| /* |
| * Intel Wireless Multicomm 3200 WiFi driver |
| * |
| * Copyright (C) 2009 Intel Corporation. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * * Neither the name of Intel Corporation nor the names of its |
| * contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| * |
| * Intel Corporation <ilw@linux.intel.com> |
| * Samuel Ortiz <samuel.ortiz@intel.com> |
| * Zhu Yi <yi.zhu@intel.com> |
| * |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/firmware.h> |
| |
| #include "iwm.h" |
| #include "bus.h" |
| #include "hal.h" |
| #include "umac.h" |
| #include "debug.h" |
| #include "fw.h" |
| #include "commands.h" |
| |
| static const char fw_barker[] = "*WESTOPFORNOONE*"; |
| |
| /* |
| * @op_code: Op code we're looking for. |
| * @index: There can be several instances of the same opcode within |
| * the firmware. Index specifies which one we're looking for. |
| */ |
| static int iwm_fw_op_offset(struct iwm_priv *iwm, const struct firmware *fw, |
| u16 op_code, u32 index) |
| { |
| int offset = -EINVAL, fw_offset; |
| u32 op_index = 0; |
| const u8 *fw_ptr; |
| struct iwm_fw_hdr_rec *rec; |
| |
| fw_offset = 0; |
| fw_ptr = fw->data; |
| |
| /* We first need to look for the firmware barker */ |
| if (memcmp(fw_ptr, fw_barker, IWM_HDR_BARKER_LEN)) { |
| IWM_ERR(iwm, "No barker string in this FW\n"); |
| return -EINVAL; |
| } |
| |
| if (fw->size < IWM_HDR_LEN) { |
| IWM_ERR(iwm, "FW is too small (%zu)\n", fw->size); |
| return -EINVAL; |
| } |
| |
| fw_offset += IWM_HDR_BARKER_LEN; |
| |
| while (fw_offset < fw->size) { |
| rec = (struct iwm_fw_hdr_rec *)(fw_ptr + fw_offset); |
| |
| IWM_DBG_FW(iwm, DBG, "FW: op_code: 0x%x, len: %d @ 0x%x\n", |
| rec->op_code, rec->len, fw_offset); |
| |
| if (rec->op_code == IWM_HDR_REC_OP_INVALID) { |
| IWM_DBG_FW(iwm, DBG, "Reached INVALID op code\n"); |
| break; |
| } |
| |
| if (rec->op_code == op_code) { |
| if (op_index == index) { |
| fw_offset += sizeof(struct iwm_fw_hdr_rec); |
| offset = fw_offset; |
| goto out; |
| } |
| op_index++; |
| } |
| |
| fw_offset += sizeof(struct iwm_fw_hdr_rec) + rec->len; |
| } |
| |
| out: |
| return offset; |
| } |
| |
| static int iwm_load_firmware_chunk(struct iwm_priv *iwm, |
| const struct firmware *fw, |
| struct iwm_fw_img_desc *img_desc) |
| { |
| struct iwm_udma_nonwifi_cmd target_cmd; |
| u32 chunk_size; |
| const u8 *chunk_ptr; |
| int ret = 0; |
| |
| IWM_DBG_FW(iwm, INFO, "Loading FW chunk: %d bytes @ 0x%x\n", |
| img_desc->length, img_desc->address); |
| |
| target_cmd.opcode = UMAC_HDI_OUT_OPCODE_WRITE; |
| target_cmd.handle_by_hw = 1; |
| target_cmd.op2 = 0; |
| target_cmd.resp = 0; |
| target_cmd.eop = 1; |
| |
| chunk_size = img_desc->length; |
