| /* |
| * This file contains common routines for dealing with free of page tables |
| * Along with common page table handling code |
| * |
| * Derived from arch/powerpc/mm/tlb_64.c: |
| * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) |
| * |
| * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au) |
| * and Cort Dougan (PReP) (cort@cs.nmt.edu) |
| * Copyright (C) 1996 Paul Mackerras |
| * |
| * Derived from "arch/i386/mm/init.c" |
| * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
| * |
| * Dave Engebretsen <engebret@us.ibm.com> |
| * Rework for PPC64 port. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/init.h> |
| #include <linux/percpu.h> |
| #include <linux/hardirq.h> |
| #include <asm/pgalloc.h> |
| #include <asm/tlbflush.h> |
| #include <asm/tlb.h> |
| |
| #include "mmu_decl.h" |
| |
| DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); |
| |
| #ifdef CONFIG_SMP |
| |
| /* |
| * Handle batching of page table freeing on SMP. Page tables are |
| * queued up and send to be freed later by RCU in order to avoid |
| * freeing a page table page that is being walked without locks |
| */ |
| |
| static DEFINE_PER_CPU(struct pte_freelist_batch *, pte_freelist_cur); |
| static unsigned long pte_freelist_forced_free; |
| |
| struct pte_freelist_batch |
| { |
| struct rcu_head rcu; |
| unsigned int index; |
| pgtable_free_t tables[0]; |
| }; |
| |
| #define PTE_FREELIST_SIZE \ |
| ((PAGE_SIZE - sizeof(struct pte_freelist_batch)) \ |
| / sizeof(pgtable_free_t)) |
| |
| static void pte_free_smp_sync(void *arg) |
| { |
| /* Do nothing, just ensure we sync with all CPUs */ |
| } |
| |
| /* This is only called when we are critically out of memory |
| * (and fail to get a page in pte_free_tlb). |
| */ |
| static void pgtable_free_now(pgtable_free_t pgf) |
| { |
| pte_freelist_forced_free++; |
| |
| smp_call_function(pte_free_smp_sync, NULL, 1); |
| |
| pgtable_free(pgf); |
| } |
| |
| static void pte_free_rcu_callback(struct rcu_head *head) |
| { |
| struct pte_freelist_batch *batch = |
| container_of(head, struct pte_freelist_batch, rcu); |
| unsigned int i; |
| |
| for (i = 0; i < batch->index; i++) |
| pgtable_free(batch->tables[i]); |
| |
| free_page((unsigned long)batch); |
| } |
| |
| static void pte_free_submit(struct pte_freelist_batch *batch) |
| { |
| INIT_RCU_HEAD(&batch->rcu); |
| call_rcu(&batch->rcu, pte_free_rcu_callback); |
| } |
| |
| void pgtable_free_tlb(struct mmu_gather *tlb, pgtable_free_t pgf) |
| { |
| /* This is safe since tlb_gather_mmu has disabled preemption */ |
| struct pte_freelist_batch **batchp = &__get_cpu_var(pte_freelist_cur); |
| |
| if (atomic_read(&tlb->mm->mm_users) < 2 || |
| cpumask_equal(mm_cpumask(tlb->mm), cpumask_of(smp_processor_id()))){ |
| pgtable_free(pgf); |
| return; |
| } |
| |
| if (*batchp == NULL) { |
| *batchp = (struct pte_freelist_batch *)__get_free_page(GFP_ATOMIC); |
| if (*batchp == NULL) { |
| pgtable_free_now(pgf); |
| return; |
| } |
| (*batchp)->index = 0; |
| } |
| (*batchp)->tables[(*batchp)->index++] = pgf; |
| if ((*batchp)->index == PTE_FREELIST_SIZE) { |
| pte_free_submit(*batchp); |
| *batchp = NULL; |
| } |
| } |
| |
| void pte_free_finish(void) |
| { |
| /* This is safe since tlb_gather_mmu has disabled preemption */ |
