| /* |
| * omap-pm-noop.c - OMAP power management interface - dummy version |
| * |
| * This code implements the OMAP power management interface to |
| * drivers, CPUIdle, CPUFreq, and DSP Bridge. It is strictly for |
| * debug/demonstration use, as it does nothing but printk() whenever a |
| * function is called (when DEBUG is defined, below) |
| * |
| * Copyright (C) 2008-2009 Texas Instruments, Inc. |
| * Copyright (C) 2008-2009 Nokia Corporation |
| * Paul Walmsley |
| * |
| * Interface developed by (in alphabetical order): |
| * Karthik Dasu, Tony Lindgren, Rajendra Nayak, Sakari Poussa, Veeramanikandan |
| * Raju, Anand Sawant, Igor Stoppa, Paul Walmsley, Richard Woodruff |
| */ |
| |
| #undef DEBUG |
| |
| #include <linux/init.h> |
| #include <linux/cpufreq.h> |
| #include <linux/device.h> |
| |
| /* Interface documentation is in mach/omap-pm.h */ |
| #include <mach/omap-pm.h> |
| |
| #include <mach/powerdomain.h> |
| |
| struct omap_opp *dsp_opps; |
| struct omap_opp *mpu_opps; |
| struct omap_opp *l3_opps; |
| |
| /* |
| * Device-driver-originated constraints (via board-*.c files) |
| */ |
| |
| void omap_pm_set_max_mpu_wakeup_lat(struct device *dev, long t) |
| { |
| if (!dev || t < -1) { |
| WARN_ON(1); |
| return; |
| }; |
| |
| if (t == -1) |
| pr_debug("OMAP PM: remove max MPU wakeup latency constraint: " |
| "dev %s\n", dev_name(dev)); |
| else |
| pr_debug("OMAP PM: add max MPU wakeup latency constraint: " |
| "dev %s, t = %ld usec\n", dev_name(dev), t); |
| |
| /* |
| * For current Linux, this needs to map the MPU to a |
| * powerdomain, then go through the list of current max lat |
| * constraints on the MPU and find the smallest. If |
| * the latency constraint has changed, the code should |
| * recompute the state to enter for the next powerdomain |
| * state. |
| * |
| * TI CDP code can call constraint_set here. |
| */ |
| } |
| |
| void omap_pm_set_min_bus_tput(struct device *dev, u8 agent_id, unsigned long r) |
| { |
| if (!dev || (agent_id != OCP_INITIATOR_AGENT && |
| agent_id != OCP_TARGET_AGENT)) { |
| WARN_ON(1); |
| return; |
| }; |
| |
| if (r == 0) |
| pr_debug("OMAP PM: remove min bus tput constraint: " |
| "dev %s for agent_id %d\n", dev_name(dev), agent_id); |
| else |
| pr_debug("OMAP PM: add min bus tput constraint: " |
| "dev %s for agent_id %d: rate %ld KiB\n", |
| dev_name(dev), agent_id, r); |
| |
| /* |
| * This code should model the interconnect and compute the |
| * required clock frequency, convert that to a VDD2 OPP ID, then |
| * set the VDD2 OPP appropriately. |
| * |
| * TI CDP code can call constraint_set here on the VDD2 OPP. |
| */ |
| } |
| |
| void omap_pm_set_max_dev_wakeup_lat(struct device *dev, long t) |
| { |
| if (!dev || t < -1) { |
| WARN_ON(1); |
| return; |
| }; |
| |
| if (t == -1) |
| pr_debug("OMAP PM: remove max device latency constraint: " |
| "dev %s\n", dev_name(dev)); |
| else |
| pr_debug("OMAP PM: add max device latency constraint: " |
| "dev %s, t = %ld usec\n", dev_name(dev), t); |
| |
| /* |
| * For current Linux, this needs to map the device to a |
| * powerdomain, then go through the list of current max lat |
| * constraints on that powerdomain and find the smallest. If |
| * the latency constraint has changed, the code should |
| * recompute the state to enter for the next powerdomain |
| * state. Conceivably, this code should also determine |
| * whether to actually disable the device clocks or not, |
| * depending on how long it takes to re-enable the clocks. |
| * |
| * TI CDP code can call constraint_set here. |
| */ |
| } |
| |
| void omap_pm_set_max_sdma_lat(struct device *dev, long t) |
| { |
| if (!dev || t < -1) { |
| WARN_ON(1); |
| return; |
| }; |
| |
| if (t == -1) |
| pr_debug("OMAP PM: remove max DMA latency constraint: " |
| "dev %s\n", dev_name(dev)); |
| else |
| pr_debug("OMAP PM: add max DMA latency constraint: " |
| "dev %s, t = %ld usec\n", dev_name(dev), t); |