| chunk_ptr = fw->data + img_desc->offset; |
| |
| while (chunk_size > 0) { |
| u32 tmp_chunk_size; |
| |
| tmp_chunk_size = min_t(u32, chunk_size, |
| IWM_MAX_NONWIFI_CMD_BUFF_SIZE); |
| |
| target_cmd.addr = cpu_to_le32(img_desc->address + |
| (chunk_ptr - fw->data - img_desc->offset)); |
| target_cmd.op1_sz = cpu_to_le32(tmp_chunk_size); |
| |
| IWM_DBG_FW(iwm, DBG, "\t%d bytes @ 0x%x\n", |
| tmp_chunk_size, target_cmd.addr); |
| |
| ret = iwm_hal_send_target_cmd(iwm, &target_cmd, chunk_ptr); |
| if (ret < 0) { |
| IWM_ERR(iwm, "Couldn't load FW chunk\n"); |
| break; |
| } |
| |
| chunk_size -= tmp_chunk_size; |
| chunk_ptr += tmp_chunk_size; |
| } |
| |
| return ret; |
| } |
| /* |
| * To load a fw image to the target, we basically go through the |
| * fw, looking for OP_MEM_DESC records. Once we found one, we |
| * pass it to iwm_load_firmware_chunk(). |
| * The OP_MEM_DESC records contain the actuall memory chunk to be |
| * sent, but also the destination address. |
| */ |
| static int iwm_load_img(struct iwm_priv *iwm, const char *img_name) |
| { |
| const struct firmware *fw; |
| struct iwm_fw_img_desc *img_desc; |
| struct iwm_fw_img_ver *ver; |
| int ret = 0, fw_offset; |
| u32 opcode_idx = 0, build_date; |
| char *build_tag; |
| |
| ret = request_firmware(&fw, img_name, iwm_to_dev(iwm)); |
| if (ret) { |
| IWM_ERR(iwm, "Request firmware failed"); |
| return ret; |
| } |
| |
| IWM_DBG_FW(iwm, INFO, "Start to load FW %s\n", img_name); |
| |
| while (1) { |
| fw_offset = iwm_fw_op_offset(iwm, fw, |
| IWM_HDR_REC_OP_MEM_DESC, |
| opcode_idx); |
| if (fw_offset < 0) |
| break; |
| |
| img_desc = (struct iwm_fw_img_desc *)(fw->data + fw_offset); |
| ret = iwm_load_firmware_chunk(iwm, fw, img_desc); |
| if (ret < 0) |
| goto err_release_fw; |
| opcode_idx++; |
| }; |
| |
| /* Read firmware version */ |
| fw_offset = iwm_fw_op_offset(iwm, fw, IWM_HDR_REC_OP_SW_VER, 0); |
| if (fw_offset < 0) |
| goto err_release_fw; |
| |
| ver = (struct iwm_fw_img_ver *)(fw->data + fw_offset); |
| |
| /* Read build tag */ |
| fw_offset = iwm_fw_op_offset(iwm, fw, IWM_HDR_REC_OP_BUILD_TAG, 0); |
| if (fw_offset < 0) |
| goto err_release_fw; |
| |
| build_tag = (char *)(fw->data + fw_offset); |
| |
| /* Read build date */ |
| fw_offset = iwm_fw_op_offset(iwm, fw, IWM_HDR_REC_OP_BUILD_DATE, 0); |
| if (fw_offset < 0) |
| goto err_release_fw; |
| |
| build_date = *(u32 *)(fw->data + fw_offset); |
| |
| IWM_INFO(iwm, "%s:\n", img_name); |
| IWM_INFO(iwm, "\tVersion: %02X.%02X\n", ver->major, ver->minor); |
| IWM_INFO(iwm, "\tBuild tag: %s\n", build_tag); |
| IWM_INFO(iwm, "\tBuild date: %x-%x-%x\n", |
| IWM_BUILD_YEAR(build_date), IWM_BUILD_MONTH(build_date), |
| IWM_BUILD_DAY(build_date)); |