| struct pte_freelist_batch **batchp = &__get_cpu_var(pte_freelist_cur); |
| |
| if (*batchp == NULL) |
| return; |
| pte_free_submit(*batchp); |
| *batchp = NULL; |
| } |
| |
| #endif /* CONFIG_SMP */ |
| |
| static inline int is_exec_fault(void) |
| { |
| return current->thread.regs && TRAP(current->thread.regs) == 0x400; |
| } |
| |
| /* We only try to do i/d cache coherency on stuff that looks like |
| * reasonably "normal" PTEs. We currently require a PTE to be present |
| * and we avoid _PAGE_SPECIAL and _PAGE_NO_CACHE. We also only do that |
| * on userspace PTEs |
| */ |
| static inline int pte_looks_normal(pte_t pte) |
| { |
| return (pte_val(pte) & |
| (_PAGE_PRESENT | _PAGE_SPECIAL | _PAGE_NO_CACHE | _PAGE_USER)) == |
| (_PAGE_PRESENT | _PAGE_USER); |
| } |
| |
| struct page * maybe_pte_to_page(pte_t pte) |
| { |
| unsigned long pfn = pte_pfn(pte); |
| struct page *page; |
| |
| if (unlikely(!pfn_valid(pfn))) |
| return NULL; |
| page = pfn_to_page(pfn); |
| if (PageReserved(page)) |
| return NULL; |
| return page; |
| } |
| |
| #if defined(CONFIG_PPC_STD_MMU) || _PAGE_EXEC == 0 |
| |
| /* Server-style MMU handles coherency when hashing if HW exec permission |
| * is supposed per page (currently 64-bit only). If not, then, we always |
| * flush the cache for valid PTEs in set_pte. Embedded CPU without HW exec |
| * support falls into the same category. |
| */ |
| |
| static pte_t set_pte_filter(pte_t pte, unsigned long addr) |
| { |
| pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS); |
| if (pte_looks_normal(pte) && !(cpu_has_feature(CPU_FTR_COHERENT_ICACHE) || |
| cpu_has_feature(CPU_FTR_NOEXECUTE))) { |
| struct page *pg = maybe_pte_to_page(pte); |
| if (!pg) |
| return pte; |
| if (!test_bit(PG_arch_1, &pg->flags)) { |
| #ifdef CONFIG_8xx |
| /* On 8xx, cache control instructions (particularly |
| * "dcbst" from flush_dcache_icache) fault as write |
| * operation if there is an unpopulated TLB entry |
| * for the address in question. To workaround that, |
| * we invalidate the TLB here, thus avoiding dcbst |
| * misbehaviour. |
| */ |
| /* 8xx doesn't care about PID, size or ind args */ |
| _tlbil_va(addr, 0, 0, 0); |
| #endif /* CONFIG_8xx */ |
| flush_dcache_icache_page(pg); |
| set_bit(PG_arch_1, &pg->flags); |
| } |
| } |
| return pte; |
| } |
| |
| static pte_t set_access_flags_filter(pte_t pte, struct vm_area_struct *vma, |
| int dirty) |
| { |
| return pte; |
| } |
| |
| #else /* defined(CONFIG_PPC_STD_MMU) || _PAGE_EXEC == 0 */ |
| |
| /* Embedded type MMU with HW exec support. This is a bit more complicated |
| * as we don't have two bits to spare for _PAGE_EXEC and _PAGE_HWEXEC so |
| * instead we "filter out" the exec permission for non clean pages. |
| */ |
| static pte_t set_pte_filter(pte_t pte, unsigned long addr) |
| { |
| struct page *pg; |
| |
| /* No exec permission in the first place, move on */ |
| if (!(pte_val(pte) & _PAGE_EXEC) || !pte_looks_normal(pte)) |
| return pte; |
| |
| /* If you set _PAGE_EXEC on weird pages you're on your own */ |
| pg = maybe_pte_to_page(pte); |
| if (unlikely(!pg)) |
| return pte; |
| |
| /* If the page clean, we move on */ |
| if (test_bit(PG_arch_1, &pg->flags)) |
| return pte; |
| |
| /* If it's an exec fault, we flush the cache and make it clean */ |
