SkEventDispatcher. At least Init Level 1 is required to queue events,
* but will be scheduled add Init Level 2.
*
* returns:
* nothing
*/
void SkLocalEventQueue(
SK_AC *pAC, /* Adapters context */
SK_U32 Class, /* Event Class */
SK_U32 Event, /* Event to be queued */
SK_U32 Param1, /* Event parameter 1 */
SK_U32 Param2, /* Event parameter 2 */
SK_BOOL Dispatcher) /* Dispatcher flag:
* TRUE == Call SkEventDispatcher
* FALSE == Don't execute SkEventDispatcher
*/
{
SK_EVPARA EvPara;
EvPara.Para32[0] = Param1;
EvPara.Para32[1] = Param2;
if (Class == SKGE_PNMI) {
SkPnmiEvent( pAC,
pAC->IoBase,
Event,
EvPara);
} else {
SkEventQueue( pAC,
Class,
Event,
EvPara);
}
/* Run the dispatcher */
if (Dispatcher) {
SkEventDispatcher(pAC, pAC->IoBase);
}
}
/******************************************************************************
*
* SkLocalEventQueue64() - add event to queue (64bit version)
*
* Description:
* This function adds an event to the event queue and run the
* SkEventDispatcher. At least Init Level 1 is required to queue events,
* but will be scheduled add Init Level 2.
*
* returns:
* nothing
*/
void SkLocalEventQueue64(
SK_AC *pAC, /* Adapters context */
SK_U32 Class, /* Event Class */
SK_U32 Event, /* Event to be queued */
SK_U64 Param, /* Event parameter */
SK_BOOL Dispatcher) /* Dispatcher flag:
* TRUE == Call SkEventDispatcher
* FALSE == Don't execute SkEventDispatcher
*/
{
SK_EVPARA EvPara;
EvPara.Para64 = Param;
if (Class == SKGE_PNMI) {
SkPnmiEvent( pAC,
pAC->IoBase,
Event,
EvPara);
} else {
SkEventQueue( pAC,
Class,
Event,
EvPara);
}
/* Run the dispatcher */
if (Dispatcher) {
SkEventDispatcher(pAC, pAC->IoBase);
}
}
/*****************************************************************************
*
* SkErrorLog - log errors
*
* Description:
* This function logs errors to the system buffer and to the console
*
* Returns:
* 0 if everything ok
* < 0 on error
*
*/
void SkErrorLog(
SK_AC *pAC,
int ErrClass,
int ErrNum,
char *pErrorMsg)
{
char ClassStr[80];
switch (ErrClass) {
case SK_ERRCL_OTHER:
strcpy(ClassStr, "Other error");
break;
case SK_ERRCL_CONFIG:
strcpy(ClassStr, "Configuration error");
break;
case SK_ERRCL_INIT:
strcpy(ClassStr, "Initialization error");
break;
case SK_ERRCL_NORES:
strcpy(ClassStr, "Out of resources error");
break;
case SK_ERRCL_SW:
strcpy(ClassStr, "internal Software error");
break;
case SK_ERRCL_HW:
strcpy(ClassStr, "Hardware failure");
break;
case SK_ERRCL_COMM:
strcpy(ClassStr, "Communication error");
break;
case SK_ERRCL_INFO:
strcpy(ClassStr, "Information");
break;
}
if (ErrClass == SK_ERRCL_INFO) {
printk(KERN_INFO "%s: -- INFORMATION --\n"
" Msg: %s\n", pAC->dev[0]->name,
pErrorMsg);
} else {
printk(KERN_INFO "%s: -- ERROR --\n Class: %s\n"
" Nr: 0x%x\n Msg: %s\n", pAC->dev[0]->name,
ClassStr, ErrNum, pErrorMsg);
}
} /* SkErrorLog */
/*****************************************************************************
*
* SkDrvEnterDiagMode - handles DIAG attach request
*
* Description:
* Notify the kernel to NOT access the card any longer due to DIAG
* Deinitialize the Card
*
* Returns:
* int
*/
int SkDrvEnterDiagMode(
SK_AC *pAc) /* pointer to adapter context */
{
SK_AC *pAC = NULL;
DEV_NET *pNet = NULL;
pNet = (DEV_NET *)netdev_priv(pAc->dev[0]);
pAC = pNet->pAC;
SK_MEMCPY(&(pAc->PnmiBackup), &(pAc->PnmiStruct),
sizeof(SK_PNMI_STRUCT_DATA));
pAC->DiagModeActive = DIAG_ACTIVE;
if (pAC->BoardLevel > SK_INIT_DATA) {
if (netif_running(pAC->dev[0])) {
pAC->WasIfUp[0] = SK_TRUE;
pAC->DiagFlowCtrl = SK_TRUE; /* for SkGeClose */
DoPrintInterfaceChange = SK_FALSE;
SkDrvDeInitAdapter(pAC, 0); /* performs SkGeClose */
} else {
pAC->WasIfUp[0] = SK_FALSE;
}
if (pNet != (DEV_NET *)netdev_priv(pAc->dev[1])) {
pNet = (DEV_NET *)netdev_priv(pAc->dev[1]);