| |
| |
| err_release_fw: |
| release_firmware(fw); |
| |
| return ret; |
| } |
| |
| static int iwm_load_umac(struct iwm_priv *iwm) |
| { |
| struct iwm_udma_nonwifi_cmd target_cmd; |
| int ret; |
| |
| ret = iwm_load_img(iwm, iwm->bus_ops->umac_name); |
| if (ret < 0) |
| return ret; |
| |
| /* We've loaded the UMAC, we can tell the target to jump there */ |
| target_cmd.opcode = UMAC_HDI_OUT_OPCODE_JUMP; |
| target_cmd.addr = cpu_to_le32(UMAC_MU_FW_INST_DATA_12_ADDR); |
| target_cmd.op1_sz = 0; |
| target_cmd.op2 = 0; |
| target_cmd.handle_by_hw = 0; |
| target_cmd.resp = 1 ; |
| target_cmd.eop = 1; |
| |
| ret = iwm_hal_send_target_cmd(iwm, &target_cmd, NULL); |
| if (ret < 0) |
| IWM_ERR(iwm, "Couldn't send JMP command\n"); |
| |
| return ret; |
| } |
| |
| static int iwm_load_lmac(struct iwm_priv *iwm, const char *img_name) |
| { |
| int ret; |
| |
| ret = iwm_load_img(iwm, img_name); |
| if (ret < 0) |
| return ret; |
| |
| return iwm_send_umac_reset(iwm, |
| cpu_to_le32(UMAC_RST_CTRL_FLG_LARC_CLK_EN), 0); |
| } |
| |
| static int iwm_init_calib(struct iwm_priv *iwm, unsigned long cfg_bitmap, |
| unsigned long expected_bitmap, u8 rx_iq_cmd) |
| { |
| /* Read RX IQ calibration result from EEPROM */ |
| if (test_bit(rx_iq_cmd, &cfg_bitmap)) { |
| iwm_store_rxiq_calib_result(iwm); |
| set_bit(PHY_CALIBRATE_RX_IQ_CMD, &iwm->calib_done_map); |
| } |
| |
| iwm_send_prio_table(iwm); |
| iwm_send_init_calib_cfg(iwm, cfg_bitmap); |
| |
| while (iwm->calib_done_map != expected_bitmap) { |
| if (iwm_notif_handle(iwm, CALIBRATION_RES_NOTIFICATION, |
| IWM_SRC_LMAC, WAIT_NOTIF_TIMEOUT)) { |
| IWM_DBG_FW(iwm, DBG, "Initial calibration timeout\n"); |
| return -ETIMEDOUT; |
| } |
| |
| IWM_DBG_FW(iwm, DBG, "Got calibration result. calib_done_map: " |
| "0x%lx, expected calibrations: 0x%lx\n", |
| iwm->calib_done_map, expected_bitmap); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * We currently have to load 3 FWs: |
| * 1) The UMAC (Upper MAC). |
| * 2) The calibration LMAC (Lower MAC). |
| * We then send the calibration init command, so that the device can |
| * run a first calibration round. |
| * 3) The operational LMAC, which replaces the calibration one when it's |
| * done with the first calibration round. |
| * |
| * Once those 3 FWs have been loaded, we send the periodic calibration |
| * command, and then the device is available for regular 802.11 operations. |
| */ |
| int iwm_load_fw(struct iwm_priv *iwm) |
| { |
| unsigned long init_calib_map, periodic_calib_map; |
| unsigned long expected_calib_map; |
| int ret; |
| |
| /* We first start downloading the UMAC */ |
| ret = iwm_load_umac(iwm); |
| if (ret < 0) { |