| if (is_exec_fault()) { |
| flush_dcache_icache_page(pg); |
| set_bit(PG_arch_1, &pg->flags); |
| return pte; |
| } |
| |
| /* Else, we filter out _PAGE_EXEC */ |
| return __pte(pte_val(pte) & ~_PAGE_EXEC); |
| } |
| |
| static pte_t set_access_flags_filter(pte_t pte, struct vm_area_struct *vma, |
| int dirty) |
| { |
| struct page *pg; |
| |
| /* So here, we only care about exec faults, as we use them |
| * to recover lost _PAGE_EXEC and perform I$/D$ coherency |
| * if necessary. Also if _PAGE_EXEC is already set, same deal, |
| * we just bail out |
| */ |
| if (dirty || (pte_val(pte) & _PAGE_EXEC) || !is_exec_fault()) |
| return pte; |
| |
| #ifdef CONFIG_DEBUG_VM |
| /* So this is an exec fault, _PAGE_EXEC is not set. If it was |
| * an error we would have bailed out earlier in do_page_fault() |
| * but let's make sure of it |
| */ |
| if (WARN_ON(!(vma->vm_flags & VM_EXEC))) |
| return pte; |
| #endif /* CONFIG_DEBUG_VM */ |
| |
| /* If you set _PAGE_EXEC on weird pages you're on your own */ |
| pg = maybe_pte_to_page(pte); |
| if (unlikely(!pg)) |
| goto bail; |
| |
| /* If the page is already clean, we move on */ |
| if (test_bit(PG_arch_1, &pg->flags)) |
| goto bail; |
| |
| /* Clean the page and set PG_arch_1 */ |
| flush_dcache_icache_page(pg); |
| set_bit(PG_arch_1, &pg->flags); |
| |
| bail: |
| return __pte(pte_val(pte) | _PAGE_EXEC); |
| } |
| |
| #endif /* !(defined(CONFIG_PPC_STD_MMU) || _PAGE_EXEC == 0) */ |
| |
| /* |
| * set_pte stores a linux PTE into the linux page table. |
| */ |
| void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, |
| pte_t pte) |
| { |
| #ifdef CONFIG_DEBUG_VM |
| WARN_ON(pte_present(*ptep)); |
| #endif |
| /* Note: mm->context.id might not yet have been assigned as |
| * this context might not have been activated yet when this |
| * is called. |
| */ |
| pte = set_pte_filter(pte, addr); |
| |
| /* Perform the setting of the PTE */ |
| __set_pte_at(mm, addr, ptep, pte, 0); |
| } |
| |
| /* |
| * This is called when relaxing access to a PTE. It's also called in the page |
| * fault path when we don't hit any of the major fault cases, ie, a minor |
| * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have |
| * handled those two for us, we additionally deal with missing execute |
| * permission here on some processors |
| */ |
| int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address, |
| pte_t *ptep, pte_t entry, int dirty) |
| { |
| int changed; |
| entry = set_access_flags_filter(entry, vma, dirty); |
| changed = !pte_same(*(ptep), entry); |
| if (changed) { |
| if (!(vma->vm_flags & VM_HUGETLB)) |
| assert_pte_locked(vma->vm_mm, address); |
| __ptep_set_access_flags(ptep, entry); |
| flush_tlb_page_nohash(vma, address); |
| } |
| return changed; |
| } |
| |
| #ifdef CONFIG_DEBUG_VM |
| void assert_pte_locked(struct mm_struct *mm, unsigned long addr) |
| { |
| pgd_t *pgd; |
| pud_t *pud; |
| pmd_t *pmd; |
| |
| if (mm == &init_mm) |
| return; |
| pgd = mm->pgd + pgd_index(addr); |
| BUG_ON(pgd_none(*pgd)); |
| pud = pud_offset(pgd, addr); |
| BUG_ON(pud_none(*pud)); |
| pmd = pmd_offset(pud, addr); |
| BUG_ON(!pmd_present(*pmd)); |
| assert_spin_locked(pte_lockptr(mm, pmd)); |
| } |
| #endif /* CONFIG_DEBUG_VM */ |
| |