if (netif_running(pAC->dev[1])) {
pAC->WasIfUp[1] = SK_TRUE;
pAC->DiagFlowCtrl = SK_TRUE; /* for SkGeClose */
DoPrintInterfaceChange = SK_FALSE;
SkDrvDeInitAdapter(pAC, 1); /* do SkGeClose */
} else {
pAC->WasIfUp[1] = SK_FALSE;
}
}
pAC->BoardLevel = SK_INIT_DATA;
}
return(0);
}
/*****************************************************************************
*
* SkDrvLeaveDiagMode - handles DIAG detach request
*
* Description:
* Notify the kernel to may access the card again after use by DIAG
* Initialize the Card
*
* Returns:
* int
*/
int SkDrvLeaveDiagMode(
SK_AC *pAc) /* pointer to adapter control context */
{
SK_MEMCPY(&(pAc->PnmiStruct), &(pAc->PnmiBackup),
sizeof(SK_PNMI_STRUCT_DATA));
pAc->DiagModeActive = DIAG_NOTACTIVE;
pAc->Pnmi.DiagAttached = SK_DIAG_IDLE;
if (pAc->WasIfUp[0] == SK_TRUE) {
pAc->DiagFlowCtrl = SK_TRUE; /* for SkGeClose */
DoPrintInterfaceChange = SK_FALSE;
SkDrvInitAdapter(pAc, 0); /* first device */
}
if (pAc->WasIfUp[1] == SK_TRUE) {
pAc->DiagFlowCtrl = SK_TRUE; /* for SkGeClose */
DoPrintInterfaceChange = SK_FALSE;
SkDrvInitAdapter(pAc, 1); /* second device */
}
return(0);
}
/*****************************************************************************
*
* ParseDeviceNbrFromSlotName - Evaluate PCI device number
*
* Description:
* This function parses the PCI slot name information string and will
* retrieve the devcie number out of it. The slot_name maintianed by
* linux is in the form of '02:0a.0', whereas the first two characters
* represent the bus number in hex (in the sample above this is
* pci bus 0x02) and the next two characters the device number (0x0a).
*
* Returns:
* SK_U32: The device number from the PCI slot name
*/
static SK_U32 ParseDeviceNbrFromSlotName(
const char *SlotName) /* pointer to pci slot name eg. '02:0a.0' */
{
char *CurrCharPos = (char *) SlotName;
int FirstNibble = -1;
int SecondNibble = -1;
SK_U32 Result = 0;
while (*CurrCharPos != '\0') {
if (*CurrCharPos == ':') {
while (*CurrCharPos != '.') {
CurrCharPos++;
if ( (*CurrCharPos >= '0') &&
(*CurrCharPos <= '9')) {
if (FirstNibble == -1) {
/* dec. value for '0' */
FirstNibble = *CurrCharPos - 48;
} else {
SecondNibble = *CurrCharPos - 48;
}
} else if ( (*CurrCharPos >= 'a') &&
(*CurrCharPos <= 'f') ) {
if (FirstNibble == -1) {
FirstNibble = *CurrCharPos - 87;
} else {
SecondNibble = *CurrCharPos - 87;
}
} else {
Result = 0;
}
}
Result = FirstNibble;
Result = Result << 4; /* first nibble is higher one */
Result = Result | SecondNibble;
}
CurrCharPos++; /* next character */
}
return (Result);
}
/****************************************************************************
*
* SkDrvDeInitAdapter - deinitialize adapter (this function is only
* called if Diag attaches to that card)
*
* Description:
* Close initialized adapter.
*
* Returns:
* 0 - on success
* error code - on error
*/
static int SkDrvDeInitAdapter(
SK_AC *pAC, /* pointer to adapter context */
int devNbr) /* what device is to be handled */
{
struct SK_NET_DEVICE *dev;
dev = pAC->dev[devNbr];
/*
** Function SkGeClose() uses MOD_DEC_USE_COUNT (2.2/2.4)
** or module_put() (2.6) to decrease the number of users for
** a device, but if a device is to be put under control of
** the DIAG, that count is OK already and does not need to
** be adapted! Hence the opposite MOD_INC_USE_COUNT or
** try_module_get() needs to be used again to correct that.
*/
if (!try_module_get(THIS_MODULE)) {
return (-1);
}
if (SkGeClose(dev) != 0) {
module_put(THIS_MODULE);
return (-1);
}
return (0);
} /* SkDrvDeInitAdapter() */
/****************************************************************************
*
* SkDrvInitAdapter - Initialize adapter (this function is only
* called if Diag deattaches from that card)
*
* Description:
* Close initialized adapter.