| IWM_ERR(iwm, "UMAC loading failed\n"); |
| return ret; |
| } |
| |
| /* Handle UMAC_ALIVE notification */ |
| ret = iwm_notif_handle(iwm, UMAC_NOTIFY_OPCODE_ALIVE, IWM_SRC_UMAC, |
| WAIT_NOTIF_TIMEOUT); |
| if (ret) { |
| IWM_ERR(iwm, "Handle UMAC_ALIVE failed: %d\n", ret); |
| return ret; |
| } |
| |
| /* UMAC is alive, we can download the calibration LMAC */ |
| ret = iwm_load_lmac(iwm, iwm->bus_ops->calib_lmac_name); |
| if (ret) { |
| IWM_ERR(iwm, "Calibration LMAC loading failed\n"); |
| return ret; |
| } |
| |
| /* Handle UMAC_INIT_COMPLETE notification */ |
| ret = iwm_notif_handle(iwm, UMAC_NOTIFY_OPCODE_INIT_COMPLETE, |
| IWM_SRC_UMAC, WAIT_NOTIF_TIMEOUT); |
| if (ret) { |
| IWM_ERR(iwm, "Handle INIT_COMPLETE failed for calibration " |
| "LMAC: %d\n", ret); |
| return ret; |
| } |
| |
| /* Read EEPROM data */ |
| ret = iwm_eeprom_init(iwm); |
| if (ret < 0) { |
| IWM_ERR(iwm, "Couldn't init eeprom array\n"); |
| return ret; |
| } |
| |
| init_calib_map = iwm->conf.calib_map & IWM_CALIB_MAP_INIT_MSK; |
| expected_calib_map = iwm->conf.expected_calib_map & |
| IWM_CALIB_MAP_INIT_MSK; |
| periodic_calib_map = IWM_CALIB_MAP_PER_LMAC(iwm->conf.calib_map); |
| |
| ret = iwm_init_calib(iwm, init_calib_map, expected_calib_map, |
| CALIB_CFG_RX_IQ_IDX); |
| if (ret < 0) { |
| /* Let's try the old way */ |
| ret = iwm_init_calib(iwm, expected_calib_map, |
| expected_calib_map, |
| PHY_CALIBRATE_RX_IQ_CMD); |
| if (ret < 0) { |
| IWM_ERR(iwm, "Calibration result timeout\n"); |
| goto out; |
| } |
| } |
| |
| /* Handle LMAC CALIBRATION_COMPLETE notification */ |
| ret = iwm_notif_handle(iwm, CALIBRATION_COMPLETE_NOTIFICATION, |
| IWM_SRC_LMAC, WAIT_NOTIF_TIMEOUT); |
| if (ret) { |
| IWM_ERR(iwm, "Wait for CALIBRATION_COMPLETE timeout\n"); |
| goto out; |
| } |
| |
| IWM_INFO(iwm, "LMAC calibration done: 0x%lx\n", iwm->calib_done_map); |
| |
| iwm_send_umac_reset(iwm, cpu_to_le32(UMAC_RST_CTRL_FLG_LARC_RESET), 1); |
| |
| ret = iwm_notif_handle(iwm, UMAC_CMD_OPCODE_RESET, IWM_SRC_UMAC, |
| WAIT_NOTIF_TIMEOUT); |
| if (ret) { |
| IWM_ERR(iwm, "Wait for UMAC RESET timeout\n"); |
| goto out; |
| } |
| |
| /* Download the operational LMAC */ |
| ret = iwm_load_lmac(iwm, iwm->bus_ops->lmac_name); |
| if (ret) { |
| IWM_ERR(iwm, "LMAC loading failed\n"); |
| goto out; |
| } |
| |
| ret = iwm_notif_handle(iwm, UMAC_NOTIFY_OPCODE_INIT_COMPLETE, |
| IWM_SRC_UMAC, WAIT_NOTIF_TIMEOUT); |
| if (ret) { |
| IWM_ERR(iwm, "Handle INIT_COMPLETE failed for LMAC: %d\n", ret); |
| goto out; |
| } |
| |
| iwm_send_prio_table(iwm); |
| iwm_send_calib_results(iwm); |
| iwm_send_periodic_calib_cfg(iwm, periodic_calib_map); |
| |
| return 0; |
| |
| out: |
| iwm_eeprom_exit(iwm); |
| return ret; |
| } |