| |
| /* |
| * For current Linux PM QOS params, this code should scan the |
| * list of maximum CPU and DMA latencies and select the |
| * smallest, then set cpu_dma_latency pm_qos_param |
| * accordingly. |
| * |
| * For future Linux PM QOS params, with separate CPU and DMA |
| * latency params, this code should just set the dma_latency param. |
| * |
| * TI CDP code can call constraint_set here. |
| */ |
| |
| } |
| |
| |
| /* |
| * DSP Bridge-specific constraints |
| */ |
| |
| const struct omap_opp *omap_pm_dsp_get_opp_table(void) |
| { |
| pr_debug("OMAP PM: DSP request for OPP table\n"); |
| |
| /* |
| * Return DSP frequency table here: The final item in the |
| * array should have .rate = .opp_id = 0. |
| */ |
| |
| return NULL; |
| } |
| |
| void omap_pm_dsp_set_min_opp(u8 opp_id) |
| { |
| if (opp_id == 0) { |
| WARN_ON(1); |
| return; |
| } |
| |
| pr_debug("OMAP PM: DSP requests minimum VDD1 OPP to be %d\n", opp_id); |
| |
| /* |
| * |
| * For l-o dev tree, our VDD1 clk is keyed on OPP ID, so we |
| * can just test to see which is higher, the CPU's desired OPP |
| * ID or the DSP's desired OPP ID, and use whichever is |
| * highest. |
| * |
| * In CDP12.14+, the VDD1 OPP custom clock that controls the DSP |
| * rate is keyed on MPU speed, not the OPP ID. So we need to |
| * map the OPP ID to the MPU speed for use with clk_set_rate() |
| * if it is higher than the current OPP clock rate. |
| * |
| */ |
| } |
| |
| |
| u8 omap_pm_dsp_get_opp(void) |
| { |
| pr_debug("OMAP PM: DSP requests current DSP OPP ID\n"); |
| |
| /* |
| * For l-o dev tree, call clk_get_rate() on VDD1 OPP clock |
| * |
| * CDP12.14+: |
| * Call clk_get_rate() on the OPP custom clock, map that to an |
| * OPP ID using the tables defined in board-*.c/chip-*.c files. |
| */ |
| |
| return 0; |
| } |
| |
| /* |
| * CPUFreq-originated constraint |
| * |
| * In the future, this should be handled by custom OPP clocktype |
| * functions. |
| */ |
| |
| struct cpufreq_frequency_table **omap_pm_cpu_get_freq_table(void) |
| { |
| pr_debug("OMAP PM: CPUFreq request for frequency table\n"); |
| |
| /* |
| * Return CPUFreq frequency table here: loop over |
| * all VDD1 clkrates, pull out the mpu_ck frequencies, build |
| * table |
| */ |
| |
| return NULL; |
| } |
| |
| void omap_pm_cpu_set_freq(unsigned long f) |
| { |
| if (f == 0) { |
| WARN_ON(1); |
| return; |
| } |
| |
| pr_debug("OMAP PM: CPUFreq requests CPU frequency to be set to %lu\n", |
| f); |
| |
| /* |
| * For l-o dev tree, determine whether MPU freq or DSP OPP id |
| * freq is higher. Find the OPP ID corresponding to the |
| * higher frequency. Call clk_round_rate() and clk_set_rate() |
| * on the OPP custom clock. |
| * |
| * CDP should just be able to set the VDD1 OPP clock rate here. |
| */ |
| } |
| |
| unsigned long omap_pm_cpu_get_freq(void) |
| { |
| pr_debug("OMAP PM: CPUFreq requests current CPU frequency\n"); |
| |
| /* |
| * Call clk_get_rate() on the mpu_ck. |
| */ |
| |
| return 0; |
| } |
| |
| /* |
| * Device context loss tracking |
| */ |
| |
| int omap_pm_get_dev_context_loss_count(struct device *dev) |
| { |
| if (!dev) { |
| WARN_ON(1); |
| return -EINVAL; |
| }; |
| |
| pr_debug("OMAP PM: returning context loss count for dev %s\n", |
| dev_name(dev)); |
| |
| /* |
| * Map the device to the powerdomain. Return the powerdomain |
| * off counter. |
| */ |
| |
| return 0; |
| } |
| |
| |
| /* Should be called before clk framework init */ |
| int __init omap_pm_if_early_init(struct omap_opp *mpu_opp_table, |
| struct omap_opp *dsp_opp_table, |
| struct omap_opp *l3_opp_table) |
| { |
| mpu_opps = mpu_opp_table; |
| dsp_opps = dsp_opp_table; |
| l3_opps = l3_opp_table; |
| return 0; |
| } |
| |
| /* Must be called after clock framework is initialized */ |
| int __init omap_pm_if_init(void) |
| { |
| return 0; |
| } |
| |
| void omap_pm_if_exit(void) |
| { |
| /* Deallocate CPUFreq frequency table here */ |
| } |
| |