*
* Returns:
* 0 - on success
* error code - on error
*/
static int SkDrvInitAdapter(
SK_AC *pAC, /* pointer to adapter context */
int devNbr) /* what device is to be handled */
{
struct SK_NET_DEVICE *dev;
dev = pAC->dev[devNbr];
if (SkGeOpen(dev) != 0) {
return (-1);
} else {
/*
** Function SkGeOpen() uses MOD_INC_USE_COUNT (2.2/2.4)
** or try_module_get() (2.6) to increase the number of
** users for a device, but if a device was just under
** control of the DIAG, that count is OK already and
** does not need to be adapted! Hence the opposite
** MOD_DEC_USE_COUNT or module_put() needs to be used
** again to correct that.
*/
module_put(THIS_MODULE);
}
/*
** Use correct MTU size and indicate to kernel TX queue can be started
*/
if (SkGeChangeMtu(dev, dev->mtu) != 0) {
return (-1);
}
return (0);
} /* SkDrvInitAdapter */
static int __init sk98lin_init(void)
{
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,21)
return pci_register_driver(&sk98lin_driver);
#else
return pci_module_init(&sk98lin_driver);
#endif
}
static void __exit sk98lin_cleanup(void)
{
pci_unregister_driver(&sk98lin_driver);
}
module_init(sk98lin_init);
module_exit(sk98lin_cleanup);
#ifdef DEBUG
/****************************************************************************/
/* "debug only" section *****************************************************/
/****************************************************************************/
/*****************************************************************************
*
* DumpMsg - print a frame
*
* Description:
* This function prints frames to the system logfile/to the console.
*
* Returns: N/A
*
*/
static void DumpMsg(
struct sk_buff *skb, /* linux' socket buffer */
char *str) /* additional msg string */
{
int msglen = (skb->len > 64) ? 64 : skb->len;
if (skb == NULL) {
printk("DumpMsg(): NULL-Message\n");
return;
}
if (skb->data == NULL) {
printk("DumpMsg(): Message empty\n");
return;
}
printk("DumpMsg: PhysPage: %p\n",
page_address(virt_to_page(skb->data)));
printk("--- Begin of message from %s , len %d (from %d) ----\n",
str, msglen, skb->len);
DumpData((char *)skb->data, msglen);
printk("------- End of message ---------\n");
} /* DumpMsg */
/*****************************************************************************
*
* DumpData - print a data area
*
* Description:
* This function prints a area of data to the system logfile/to the
* console.
*
* Returns: N/A
*
*/
static void DumpData(
char *p, /* pointer to area containing the data */
int size) /* the size of that data area in bytes */
{
register int i;
int haddr = 0, addr = 0;
char hex_buffer[180] = { '\0' };
char asc_buffer[180] = { '\0' };
char HEXCHAR[] = "0123456789ABCDEF";
for (i=0; i < size; ) {
if (*p >= '0' && *p <='z') {
asc_buffer[addr] = *p;
} else {
asc_buffer[addr] = '.';
}
addr++;
asc_buffer[addr] = 0;
hex_buffer[haddr] = HEXCHAR[(*p & 0xf0) >> 4];
haddr++;
hex_buffer[haddr] = HEXCHAR[*p & 0x0f];
haddr++;
hex_buffer[haddr] = ' ';
haddr++;
hex_buffer[haddr] = 0;
p++;
i++;
if (i%16 == 0) {
printk("%s %s\n", hex_buffer, asc_buffer);
addr = 0;
haddr = 0;
}
}
} /* DumpData */
/*****************************************************************************
*
* DumpLong - print a data area as long values
*
* Description:
* This function prints a long variable to the system logfile/to the
* console.
*
* Returns: N/A
*
*/
static void DumpLong(
char *pc, /* location of the variable to print */
int size) /* how large is the variable? */
{
register int i;
int haddr = 0;
char hex_buffer[180] = { '\0' };
char HEXCHAR[] = "0123456789ABCDEF";
long *p = (long*) pc;
int l;
for (i=0; i < size; ) {
l = (long) *p;
hex_buffer[haddr] = HEXCHAR[(l >> 28) & 0xf];
haddr++;
hex_buffer[haddr] = HEXCHAR[(l >> 24) & 0xf];
haddr++;
hex_buffer[haddr] = HEXCHAR[(l >> 20) & 0xf];
haddr++;
hex_buffer[haddr] = HEXCHAR[(l >> 16) & 0xf];
haddr++;
hex_buffer[haddr] = HEXCHAR[(l >> 12) & 0xf];
haddr++;
hex_buffer[haddr] = HEXCHAR[(l >> 8) & 0xf];
haddr++;
hex_buffer[haddr] = HEXCHAR[(l >> 4) & 0xf];
haddr++;
hex_buffer[haddr] = HEXCHAR[l & 0x0f];
haddr++;
hex_buffer[haddr] = ' ';
haddr++;
hex_buffer[haddr] = 0;
p++;
i++;
if (i%8 == 0) {
printk("%4x %s\n", (i-8)*4, hex_buffer);
haddr = 0;
}
}
printk("------------------------\n");
} /* DumpLong */
#endif
/*******************************************************************************
*
* End of file
*
******************************************************************************/